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[bookmark: _Ref163149115] Introduction 
[bookmark: _Hlk126161272]R19 SI on AI/ML for CSI compression targets solving major obstacles ahead of adapting it as WI. This is not possible unless the issues are fully or partially resolved. In this regard, our efforts are concentrated on either designing new solutions or re-using existing ones in new scenarios/configs to reveal real potential of AI/ML models. Some of the important aspects are mentioned below. 
Training feasibility and required logistics: There has been a discussion on pros and cons of different training types with no consensus on several aspects; however, there are some  common understandings that none of the existing types is universal, and their level of complexity and logistic requirement are totally different. First and foremost, the existing training types should be discussed in terms of feasibility and complexity; second, new solution may be explored in parallel to find a lightweight solution. Inspecting existing solutions also help to down select the method and reduce inter-operability test efforts. 
Data collection: The data collection is another aspect to be finalized before R20. None of the solutions significantly addressed the major concerns around overhead. Possibility of using uplink CSI for training purposes,, downlink CSI quantization level, and quantization method, all remained unanswered. 
Complexity: The complexity of AI/ML models reported by companies during R18 SI indicate AI/ML models are far from practical deployments. This issue needs to be resolved during the R19 SI as one of the major barriers toward adoption of CSI compression as WI. Also, in RAN1#116‎[2], We started discussing combination of AI-based CSI compression and AI-based CSI prediction either by cascading two distinct models or designing a new model that works on TSF domain and perform both tasks jointly. This combination makes the complexity problem even more acute. If we design one model, the prediction task also will be involved in the two-sided training and temporal domain increases the size of shared datasets. If we cascade CSI compression’s and prediction’s AI/ML model, this does not solve the complexity issue we had from R18. Nevertheless, it is crucial to study if the complexity reduction techniques could remarkably help or not.
1. Evaluate effectiveness of complexity reduction techniques in reducing both computational and storage complexities of AI/ML models for CSI compression
1. Consider and evaluate eType II algorithm’s complexity as the baseline of computational complexity.
Conformance test: Given the large number of possible encoders and decoders from UE and NW vendors, it seems infeasible to test inter-operability of all in a reasonable time. This large number is impacted by number of vendors at both side, training types, number of scenarios/configs to be covered by AI/ML, etc. Thereby, this test space should be confined to a more reasonable size, thereby, ensuring  feasibility of the tests for RAN4. In RAN1 #116 ‎[2], we have initiated discussion on how to make the test burden reasonable by standardization of (a part of) AI/ML models with different levels of standardization. We suggest to further expand this discussion to down select training types, scenario/configs as a starting point for tests.  
Further discuss down selection of training methods and test/train scenario and configs.

Evaluation
[bookmark: _Ref163149131] Temporal-spatial-frequency (TSF) domain compression
In RAN1#116, we have agreed on including temporal domain in CSI compression evaluations. How to use temporal information for compression and decompression varies on different possible designs and can be classified by agreed table below.
	Agreement ‎[2]
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following categorization for study:
	Case
	Target CSI slot(s)
	Whether the UE uses past CSI information
	Whether the network uses past CSI information

	0
	Present slot
	No
	No

	1
	Present slot
	Yes
	No

	2
	Present slot
	Yes
	Yes

	3
	Future slot(s)
	Yes
	No

	4
	Future slot(s)
	Yes
	Yes

	5
	Present slot
	No
	Yes


Note 1: For the UE, the past CSI information may include past model inputs and/or any information derived from them. For the network, the past CSI information may include past CSI feedback instances and/or any information derived from them.
Note 2: For case 3 and case 4, the UE may perform prediction as a separate step or jointly with compression. Similarly, the network may perform prediction as a separate step or jointly with reconstruction. Companies to report which option is selected, the number of future slots, and whether the prediction is AI/ML-based or not.
Note 3: “Target CSI slot(s)” refers to the slot(s) to which the CSI feedback in the report corresponds. “Present slot” refers to the slot of the most recent CSI-RS measurement used to generate the CSI report. “Future slot(s)” includes at least one slot after the present slot and may include the present slot as well. 
Note 4: Down-selection is not precluded. 


