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[bookmark: _Ref111120162]Introduction
RAN1#116 continued the study of AI/ML-based CSI prediction where the primary area of concern is the ability of AI/ML-based prediction to provide performance gains over Rel-18 non-AI/ML based CSI prediction. In this contribution, we continue this study, focusing on the performance and computational complexity of AI/ML-based CSI prediction, as well as other aspects identified in the conclusions of TR 38.843 [1]:
· Scalability over various configurations and generalization over other scenarios
· Fine tuning approach
· Performance monitoring accuracy
· Expanded study of specification impacts
[bookmark: _Hlk510705081]Discussion
Performance of AI/ML and non-AI/ML based CSI prediction
RAN1#116 led to following agreement:
Agreement
For Rel-19 study on CSI prediction, consider EVM agreed in Rel-18 CSI prediction based on UE-sided model as a starting point.
· [bookmark: _Hlk162806759]FFS on additional assumptions, e.g., channel estimation error, phase discontinuity, CSI-RS periodicity.
· Note: Rel-18 CSI-RS configuration/reporting can be reused. 
· Note: additional EVM and corresponding template to collect the results can be updated.

Predicting the channel coefficients directly, instead of their eigenvectors, is the best way to avoid impairments such as phase discontinuity. However, this may lead to more complex AI/ML model architectures as we would like to tackle real-world challenges such as noisy measurements. For our design requirements, we focus on AI/ML CSI predictors that have relatively low complexity, can be easily adapted to the number of antenna ports, and that provide a competitive performance if compared with zero order hold (ZoH), or no prediction. In Table 1, we list the complexity of the different predictors and how many runs one should perform to reconstruct one CSI-RS time step prediction according to the number of transmit antenna ports , the number of receive antennas , and the number of channel taps  when applicable. The low number of trainable parameters of our AI/ML CSI predictors are mainly due to our choice of CSI-RS pre-processing steps. We have provided results for AI/ML prediction performance in the frequency-port-time domain. Now, we provide results for AI/ML prediction in the delay-port-time domain. Those changes were motivated by the pre-processing steps that we apply to our non-AI/ML-based CSI predictor, the MMSE [4]. The changes in the assumptions for inputs and outputs also lead to a new architecture for the AI/ML CSI predictor in the delay-port-time domain. The AI/ML CSI predictor in frequency-port-time domain is based on convolutional LSTM layers while the AI/ML CSI predictor in delay-port-time domain uses simpler LSTM layers.
The CSI-RS is measured in the frequency domain per antenna port () per time-step, we apply an inverse discrete Fourier transform (IDFT) to have the corresponding CSI-RS in the delay-port-time domain. The AI/ML CSI predictor observes a selected tap for a duration of 10 time-steps at its input and predicts the next time-step () for the corresponding tap. The predicted channel taps are collected to reconstruct the delay-port-time channel, which is then transformed back to the frequency-port-time domain via a discrete Fourier transform (DFT). The intermediate KPI is computed in the frequency-port-time domain. The CDF of the generalized cosine similarity (GCS) for the different CSI-RS predictors is plotted in Figure 1. The AI/ML CSI predictor operating in the delay-port-time domain has an enhanced performance, which is closer to the performance of the non-AI/ML based CSI predictor. In addition to its lower complexity, the AI/ML CSI predictor operating in the delay-port-time domain generalizes to a variable number of predicted taps (). The training procedure assumed  for each CSI-RS while the evaluation shown in Figure 1 considered  without re-training. The non-AI/ML-based CSI predictor also assumed  and the filters are computed only once per UE, no filter update over time.

[bookmark: _Ref162955381]Table 1 – Complexity comparison of the different predictors.
	Predictor type
	Number of Trainable Parameters
	Number of FLOPS
	Number of runs to reconstruct one CSI-RS in the respective domain

	AI/ML CSI predictor in frequency-port-time domain
	12048
	845936
	

	AI/ML CSI predictor in delay-port-time domain
	2704
	6262
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[bookmark: _Ref163032660]Figure 1 – Comparison of the GCS performance for the AI/ML predictors, non-AI/ML CSI predictor and ZoH. The CSI-RS sampling periodicity is 5ms and the prediction horizon is 5ms (N4=1).

