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[bookmark: _Ref163224089]Introduction
The following study objectives related to CSI feedback enhancement were identified in the Release 19 work item description [2] :
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 
 


In this contribution, we discuss aspects related to the use case of CSI compression using two-sided model. Specifically, we discuss potential approaches to addressing the inter-vendor collaboration complexity issue, as well as approaches to improve the performance of CSI compression using localized models and temporal compression techniques including joint compression and prediction.
Inter-vendor collaboration aspects
For CSI compression use case, a two-sided model was identified and extensively studied in Rel-18. During the study, to ensure the interoperability of the models deployed at UE side and NW side, various training collaboration types were studied. Assuming NW-first training for the discussion, since each NW-side vendor may develop a different PMI mapping independently, each UE-side vendor would need to collaborate with each NW-side vendor to obtain the PMI mapping. Similarly, any NW-side vendor would need to collaborate with each UE-side vendor to provide the PMI mapping information. Without standards support, such pairwise collaboration may not be scalable across vendors. Hence, how to reduce inter-vendor collaboration is listed as one of the main study item of Rel-19. In last meeting, following were agreed as a starting point for the study:Agreement
To alleviate / resolve the issues related to inter-vendor training collaboration of AI/ML-based CSI compression using two-sided model, study the following options:
· Option 1: Fully standardized reference model (structure + parameters)
· Option 2: Standardized dataset
· Option 3: Standardized reference model structure + Parameter exchange between NW-side and UE-side
· Option 4: Standardized data / dataset format + Dataset exchange between NW-side and UE-side
· Option 5: Standardized model format + Reference model exchange between NW-side and UE-side
Note 1: The above options may not be mutually exclusive and may be used together.
Note 2: Other options are not precluded.
Note 3: The study should consider how different methods of exchanging the parameters / dataset / reference model would affect the feasibility and collaboration complexity of options 3 / 4 / 5 respectively, e.g., over the air-interface, offline delivery, etc.
Note 4: “Dataset” refers to a set of data samples of CSI feedback and associated target CSI.

Agreement
For the study of inter-vendor collaboration issues for AI/ML-based CSI compression using a two-sided model, consider at least the following aspects when comparing different options:
· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors.
· Performance.
· Interoperability and RAN4 / testing related aspects.
· Feasibility.

In this section, we elaborate our views on the listed options and their pros/cons from the aspects of inter-vendor collaboration complexity, performance, interoperability and feasibility. To ease the discussion, in the following, we use the term PMI mapping to denote the mapping between the precoding matrix indicator (PMI) in the CSI feedback payload (i.e., the output of the CSI generation part) and the precoding matrix it represents (i.e., the target CSI or input-CSI-NW / output-CSI-UE).
Option 1: fully standardized reference model
In our view, a fully standardized reference model specifies the PMI mapping implicitly. For example, a given bit-sequence input to the standardized CSI reconstruction model would yield a pre-determined precoder. Similarly, a given precoder input to standardized CSI generation model would yield a pre-determined UCI bit-sequence. From this aspect, option 1 is equivalent to the legacy codebook-based CSI feedback, e.g., Type I, Type II, eType II, etc. Thus, this scheme requires nearly zero inter-vendor collaboration because the paring collaboration is left to one side (e.g., UE to optimize their CSI generation model and pair with standardized CSI reconstruction model and vice versa). Also, interoperability and RAN4 test effort can be reduced because TE or UE may implement the standardized model directly.
However, to obtain good performance, the PMI mapping should be determined based on training on field data and cannot be determined based on synthetical channels. This can be seen from the following evaluation shown in Table 1. The results imply that standardized model trained w/ synthetic data cannot work well in real world considering the distribution mismatch between the synthetic channels and real world channels. Differences in antenna patterns, propagation characteristics, and implementation aspects at devices are all contributing factors for the distribution mismatch. Similar observation can be also drawn from Rel-18 generalization study where a model trained on dataset A may not yield good performance on dataset B.
[bookmark: _Ref163225932]Table 1: Performance test of a model trained with synthesis data
	Performance of testing on synthesis data
	Performance of testing on field data