We have evaluated case 0 as the baseline which is SF compression and case 1 which is the simplest form of TSF compression without any prediction. In case 1, the AI/ML model accepts a historical block of 3 CSI samples as an input and do the compression for current time instance. Here, we do not use the historical outputs of CSI generation part nor that of CSI reconstruction parts. Our model only focuses on the inputs which are the same as that in case 0 used as input. The overall architecture is shown below:
	[image: ]
(a) Case 0
	[image: ]
(b) Case 1 with 3 temporal instances


Figure ‎2‑1: High-level structure of AI/ML models we used in TSF CSI compression
 For test and train datasets, we followed assumptions agreed in RAN1#116 ‎[2]. The training dataset includes 400k CSI samples and test dataset include 30k samples generated with  periodicity,  distribution option 1 (80% indoor, 20% outdoor) with 3km/h for indoor samples and 30km/h for outdoor samples. CSI reporting periodicity is also . The observation window length is  which means three subsequent historical CSU samples will be used as input of AI/ML model in case 1. The further details can be found at Table ‎6‑1 in the appendix.
	Agreement
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following as baseline options for UE distribution:
· Option 1: 80% indoor, 20% outdoor
· Option 2: 100% outdoor
Note: Indoor speed is 3 km/h, outdoor speed is chosen from the following options: 10 km/h, 20 km/h, 30 km/h, 60 km/h, 120 km/h. Assumption on O2I car penetration loss and spatial consistency follow the R18 AI based CSI prediction.
Agreement
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following evaluation assumptions:
· CSI-RS configuration
· Periodic: 5 ms periodicity (baseline), 20 ms periodicity(encouraged)
· Aperiodic (for cases with prediction): Optional, CSI-RS burst with K resources and time interval m milliseconds (based on R18 MIMO eType-II) 
· CSI reporting periodicity: {5, 10, 20} ms; other values are not precluded
· For cases with the use of past CSI information, to report observation window, including number/time distance of historic CSI/channel measurements.
· For cases with prediction, to report prediction window, including number/time distance of predicted CSI/channel.



We evaluate case 0 and case 1 in terms of SGCS performance. Also, represented complexity of corresponding  AI/ML models below. 
[bookmark: _Ref163149649]Table ‎2‑1: Performance and complexity of AI/ML models used in TSF CSI compression
	Case/model
	SGCS -52 bits
	SGCS-128 bits
	SGCS -256 bits
	# Param (k)
	# FLOPs (M)

	Case 0/model 0
	0.72
	0.79
	0.84
	0.88/0.88
	21.88/21.88

	Case 1/model 1
	0.72 (0%)
	0.80 (1.3%)
	0.86 (2.4%)
	0.98/3.06
	67.87/26.25



We could observe 1.2% gain on average for case 1 compared to case 0. The gains over overhead of 52 bits, 128 bits, and 256 bits are  0%, 1.3%, and 2.4%, respectively. In overall, the gain from case 1 is not significant. We have also observed the gain increases as CSI feedback overhead increases. 
 1.2% gain is obderved on average for case 1 compared to case 0. The gains over feedback overhead of 52 bits, 128 bits, and 256 bits are  0%, 1.3%, and 2.4%, respectively.
The gain from case 1 increases as CSI feedback overhead increases. 
[bookmark: _Ref163149123]Error tolerance of AI/ML models
In this section we test whether the errors in CSI feedback completely ruins AI/ML models’ performance or causes slight degradation. For this evaluation, we have assumed a certain number of bits in feedback will be flipped (0 to 1 or 1 to 0). The simulation assumption are presented in Table ‎6‑1. The performance of AI/ML models under various number of erroneous bits for the following three cases are evaluated.
Table ‎2‑2: Evaluation cases for studying tolerance of AI/ML model against CSI feedback errors
	