In Table 2 and Table 3, we present the system level simulation (SLS) results for the use case of single-sided CSI prediction. Here, the AI/ML CSI predictor is operating in the frequency-port-time domain with intermediate KPI presented in Figure 1. The input to the AI/ML model consists of a window of 8 CSI-RS measurements and the output is the CSI-RS 5ms ahead. The scenario details are presented in Table 4. The description of the MMSE Rel. 18 predictor is provided in [4], Section 3.1. The AI/ML predictor was trained using supervised learning with mean squared error (MSE) as the cost function. Here, ideal CSI-RS means we have ideal channel estimation; hence, absence of noise. The model was trained for the “in car” channel model and prediction inference was performed considering the “in car” channel model, Table 2, and the outdoor channel model, Table 3. For both inference configurations, the CSI-RS predictors outperform ZoH (no prediction). The MMSE Rel. 18 predictor provides a better spectral efficiency (SE) when compared with the AI/ML CSI predictor operating in the frequency-port-time domain. However, the MMSE filter is recomputed for each UE and channel model scenario while the AI/ML predictor is trained just once for the “in car” channel model scenario. Under the assumption of ideal CSI-RS, the “in car” and outdoor channel models are very similar, with differences mainly in the path loss. This explains the similar performance of the AI/ML predictor for both scenarios. 
[bookmark: _Ref158710459]Table 2 - SLS results for the different predictors considering in car channel model.
	Predictor
	Mean UE SE
	Cell-edge UE SE

	ZoH
	7.04
	2.882

	AI/ML predictor
	7.19 (+2.13%)
	3.084 (+7.01%)

	MMSE Rel 18, N4=1
	7.36 (+4.54%)
	3.343 (+16%)



[bookmark: _Ref158626385]Table 3 - SLS results for the different predictors considering outdoor channel model.
	Predictor
	Mean UE SE
	Cell-edge UE SE

	ZoH
	6.68
	2.685

	AI/ML predictor
	6.93 (+3.75%)
	2.893 (+7.75%)

	MMSE Rel 18, N4=1
	7.04 (+5.39%)
	3.100 (+15.45%)



[bookmark: _Ref158294222]Table 4 - SLS simulation parameters for prediction with ideal CSI-RS.
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier Frequency
	2 GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8.8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4 Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	BS Tx power
	41 dBm (10 MHz bandwidth)

	BS antenna height
	25m

	UE antenna height & gain
	According to TR 38.901

	UE receiver noise figure
	9 dB

	Modulation
	Up to 256QAM

	Subcarrier spacing
	15kHz

	Simulation bandwidth
	10 MHz

	MIMO scheme
	MU-MIMO, maximum rank = 2.

	CSI Feedback
	Baseline: Rel-16 Type II codebook, parameter combination 4
Scheduling delay: 4 ms

	CSI-RS measurement periodicity
	5 ms

	Traffic model
	FTP model-1, arrival rate = 4 UEs/s/sector, file size = 0.5MB

	Traffic load (Resource utilization target)
	30%

	UE distribution
	100% outdoor (30 km/h), 100% in car (30km/h)

	Channel estimation
	Non-ideal DMRS, ideal CSI-RS



From these results, the MMSE predictor is delivering higher performance than the AI/ML CSI predictor operating in frequency-port-time domain. Nonetheless, the assumption of ideal CSI-RS is mostly unrealistic. Moreover, there are many use cases where AI/ML is the winning solution for denoising. Hence, we should evaluate the performances of the predictors under realistic assumptions, such as non-ideal CSI-RS. In Figure 2, we plot the squared generalized cosine similarity (SGCS) for ZoH and the AI/ML CSI predictor operating in the delay-port-time domain. We can observe a huge degradation in the performance of ZoH which, then, becomes useless for real world operation. On the other hand, the selected AI/ML CSI predictor provides about 10% performance gain over ZoH. We note that the model architectures developed for ideal CSI-RS might not be the best option when assuming non-ideal CSI-RS. 
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[bookmark: _Ref163036141]Figure 2 - SGCS performance comparison assuming non-ideal CSI-RS with 5ms measurement periodicity. The AI/ML CSI predictor operates in the delay-port-time domain and predicts the CSI-RS 5ms ahead.