	-6.3dB
	-3.8dB



It may be possible for RAN1 to develop reference model(s) based on field data collection during the standardization process. However, feasibility, methodology, scalability, and flexibility of such approach should be discussed. 
It is feasible for UE implementation as long as the reference model considers UE capability in terms of model complexity and quantization. On the other hand, it may not be feasible for standardization of models of thousands or millions of parameters. It may be also hard for RAN1 to converge on such huge model. Moreover, the standardized model may not be forward compatible. When new models or AI/ML techniques rises, RAN1 would have to standardize a new model.
Option 2: standardized dataset
In this option, RAN1 explicitly standardize the mapping between UCI payloads and precoders similar to the legacy codebook-based CSI feedback, e.g., Type I, Type II, eType II, etc. Hence, this option shares the same pros as option 1 for least inter-vendor collaboration complexity and least interoperability and RAN4 testing. From feasibility aspects, it is feasible for UE implementation as UE is able to optimize its model based on its own capability. 
The main drawback lies in agreeing on and obtaining field data for standardization. As discussed earlier, a model trained on synthetic data gives poor performance when tested on real world data. So, for the Option 2 to work, the standardized dataset should be constructed based on field data. It may be possible for RAN1 to collect and standardize field data during the standardization process. However, feasibility, methodology, scalability, and flexibility of such approach should be discussed. Moreover, how RAN1 can conduct such dataset specification effort for scenario-specific, site-specific, or vendor-specific models should be studied. Moreover, it may not be feasible to standardize the PMI mapping without pre-determined structure of the precoder and UCI payloads.
Option 3: standardized reference model structure + parameters exchange
In this option, RAN1 standardizes the reference model structure and allows each vendor or vendor-pairs to optimize their parameters under the standardized structure. Rel-18 listed various training collaboration types, we will elaborate Type3 sequential training with parameter exchange in the following. 
Specifically, each NW vendor may handle the training of CSI generation and reconstruction model pairs and exchange the parameters of CSI generation part to each UE vendor. Upon receiving the parameters, the training entity of each UE vendor then use them to derive a PMI mapping between the CSI payload (the CSI generation part output) and a given precoder (the input to the CSI generation part). The derived PMI mapping would allow the UE-side training entity to develop its own parameters that are compatible with its own implementation. The models with the optimized parameter are then compiled and tested before deployment on devices.
With such, the PMI mapping is not pre-determined and can be optimized along with the parameters based on the data distribution of precoding matrix instances in a specific scenario and/or specific vendors. Therefore, the real performance benefit of data-driven approach can be achieved to some extent in real world. 
In this option, RAN4 may need to specify reference CSI reconstruction model to facilitate RAN4 test. Since model design is proprietary at each vendor, it is feasible for implementations at UE side and NW side.
Below, we discuss various standardized solutions to enable the sharing of parameters from the vendor that trains first to the vendor that trains second. 
Central registry for parameter exchange
Since the parameters defined by one NW-vendor is expected to be common for all UE-side vendors, one solution would be to register and store the parameter in a central registry. As shown in Figure 1, the NW-side entity that performs the initial training can design and register the model parameters (known as the “PMI mapping information” in the figure). Subsequently, any UE-side vendor’s training entity can retrieve the parameters from such a registry and train a compatible UE-side model based on these parameters. The NW-side vendor may optionally develop a different NW-side CSI reconstruction model with further optimization before deploying on a gNB, while ensuring that it is still compatible with the registered parameters.
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[bookmark: _Ref163226160]Figure 1: Two-sided model operation based on central registry for PMI-precoder mapping
Such a discussion also applies to UE-first training. In this case, the UE-side vendor that performs the first training step can define and register the parameters at the registry. Subsequently, any vendor can retrieve the parameters from such a registry and train a compatible NW-side model based on this information.
The procedure to register and retrieve the parameters may be standardized. It should be noted that the requirement is to exchange the parameters between the central registry and a training entity. The central registry may be a place outside the Network (e.g., a 3GPP file server). Alternatively, the central registry can be deployed within core network. Air-interface signalling specification is not expected for the transfer mechanism of the parameter. 
Parameter exchange over the air-interface
Another way to reduce offline bilateral complexity is to specifying air-interface signalling using which the NW-side entity that performs the initial training transfers the model parameters to UE over-the-air. Here, we can think of two sub-flavours:
Model parameter transfer for inference:
In this flavour, the parameters transferred to UE are used by UE for inference. This corresponds to model transfer Case z4. Regarding whether it’s feasible for UE to run inference with the parameters, it’s important to note that, considering devices’ capability and engineering practices, it is mandatory that, for any model delivered/transferred to the target UEs, the model (including its structure and parameters) should have been fully tested for the target UEs, and its support should have been indicated by the UE capability. Therefore, the feasibility of this approach hinges on whether the parameters being transferred to UE have been fully tested by the UE side (e.g., by the UE-side chipset vendor). For example, this could be achieved by having the UE-side involved in the model training and testing process, at the cost of increased inter-vendor collaboration complexity.
Model parameter transfer for UE-side engineering:
In this flavor, the parameters transferred to UE are relayed to the UE-side server. The UE-side then may go through an offline engineering to re-develop, re-train, and/or test a UE-part model, that can be delivered to UE for inference.
This approach is workable. On the other hand, it’s not clear why we would want to use UE as a relay to exchange the model from NW-side to UE-side, rather than doing a direct exchange from NW-side to UE-side. 
Option 4: standardized data / dataset format + dataset exchange
This option standardizes the dataset format (e.g., precoder with its rank, number of subbands, antenna port layout and the associated payload, etc), while the actual dataset is exchanged between NW side and UE side. Hence, this option allows each vendor to optimize their model based on scenario-specific or vendor-specific dataset.
Considering NW-first training as example, each NW vendor may handle the training of CSI generation and reconstruction model pairs and share the input/output of the trained CSI generation model to each UE vendor. These dataset can be considered as a PMI mapping where an input CSI and an UCI payload is mapped. Upon receiving the dataset, the training entity of each UE vendor then use them to train their own CSI generation model. The model is then compiled and tested before deployment on devices.