	Training
	Inference

	Case 0
	[image: ]No error in training

	[image: ]No error in inference



	Case 1
	[image: ]No error in training

	[image: ]Unintentional error in inference


	Case 2
	[image: ]Intentional error in training

	[image: ]Unintentional error in inference




Case 0 [Benchmark]: This is the benchmark where the AI/ML model is not exposed to any error in the CSI feedback at the training and inference stages. 
Case 1 [Non-robust model]:  In this case, the AI/ML model is trained in conventional manner whit no CSI feedback error.  In the inference stage, it will be exposed to CSI feedback error.
Case 2 [Robust model]:  In this case, the AI/ML model is trained with intentional CSI feedback errors to learn how to leverage inter-relation of all bits in CSI feedback for accurate CSI reconstruction. In the inference, AI/ML model will be exposed to CSI feedback error too. 
[bookmark: _Ref163192992]Table ‎2‑3: Error tolerance of AI/ML models for case 0 (benchmark), case 1(non-robust model) and case 2 (robust model)
	Cases
	52 bits
	128bits
	256bits

	
	SGCS
	Perf. loss
	SGCS
	Perf. loss
	SGCS
	Perf. loss

	Case 0
	0.726
	-
	0.806
	-
	0.869
	-

	Case 1
	Err. bits = 1
	0.687
	5.4%
	0.792
	1.7%
	0.865
	0.5%

	
	Err. bits ≤ 2
	0.644
	12.7%
	0.778
	3.5%
	0.860
	1.0%

	
	Err. bits ≤ 5
	0.526
	27.5%
	0.731
	9.3%
	0.846
	2.6%

	Case 2
	Err. bits = 1
	0.693
	4.5%
	0.798
	1.0%
	0.871
	0.0%

	
	Err. bits ≤ 2
	0.682
	6.1%
	0.794
	1.5%
	0.865
	0.5%

	
	Err. bits ≤ 5
	0.647
	10.8%
	0.758
	6.0%
	0.852
	2.0%



Our results show that the model trained from case 1 has naturally error tolerance to some extent. Errors on few CSI feedback bits do not completely ruin performance of AI/ML models. If error only occurs in inference (case 1), on average for CSI feedback of 52 bits, 128bits, and 256 bits, the inference error causes 15.2%, 4.8%, and 1% SGCS degradation respectively. 
Comparing the feedback of 52 bits with 1 error bit and feedback of 256 bits with 5 error bits, we observe for the same error rate, AI/ML models’ tolerance against feedback error enhances as the feedback overhead increases. We have already observed this trend for other values of error rates as well. 
If error only occurs in inference (case 1), on average for CSI feedback of 52 bits, 128bits, and 256 bits, the inference error causes 15.2%, 4.8%, and 1% SGCS degradation respectively. 
The following figure also depicts the impact of CSI feedback error on throughput of case 1 compared case 0 and eType II baseline with no training or inference error. Traffic is full buffer and max rank is 2. We can see even with few bits of error the AI/ML models work better than eType II  feedback. The gap between throughput gap from Case 1 and Case 0 is gradually closing  for higher overhead bits.
 For the same error rates, AI/ML models’ tolerances against CSI feedback error enhances as the overhead increases.
[image: ]
Finally, we enhanced the error tolerance of AI/ML model by intentionally exposing it to errors in training stage and learning how to compensate the errors (flipped bits) in CSI feedback at the CSI reconstruction parts. The results are shown in the previous table where the case 1 has significantly outperform the case 1 setting for all overheads lengths.  If error occurs in both training and inference (case 2), on average for CSI feedback of 52 bits, 128 bits, and 256 bits, the inference error causes 7.1%, 2.8%, and 0.8% SGCS degradation respectively.  It indicates introducing intentional error in CSI feedback at the training stage, makes AI/ML model more robust against CSI feedback errors.
If AI/ML model is reinforced with intentional feedback error in training, similar error in inference for CSI feedback of 52 bits, 128bits, and 256 bits causes 7.1%, 2.8%, and 0.8% SGCS degradation respectively
Evaluate the feedback error tolerance of eType II and compare it with that of AI/ML model.
Collaborative Training and Feasible Inter-operability Test
To make inter-operability tests feasible, we have to limit the number of possible CSI generation and CSI reconstruction parts as discussed below.