[bookmark: _Hlk159183880]Proposal 1: Study the performance of CSI predictors for non-ideal CSI-RS conditions.
In addition to a comparison of the throughput performance of Rel-18 CSI prediction and AI/ML-based CSI prediction, it is important to also compare the complexity of the two approaches.  In the above discussion, the complexity of the two different AI/ML-based predictors are described and summarized in Table 1. For Rel-18-based MMSE CSI prediction, the implementation in [4] uses an approach similar to the AI/ML-based delay-port-time domain predictor. Prediction is performed for each Tx-Rx port link by predicting the channel tap gains using 10 previous samples in an MMSE filter to predict the next time step (). The number of taps predicted for each link is  and the number of Tx-Rx links is . A straightforward implementation of the FIR prediction filters yields one complex multiplication for each previous sample, or  FLOPs, where  is the number of previous samples used in the prediction and the factor of 4 accounts for the number of real multiplications in a complex multiplication.  Therefore, the prediction operation involves  floating point operations.  In addition to the filtering operation, Rel-18-based CSI prediction implementation also calculates and periodically updates the MMSE prediction filters.  This filter update requires the solution of a system of  linear equations – the normal equations – for each filter.  In this implementation, the filters are unique for each tap and Tx-Rx link.  Using an algorithm such as the Levinson-Durbin algorithm to calculate the prediction filter taps requires  complex FLOPs [5], which becomes  real-valued FLOPs per tap per Tx-Rx link.  However, the filter updates occur less frequently than the filtering operation.  If we assume a CSI feedback report period of  and a filter update period of , the update complexity can be considered on a per CSI report basis as  FLOPs.  The total complexity for Rel-18-based CSI prediction is therefore

FLOPs per CSI report. The Rel-18 MMSE CSI prediction complexity is summarized in Table 5.
[bookmark: _Ref163159496]Table 5 – Complexity of Rel-18 MMSE CSI prediction
	Predictor type
	Filtering complexity per channel tap per Tx-Rx link per CSI report
	Filter update complexity per channel tap per Tx-Rx link per CSI report
	Number of filtering operations per CSI report

	Rel-18 non-AI/ML MMSE prediction in delay-port-time domain
	
	
	



In Table 6, we illustrate a comparison of the complexity of the different predictor types using an example. The number of time domain samples used in the predictions is . The number of channel taps predicted for each Tx-Rx link is . There are  transmit antenna ports at the gNB and  receive antennas at the UE.  For the Rel-18 non-AI/ML prediction, the filters are updated every 16 CSI reports, so . In this example, we observe that the delay-port-time domain predictor type is less computationally complex than the frequency-port-time domain approach. Also, the Rel-18 non-AI/ML prediction is less complex than the AI/ML predictor in the delay-port-time domain. However, several other factors must be considered in a complete complexity analysis. First of all, pre- and post-processing must be taken into account, especially where the approaches differ. Both of the delay-port-time domain approaches require an IFFT from the frequency-domain estimated channel to the time domain as well as a post-prediction FFT back to the frequency domain for CSI calculation from the predicted channel. The frequency-port-time domain approach also utilizes upsampling/interpolation in the prediction process which is not accounted for in this analysis. Finally, in [6] we illustrated that significant complexity reduction is possible for CSI compression decoders without significant loss of performance. Similar techniques can be used to reduce the complexity of the CSI prediction models. It is not clear at this time how much reduction in complexity is possible, but such techniques could potentially narrow the complexity gap seen in the example.
[bookmark: _Hlk163171025]Observation 1: An initial complexity analysis suggests that Rel-18 non-AI/ML prediction is less computationally complex than AI/ML-based CSI prediction. However, additional issues must be considered including complexity reduction of prediction models.
Proposal 2: Continue to study the relative complexity of AI/ML and non-AI/ML-based CSI prediction techniques, considering the possibility of AI/ML model complexity reduction/optimization.
[bookmark: _Ref163161361]Table 6 – Complexity comparison example
	Predictor type
	Complexity per operation
	Number of operations
	Total Complexity