With such, the PMI mapping is not pre-determined and can be optimized based on the data distribution of in a specific scenario and/or specific vendors. Therefore, the real performance benefit of data-driven approach can be achieved in real world. 
RAN4 may need to specify reference CSI reconstruction model to facilitate RAN4 test. Since model design is proprietary at each vendor, it is feasible for implementations at UE side and NW side. Besides, model update can be supported with standardized communication between the central registry and NW/UE side training entity.
To address the inter-vendor collaboration complexity, a central registry or over-the-air dataset transfer can be considered analogous to what was described in option 3.
Central registry for dataset exchange
As shown in Figure 1, the NW-side entity that performs the initial training can design and register the dataset (known as the “PMI mapping information” in the figure) at the registry. Subsequently, any UE-side vendor’s training entity can retrieve the dataset from such a registry and train a compatible UE-side model based on the retrieved dataset. The NW-side vendor may optionally develop a different NW-side CSI reconstruction model with further optimization before deploying on a gNB, while ensuring that it is still compatible with the registered dataset.
Such a discussion also applies to UE-first training. In this case, the UE-side vendor that performs the first training step can register the dataset at the registry. Subsequently, any vendor can retrieve the dataset from such a registry and train a compatible NW-side model based on this information.
Like option 3, the procedure to register and retrieve the dataset may be standardized. The central registry may be a place outside the Network (e.g., a 3GPP file server). Alternatively, the central registry can be deployed within core network. 
Dataset exchange over-the-air
In this flavour, the dataset from the NW-side is delivered to UE via over-the-air interface with standardized signalling to reduce offline bilateral collaboration complexity. UE may then send the dataset to the UE-side server to develop a UE-part model.
While this approach is workable, it’s not clear why we would want to use UE as a relay to send the dataset from NW-side to UE-side, rather than doing a direct exchange from NW-side to UE-side. 
Option 5: standardized model format + model exchange
In this option, vendors are allowed to optimize their models based on scenario-specific and vendor-specific dataset. The real benefit of data-driven approach can be obtained in real world deployment. The trained model may be exchanged between NW side and UE side with a standardized the model format (e.g., ONNX or other known format). With such exchanged model, the other side is able to train compatible model that achieves similar functionality while optimized based on proprietary implementations.
More specifically, let us consider NW-first sequential training. Each NW vendor may handle the training of CSI generation and reconstruction model pairs and exchange the CSI generation part to each UE vendor. Upon receiving the model, the training entity of each UE vendor then use them to derive a PMI mapping between the CSI payload (the CSI generation part output) and a given precoder (the input to the CSI generation part). The derived PMI mapping would allow the UE-side training entity develops its own CSI generation model that are optimized with its own implementation. The models with the optimized parameter are then compiled and tested before deployment on devices.
Like option 3 and option 4, RAN4 may need to specify reference CSI reconstruction model to facilitate RAN4 test. Since model design is proprietary at each vendor, it is feasible for implementations at UE side and NW side. Besides, model update can be supported with standardized communication between the central registry and NW/UE side training entity.
Below, analogous to option 3 and 4, we discuss various standardized solutions to enable the sharing of a model from the vendor that trains first to the vendor that trains second.
Central registry for model exchange
As shown in Figure 1, the NW-side entity that performs the initial training can design and register the CSI generation or CSI reconstruction model (including its structure and parameters, known as the “PMI mapping information” in the figure). Subsequently, any UE-side vendor’s training entity can retrieve the CSI generation or reconstruction model from such a registry and train a compatible UE-side CSI generation model based on the retrieved model. The NW-side vendor may optionally develop a different NW-side CSI reconstruction model with further optimization before deploying on a gNB, while ensuring that it is still compatible with the registered dataset.
Such a discussion also applies to UE-first training. In this case, the UE-side vendor that performs the first training step can register the model (e.g., CSI reconstruction part) at the registry. Subsequently, any vendor can retrieve the model from such a registry and train a compatible NW-side CSI reconstruction model based on this information.
Like option 3 and 4, the procedure to register and retrieve the model may be standardized. The central registry may be a place outside the Network (e.g., a 3GPP file server). Alternatively, the central registry can be deployed within core network. 
Model exchange over the air-interface
In this option, the NW-side entity that performs the initial training transfers the model to UE via standardized over-the-air signalling to reduce the offline bilateral collaboration complexity. Here, we can think of two sub-flavours:
Model transfer for inference:
In this flavour, the model transferred to UE are used by UE for inference. This corresponds to model transfer Case z5, which RAN1 already agreed to deprioritize for Rel-19 due to the feasibility of UE running inference with an unknown model structure. Therefore, this flavor can be deprioritized from the inter-vendor collaboration discussion.
Model parameter transfer for UE-side engineering:
In this flavour, the parameters transferred to UE are relayed to the UE-side server. The UE-side then may go through an offline engineering to re-develop, re-train, and/or test a UE-part model, that can be delivered to UE for inference.
This approach is workable. On the other hand, it’s not clear why we would want to use UE as a relay to exchange the model from NW-side to UE-side, rather than doing a direct exchange from NW-side to UE-side. 
Summary
To summarize, the use of field data is essential for proper performance of AI/ML-based CSI compression. This may be achieved by either of the following approaches:
(1) Utilizing field data during standardization – option 1 and option 2
(2) Defining standardized procedures for exchanging scenario/vendor-specific field data or model/parameters derived from scenario/vendor-specific field data – option 3 / 4 / 5
Furthermore, for (2), various standardization methods of exchanging the parameters / dataset / reference model may be considered as follows:
2a. To facilitate offline engineering at UE-side (and/or NW-side) retraining / re-develop of CSI generation model
· Standardize procedures of exchanging the parameters / dataset / reference model via central registry (e.g., a 3GPP file server, a core network entity)
· Standardize (pair-wise) signalling over the air-interface to exchange the parameters / dataset / reference model + UE relaying the parameters / dataset / reference model to its training entity for offline engineering
2b. To facilitate inference using exchanged parameters / reference model at UE-side
· Standardize (pair-wise) signalling over the air-interface to exchange the parameters / dataset / reference model 
Different methods of exchange have different pros/cons. Their comparison is captured in Table 2. 
[bookmark: _Ref163225989]Table 2: Comparison among 5 options of addressing inter-vendor collaboration complexity
	