Training: Training type 2 in both simultaneous and sequential forms comes with complex API requirement and excessive inter-vendor efforts; thereby making it the most difficult training method for practical deployment. Also, introducing new UE-side and/or NW-side AI/ML models raises more re-engineering burden, However, training type 3, is the sequential, and the vendors can still trains their corresponding AI/ML models with minor additional logistics. NW-first and UE-first sequential separate training both are similar in terms of performance and engineering effort. We support its UE-first variant due to: 1) UE is data generation entity and has access to data required for enabling proxy-based monitoring; and 2) It has better match with the reference CSI generation parts. 
Standardization of AI/ML models: To further relax inter-operability test, one concrete step is setting reference AI/ML models in part or completely. Our first preference is standardization of entire AI/ML model with known structure. The known parameters, however, shall not be considered as a part of standardization process since it cuts our hands in model improvement, generalization, scalability, etc. If a complete reference AI/ML model is too restrictive for proper performance of AI/ML models in covering multiple config/scenario, encoders, decoders, cells, etc., we can at least standardize a reference CSI generation part at UE side. Given number of UE vendors that significantly reduces burden for RAN4 tests. Also, to capture the localized model, it is better to not standardize parameter values, and standardization on structure level seems sufficient.
If downselection is needed, prioritize UE-first sequential separate training.
Prioritize standardization of at least a CSI generation part at structure level.
Conclusion
We have the following observation and proposals in this contribution: 
1. We could observe 1.2% gain on average for case 1 compared to case 0. The gains over feedback overhead of 52 bits, 128 bits, and 256 bits are  0%, 1.3%, and 2.4%, respectively.
1. The gain from case 1 increases as CSI feedback overhead increases. 
1. If error only occurs in inference (case 1), on average for CSI feedback of 52 bits, 128bits, and 256 bits, the inference error causes 15.2%, 4.8%, and 1% SGCS degradation respectively. 
1.  For the same error rates, AI/ML models’ tolerances against CSI feedback error enhances as feedback overhead increases.
1. If AI/ML model is reinforced with intentional CSI feedback error in training, similar error in inference on feedback of 52 bits, 128bits, and 256 bits causes 7.1%, 2.8%, and 0.8% SGCS degradation respectively
1. Evaluate effectiveness of complexity reduction techniques in reducing both computational and storage complexities of AI/ML models for CSI compression
1. Consider and evaluate eType II algorithm’s complexity as the baseline of computational complexity.
1. If downselection is needed, prioritize UE-first sequential separate training.
1. Prioritize standardization of at least a reference CSI generation part at structure level.
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Appendix
The following assumptions are used for evaluations in section ‎2.1. This EVM table is used for other evaluations as well unless otherwise is explicitly mentioned. 
[bookmark: _Ref163193140]Table ‎6‑1: Evaluation assumptions used for TSF CSI compression 
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier Frequency
	4 GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna-port layouts at gNB
	32 ports: (8.8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenn -port layouts at UE
	4 Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	BS Tx power
	44 dBm (20 MHz bandwidth)

	BS antenna height
	25m

	UE receiver noise figure
	9 dB

	Subcarrier spacing
	30kHz

	Simulation bandwidth
	20 MHz

	MIMO scheme
	MU-MIMO

	CSI Feedback
	Feedback period: 5ms
Scheduling delay: 4 ms

	UE distribution
	80% indoor (3km/h), 20% outdoor (30 km/h)

	Channel estimation
	Ideal
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