	AI/ML CSI predictor in frequency-port-time domain
	845936
	
	108 MFLOPs

	AI/ML CSI predictor in delay-port-time domain
	6262
	
	16 MFLOPs

	Rel-18 non-AI/ML MMSE prediction in delay-port-time domain
	140
	
	358 kFLOPs



Corresponding to the latest agreement additional assumptions like channel estimation error, phase discontinuity, and CSI-RS periodicity are FFS. 
In real systems channel estimation errors cannot be avoided and at the same time are known to impact the channel prediction performance. Depending on the applied data pre-processing as well as inference method potentially large degradations of the channel prediction performance might be observed. Therefore, prediction including channel prediction error should be part of the evaluations. 
To our understanding phase discontinuities might happen in case of the Eigenvalue decompositions, where the Eigenvectors are, for example, similar to Type II processing calculated per frequency subband. If these Eigenvectors are calculated during the observation window independently per observation time instance, then from one time instance to the next unpredictable phase jumps might occur. This will obviously challenge a useful channel prediction, which must rely on a smooth evolution of the inference parameters. For that reason, we propose to consider a data preprocessing where wideband Singular vectors or the matrix W1 is fixed at least over the time of the observation as well as the next prediction window. The related performance degradation relative to the optimum Singular vector selection per time instance will be small in case the large-scale channel parameters defining the optimum Singular vectors are highly correlated over larger spatial areas.    
Proposal 3: Consider suitable data preprocessing to overcome or avoid phase discontinuities of wideband Singular vectors or W1 during the time of the observation plus prediction window.
Scalability and generalization
It would be desirable to achieve inherent scalability and generalizability of ML models to various configurations and multiple scenarios as it simplifies the implementation of the UE sided channel predictor. At the same time, generalized ML models, which flexibly adapt to many scalability parameters might be of larger size and will most likely require larger training data sets to cover all possible channel statistics. In addition, previous evaluations with respect to various UE speeds and/or SINRs indicated at least for some cases performance degradations, e.g., in case a high-speed UE uses a ML model trained for a relatively lower UE speed. 
Scalable parameters such as the number of antenna ports, bandwidth, or carrier frequency are typically known at the UE and the gNB side, e.g., by exchange of configuration messages. Therefore, one possible option is to select or configure the UE sided ML models to the given scalability parameters. In such a case, one would have to specify a set of ML models covering the predefined scalability parameter values. This option generates some extra overhead, for example, with respect to the memory size for the multiple ML models, but otherwise might ensure best possible performance per configuration.
Alternatively, data preprocessing might convert various parameter configurations to similar or the same ML model input signals so that a single ML model can be used in multiple environments. Assume, for example, a beamformed CSI-RS as input to the ML model. Such a beamformer might convert any number of antenna ports (APs) into a predefined number of spatial beams as input to a single ML model.
There are also some implementations for the inference of the channel prediction, which are inherently flexible to different scalability parameters. For example, the AI/ML based channel prediction might be inferred individually per antenna port. In that case, one can reuse the same ML model multiple times depending on the number of APs.
As mentioned above, the best solution would probably be a single ML model, which flexibly adapts to many scalability parameters as long as it provides close to optimum performance and the complexity is reasonable low.
For example, in one of our implementations our results in Section 2.1 have been achieved with one ML model per AP so that the same ML model is reused multiple times (serial or parallel) to cover all APs and/or all taps per AP. This provides a flexible adaptation to different number of APs like 16 AP, 32 APs, or any other number of APs, i.e., is a fully scalable solution with respect to this parameter.
Note that for UE sided channel prediction it might be up to the UE vendor to determine the best implementation option as long as the impact to the channel prediction performance is marginal.
[bookmark: _Hlk163166793][bookmark: _Hlk159184083]Observation 2:  Scalability parameters are generally known at the UE and the gNB and, typically, do not change during the active time of a UE in a certain cell. Therefore, one straight forward solution is to provide optimally trained ML models per scalability value.
Observation 3:  There exist different options to deal with various scalability parameters such as
1. Switching to ML models trained for specific scalability parameters;
2. Reconfigurations of ML models depending on known scalability parameters such as the number of antenna ports, bandwidth, or carrier frequency; 
3. Specific type of data preprocessing converting various input parameters to the same type of input signal for the ML model;
4. Using one larger ML model inherently adapting to various scalability parameter values.