	Inter-vendor collaboration complexity
	Performance
	Interoperability and RAN4 testing
	Feasibility

	Bilateral collaboration
(for baseline comparison)
	High
	Good
	RAN4 may develop a reference CSI reconstruction model
	· Feasible for UE implementation
· Forward compatible

	Option 1
	Least effort
	· Without field data: Unacceptable
· With field data: Low to medium 
(due to inflexibility of field data used and standardized model structure)
	Standardized model may be used by RAN4 directly
	· Feasible for UE implementation as long as model considers UE capability in terms of model complexity / quantization
· Higher standardization effort
· Not forward compatible
· TBD: feasibility of using field data during standardization

	Option 2
	Least effort
	· Without field data: Unacceptable
· With field data: Low to medium 
(due to inflexibility of field data used and standardized model structure)
	RAN4 may use standardized dataset to develop a reference CSI reconstruction model
	· Feasible for UE implementation
· Higher standardization effort
· Not forward compatible
· TBD: feasibility of using field data during standardization

	Option 3
	· Small (if UE-side offline engineering allowed, i.e., 2a above)
· Larger (if UE inference using transferred model, i.e., 2b above)
	Low to medium (due to inflexibility of standardized model structure)
	RAN4 may develop a reference CSI reconstruction model
	· If UE-side offline engineering allowed (2a): feasible for UE implementation
· If UE inference using transferred model (2b): feasible if and only if parameters are fully tested at the UE-side prior to exchange
· Otherwise, Not feasible for UE implementation 
· May not be forward compatible

	Option 4
	Small 
	Good
	RAN4 may develop a reference CSI reconstruction model
	· Feasible for UE implementation
· Forward compatible

	Option 5
	· Small (if UE-side offline engineering allowed, i.e., 2a above)
Larger (if UE inference using transferred model, i.e., 2b above)
	Good
	RAN4 may develop a reference CSI reconstruction model
	· If UE-side offline engineering allowed (2a): feasible for UE implementation
· If UE inference using transferred model (2b): feasible if and only if parameters are fully tested at the UE-side prior to exchange
· Otherwise, Not feasible for UE implementation
· Forward compatible



Based on the discussion and the comparison in Table 2-2, we can see that including field data is essential for option 1 and 2 to obtain the real benefit of AI/ML, while standardized procedure that allows offline engineering is important for option 3 / 4 / 5 to address inter-vendor collaboration complexity and implementation feasibility. We list the main observations and proposals as follows.
[bookmark: _Ref163223930]In Option 1 and Option 2, standardized model or standardized dataset, have unacceptable performance if not trained on field data or not include field data.
[bookmark: _Ref163223974]In Option 3, 4 and 5, inter-vendor collaboration complexity can be minimized by defining standardized procedures for exchanging parameters / dataset / model.
[bookmark: _Ref163224271]RAN1 should further study how to include real world data in option 1 and option 2.
[bookmark: _Ref163224305]To address concerns related to inter-vendor training collaboration complexity in option 3 / 4 / 5, study standardization support of registering/retrieving parameters / dataset / reference model from a central registry.

Temporal domain compression
In last meeting, 5 sub-use-cases were identified depending on how historical CSI report / measurement is used and whether prediction is considered in addition to compression.Agreement 
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following categorization for study:
Case
Target CSI slot(s)
Whether the UE uses past CSI information
Whether the network uses past CSI information
0
Present slot
No
No
1
Present slot
Yes
No
2
Present slot
Yes
Yes
3
Future slot(s)
Yes
No
4
Future slot(s)
Yes
Yes
5
Present slot
No
Yes

Note 1: For the UE, the past CSI information may include past model inputs and/or any information derived from them. For the network, the past CSI information may include past CSI feedback instances and/or any information derived from them.
Note 2: For case 3 and case 4, the UE may perform prediction as a separate step or jointly with compression. Similarly, the network may perform prediction as a separate step or jointly with reconstruction. Companies to report which option is selected, the number of future slots, and whether the prediction is AI/ML-based or not.
Note 3: “Target CSI slot(s)” refers to the slot(s) to which the CSI feedback in the report corresponds. “Present slot” refers to the slot of the most recent CSI-RS measurement used to generate the CSI report. “Future slot(s)” includes at least one slot after the present slot and may include the present slot as well. 
Note 4: Down-selection is not precluded. 


In this section, we discuss which scenarios are most suitable for studying temporal domain compression. Also, we propose an update to the format of the results table for capturing the results.
Study of Case 2
Evaluation results
Consider the Dense Urban Scenario, with both indoor and outdoor UEs at 3 kmph doppler, with CSI-RS periodicity of 5 ms. Using 2 and 4 TD samples, we try to reconstruct the V-vectors at the decoder. Figure 2 and Figure 3 below show the architecture. 
[image: ]
[bookmark: _Ref163139224]Figure 2: Using 2 TD samples for “Case 2” Compression
[image: ]
[bookmark: _Ref163139230]Figure 3: Using 4 TD samples for “Case 2” Compression
Table 3 below shows the Stand-alone NN performance in terms of per-layer SGCS, for Rank 2, compared with Release 16 eType2 at comparable PMI overheads, and single shot ML CSF (Case 0). 
· For Layer 0, SGCS improves by 9-10% for Case 2 (2-4 TD samples) over Release 16 eType2 PC3 combination. SGCS improves by 4-5% for Case 2 (2-4 TD samples) over Case 0.
· For Layer 1, SGCS improves by 15-17% for Case 2 (2-4 TD samples) over Release 16 eType2 PC3 combination. SGCS improves by 6-7% for Case 2 (2-4 TD samples) over Case 0.
[bookmark: _Ref163140715][bookmark: _Ref163226027]Table 3: SGCS Performance for Rank 2
	
	Scheme
	SGCS Layer 0
	SGCS Layer 1

	R16 eType2
	PC3 (219 bits)
	0.7738
	0.6423

	
	PC4 (335 bits)
	0.8262
	0.7104

	ML CSF (256 bit PMI feedback)
	Case 0
	0.8108
	0.7021

	
	Case 2 (2 TD samples)
	0.8414
	0.7372

	
	Case 2 (4 TD samples)
	0.8481
	0.7508



Table 4 below shows the System Simulation result for the same cases. 
· Mean throughput is 11% higher with ML CSF Case 2 over Release 16 eType2 PC3 combination. Mean throughput is 6% higher with Case 2 (2-4 TD samples) over Case 0 (no memory). 
· For edge throughputs, the gain for Case 2 (4 TD samples) over Release 16 eType2 PC3 combination is 3.4%. Gain of Case 2 (4 TD samples) over Case 0 (no memory) is 2.2%. 
[bookmark: _Ref163141664][bookmark: _Ref163226061]Table 4: System Simulations: Throughput Performance (R16 eType2 vs ML CSF)
	
	Scheme
	Mean UE Tput (Mbps)
	Edge UE Tput (Mbps)

	R16 eType2
	PC3 (219 bits)
	14.80
	5.369

	
	PC4 (335 bits)
	15.82
	5.879

	ML CSF (256 bit PMI feedback)
	Case 0
	15.48
	5.437

	
	Case 2 (2 TD samples)
	16.41
	5.484

	
	Case 2 (4 TD samples)
	16.37
	5.555


[bookmark: _Ref163223978]
Under low UE speed with 80% indoor and 20% outdoor, 
· for SGCS of layer 0, ML CSF case 2 achieves 9~10% gain over eT2 PC3 and 4~5% gain over ML CSF case 0; 
· for SGCS of layer 1, ML CSF case 2 achieves 15~17% gain over eT2 PC3 and 5~6% gain over ML CSF case 0。
[bookmark: _Ref163223980]Under low UE speed with 80% indoor and 20% outdoor, for mean UE throughputs, ML CSF case 2 achieves 11% gain over eT2 PC3 and 6% gain over ML CSF case 0.
Format of the results table
To capture the study results on joint prediction and compression, we can consider Rel-18 results Table-1 [1] as a starting point, as the main goal is to evaluate the ML compression performance. Additionally, we can modify the table by including the time-domain assumptions and how historical CSI measurement and CSI report are used at UE side and/or gNB side. In particular, the time domain assumptions include: 
· UE speed (km/h)
· CSI feedback periodicity
· CSI-RS periodicity
· Historical CSI measurement at UE side (e.g., number/instance of historical CSI measurements)
· Historical CSI feedback used at gNB side (e.g., number/instance of historical CSI reports)
· Whether/how to adopt spatial consistency
[bookmark: _Ref163224331]For capturing the evaluations results on temporal domain compression case 2, Rel-18 results Table-1 can be used as a starting point with the following modifications:
· Add the time domain assumptions (e.g., UE speed, CSI-RS periodicity, CSI feedback periodicity, …, etc.).
· Add the descriptions of how historical CSI measurement and CSI report are used at UE side and/or gNB side (e.g., number/instance of historical measurement and CSI reports).
Study of Case 3
Evaluation results
Scenario 1: Dense Urban with 80% indoor UEs and very low speed
To quantify the achievable gain from jointly compressing multiple TD samples, we present in Figure 4 the compression SGCS under ideal prediction for different CSI payloads normalized by number of TD samples (bits per TD sample). In this scenario, we consider a Dense Urban scenario with 80% indoor UEs, UE speeds of 3km/h, and CSI-RS periodicity of 5ms. In particular, we consider an observation/prediction window size of {1, 2, or 4} TD samples and compare their SGCS performance. The compression scheme under ideal and realistic prediction is illustrated in Figure 5.
[bookmark: _Ref163226268]Figure 4: Illustration of compression of multiple TD samples under ideal and realistic prediction algorithms.Compression + ideal  prediction
Compression + realistic prediction 
2 TD samples
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2 TD samples
Prediction window
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From the results, we observe that compressing multiple TD samples outperforms the ML baseline of compressing 1 TD sample. The gain from compressing multiple TD samples can be realized as SGCS improvement for the same number of bits per TD sample.   
Overhead reduction
Compression gain

[bookmark: _Ref163226326]Figure 5: SGCS compression performance for different number of TD samples under ideal prediction for scenario2
Also, we compare SGCS performance for compressing multiple TD samples under ideal prediction and realistic precoder prediction algorithm. From the results we observe a minor degradation in SGCS (< 0.62 for 4TD sample and < 0.35 dB for 2TD sample) when comparing the ideal and realistic prediction algorithms. This indicates that for this scenario we can accurately estimate the TD samples in the prediction window and the end-to-end performance is mainly limited by the compression accuracy. 
[bookmark: _Ref163223991]For a Dense Urban scenario with 80% indoor UEs, 5ms CSI periodicity, and UE speeds of 3km/h, the end-to-end SGCS performance is limited by the compression accuracy. For joint prediction and compression of multiple TD sample, a minor degradation in end-to-end SGCS is observed when comparing the ideal and realistic prediction algorithms.
Scenario 2: Dense Urban with 100% outdoor UEs and medium speed
Figure 6 shows compression SGCS versus payload size for reporting one TD sample of layer 1 in a Dense Urban scenario with 100% outdoor UEs, UE speeds of 30km/h, and CSI-RS periodicity of 5ms. We compare the compression performance under ideal and realistic precoder prediction to illustrate that end-to-end performance is dominated by the prediction SGCS. We observe that reducing the payload size from 128 to 16 bits has limited impact on the end-to-end SGCS when realistic prediction algorithm is used. While, under ideal prediction SGCS improves with increasing the payload size. This confirms that this scenario is prediction-limited and may be less suited for comparing different compression algorithms.  

[image: ]
[bookmark: _Ref163223994][bookmark: _Ref163226373]Figure 6: Compression performance in SGCS under ideal and realistic prediction for scenario1.
For a Dense Urban scenario with 100% outdoor UEs, 5ms CSI periodicity, and UE speeds of 30km/h, the end-to-end SGCS performance is limited by the prediction accuracy and reducing the CSI payload from 128 bits to 16 bits leads to only a small degradation in end-to-end SGCS.
Format of the results table
To capture the study results on joint prediction and compression, we can consider Rel-18 results Table-1 [1] as a starting point, as the main goal is to evaluate the ML compression performance. Additionally, we can modify the table by including the time-domain assumptions similar to Rel-18 results Table-6 [1]. In particular, the time domain assumptions include: 
· UE speed (km/h)
· CSI feedback periodicity
· Observation window (number/distance)
· Prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance)
· Whether/how to adopt spatial consistency
Additionally, we need to include the description of the prediction method used with the benchmark and the one used with the ML algorithm. The description of the prediction method includes at least the following: 
· Prediction input type (e.g., channel, or precoder).
· Prediction output type (e.g., channel, or precoder).
· Prediction method (e.g., Ideal, nearest-historical-CSI, ML prediction, or non-ML prediction).

[bookmark: _Ref163224350]For capturing the evaluations results on joint prediction and compression (case 3), Rel-18 results Table-1 can be used as a starting point with the following modifications:
· Add the time domain assumptions (e.g., UE speed, CSI-RS periodicity, CSI feedback periodicity, observation window, prediction window, …, etc.).
· Add the descriptions of the prediction algorithms for the baseline and the AI/ML algorithms (e.g., input type, output type, and prediction method.).
Localized models
The work item description [2] has identified a study objective associated with performance improvement using cell/site specific models. Due to spatial consistency, the channel samples collected from a local region or site are expected to be more correlated and hence more compressible as compared to the overall data from a much larger layout. Specifically, the distribution of precoders is expected to be sparser, and AI/ML techniques can exploit this to derive a more optimized PMI mapping to feedback the precoder information. Therefore, a model trained on the local training dataset and used for inference on a test dataset from the same local scenario is expected to perform well compared to a model that is trained on the global dataset. Along this route, following agreements were made in last meeting.Agreement
For the evaluation of AI/ML-based CSI compression using localized models in Release 19, study the following aspects of the performance/complexity trade-off when comparing the localized model with a benchmark model that is not localized:
· Performance of the localized model that has similar or lower complexity as the benchmark model.
· Model complexity of the localized model that achieves similar or better performance as the benchmark model.

Agreement
For the evaluation of AI/ML-based CSI compression using localized models in Release 19, consider the following options as a starting point to model the spatial correlation in the dataset for a local region:
· Option 1: The dataset is derived from UEs dropped within the local region, with spatial consistency modelling as per TR 38.901. 
· E.g., Dropped in a specific cell or within a specific boundary.
· Option 2: By using a scenario/configuration specific to the local region. 
· E.g., Indoor-outdoor ratio, LOS-NLOS ratio, TXRU mapping, etc.
Note: While modelling the spatial correlation, strive to ensure that the dataset distribution also correctly captures the decorrelation due to temporal variations in the channel. To report methods to generate training and testing dataset.


We next present our evaluation results to quantify the gain from localized models. For this evaluation, we consider three cases for the training dataset – 
· Case 1 (baseline - global dataset): 
· UE-side encoder and NW-side decoder are trained using a dataset from the full dense urban layout.
· Case 2 (local indoor dataset):   
· UE-side encoder and NW-side decoder are trained using data from UEs that are local to a small region within the layout: Indoor UEs at ground level dropped within a 25 m. by 25 m. region and associated to the same cell.
· Case 3 (local outdoor dataset):   
· UE-side encoder and NW-side decoder are trained using data from UEs that are local to a small region within the layout: Outdoor UEs dropped within a 25 m. by 25 m. region associated to the same cell.
Figure 7 shows the SGCS for layer 1 for the cases described above, when those models are used for inference on the local dataset. The SGCS is expressed as a loss metric in dB scale, i.e.,

A lower value of this metric corresponds to better accuracy. 
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[bookmark: _Ref163226408]Figure 7: SGCS for inference on local scenario using models trained on global vs. local scenario
The result is shown for the case of a simple AI/ML model and a model with a complex structure. We make the following observations:
· The plots show that the models trained on local data outperform the models trained on global data when other aspects are the same.
· The plots also show that the simple model trained on local data can achieve performance that is very close to the complex model trained on the global data.
This points to two benefits of training on local data – the SGCS can improve for the same model complexity. Alternately, the same SGCS performance can be achieved using a much simpler AI/ML model.
[bookmark: _Ref163223998]Localized models, which are developed specifically for use within a local region, provide better performance compared to global models of comparable size trained using data from the entire layout. 
[bookmark: _Ref163224000] Localized models provide similar performance with a smaller model complexity compared to global models.
Regarding results table, we can consider Rel-18 results Table-1 [1] as a starting point, as the main goal is to evaluate the ML compression performance. The additional aspects to be captured in the table for hyper-local models should include
· Description of the localized region that is used to train / develop the model
· Benchmark scheme contains the model trained under global dataset
Based on this discussion, we have the following proposals:
[bookmark: _Ref163224362]Study techniques and potential specification impact to enable the use of localized models to achieve the associated improvement in the performance-complexity tradeoff.
[bookmark: _Ref163224375]Capture the following aspects in results table for localized models:
· Description of the localized region that is used to train / develop the model
· Benchmark scheme contains the model trained under global dataset
Conclusions
In this document, we have discussed aspects related to AI/ML-based CSI compression using two-sided model. We have the following observations:
Observation 1: In Option 1 and Option 2, standardized model or standardized dataset, have unacceptable performance if not trained on field data or not include field data.
Observation 2: In Option 3, 4 and 5, inter-vendor collaboration complexity can be minimized by defining standardized procedures for exchanging parameters / dataset / model.
Observation 3: Under low UE speed with 80% indoor and 20% outdoor,
· for SGCS of layer 0, ML CSF case 2 achieves 9~10% gain over eT2 PC3 and 4~5% gain over ML CSF case 0; 
· for SGCS of layer 1, ML CSF case 2 achieves 15~17% gain over eT2 PC3 and 5~6% gain over ML CSF case 0。
Observation 4: Under low UE speed with 80% indoor and 20% outdoor, for mean UE throughputs, ML CSF case 2 achieves 11% gain over eT2 PC3 and 6% gain over ML CSF case 0.
Observation 5: For a Dense Urban scenario with 80% indoor UEs, 5ms CSI periodicity, and UE speeds of 3km/h, the end-to-end SGCS performance is limited by the compression accuracy. For joint prediction and compression of multiple TD sample, a minor degradation in end-to-end SGCS is observed when comparing the ideal and realistic prediction algorithms.
Observation 6: For a Dense Urban scenario with 100% outdoor UEs, 5ms CSI periodicity, and UE speeds of 30km/h, the end-to-end SGCS performance is limited by the prediction accuracy and reducing the CSI payload from 128 bits to 16 bits leads to only a small degradation in end-to-end SGCS.
Observation 7: Localized models, which are developed specifically for use within a local region, provide better performance compared to global models of comparable size trained using data from the entire layout.
Observation 8: Localized models provide similar performance with a smaller model complexity compared to global models.
We have the following proposals:
Proposal 1: RAN1 should further study how to include real world data in option 1 and option 2.
Proposal 2: To address concerns related to inter-vendor training collaboration complexity in option 3 / 4 / 5, study standardization support of registering/retrieving parameters / dataset / reference model from a central registry.
Proposal 3: For capturing the evaluations results on temporal domain compression case 2, Rel-18 results Table-1 can be used as a starting point with the following modifications:
· Add the time domain assumptions (e.g., UE speed, CSI-RS periodicity, CSI feedback periodicity, …, etc.).
· Add the descriptions of how historical CSI measurement and CSI report are used at UE side and/or gNB side (e.g., number/instance of historical measurement and CSI reports).
Proposal 4: For capturing the evaluations results on joint prediction and compression (case 3), Rel-18 results Table-1 can be used as a starting point with the following modifications:
· Add the time domain assumptions (e.g., UE speed, CSI-RS periodicity, CSI feedback periodicity, observation window, prediction window, …, etc.).
· Add the descriptions of the prediction algorithms for the baseline and the AI/ML algorithms (e.g., input type, output type, and prediction method.).
Proposal 5: Study techniques and potential specification impact to enable the use of localized models to achieve the associated improvement in the performance-complexity tradeoff.
Proposal 6: Capture the following aspects in results table for localized models:
· Description of the localized region that is used to train / develop the model
· Benchmark scheme contains the model trained under global dataset
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