Ideally, it is desirable to have one or few ML models that generalize to a multitude of generalization parameters. But studies during Release 18 indicate that, for example, ML models trained for UE speeds of 30 kmph do not well generalize to higher UE speeds like 60 kmph. In addition, some evaluations during the Release 18 SI indicate that ML models trained for a mix of UE speeds might lose some performance over ML models trained specifically per UE speed. Further evaluations are needed to better understand the benefits and limitations of potentially larger ML models with better generalization capabilities with respect to different generalization parameters.
Note that, different from scalability parameters, often the generalization parameters like SINR, UE speed, or UE channel characteristics like indoor, outdoor, in-vehicle, etc. are not directly known, but must be estimated from, e.g., CSI-RS channel estimates.
[bookmark: _Hlk163171421]Observation 4:  Generalization parameters like the overall scenario (LOS, NLOS, indoor, outdoor, etc.), SINR, UE speed, etc. are generally not known at the UE nor the gNB. Therefore, the definition of specific estimation procedures might be considered, which should lead to a higher estimation quality.
Observation 5:  A single ML model generalizing to multiple scenarios including multiple UE speeds, or various SINR values might get large, require larger training data sets, and might still degrade performance when compared to scenario specific ML models.
We think for the study item phase most important is to achieve optimum inference performance. Therefore, we propose to continue considering all possible options for dealing with scalability and generalization issues.
Proposal 4:  Consider the following alternative solutions to cope with varying scalability and generalization parameters:  
1. Scenario specific ML model selection, switching and (de)activation, where each model is trained for specific UE speeds, SINRs, etc. 
2. One single ML model, or very few ML models, with high generalization and high scalability capabilities. 
3. UE sided finetuning of generalized ML models based on most recent channel observations over one to few hundreds of ms such that a single ML model can be used in many scenarios.
4. Cell and/or location specific retraining of ML models based on training data sets provided by the gNB.

The solution 4), i.e., cell and/or location specific retraining of ML models is captured in the latest agreement considering two options for the related evaluation. Option 1 uses spatial consistency (A or B) to capture the specific correlation of the channel samples for a specific area of the cell. In that case it makes sense to (re)train a ML model for that specific subarea of the cell and to evaluate the performance gain by dropping UEs in the same specific boundary of the cell. Note that dropping of UEs in a specific cell might be not sufficient under the assumption that all cells have the same channel statistics. Therefore, bounded subareas within the cell using the same spatial consistent channel model might have to be defined for the evaluations. Option 2 uses scenario/configuration specific assumptions, which is quite similar to generalization/scalability evaluations so that similar performance gains might be expected. 

Note that fine tuning can be seen as an upper bound for cell and/or location specific retraining of ML models. The reason is that fine tuning optimally adapts the ML model to the very specific channel conditions of the UE at the current UE location within the cell. In that sense fine tuning can be seen as the upper bound what can be achieved by cell and/or location specific retraining of ML models over a somewhat larger spatial area. Fully generalized ML models without any cell area specific retraining provide then the lower performance bound.  

[bookmark: _Hlk163171487]Observation 6: Evaluation of the benefit of localized models by dropping of UEs in a specific boundary of the cell seems to be the most suitable option, but requires spatial consistent channel models. It has to be checked how far spatial consistency A or B is suitable for the intended purpose and a proper evaluation requires the definition of other side conditions like size of the boundaries, variation of the statistical channel characteristics over time, etc.
Proposal 5:  Consider in a first step fine tuning performance as an upper bound of what can be achieved by localized models. 

Fine tuning approach
RAN1-116 led to following agreement:
Agreement
For the evaluation of the AI/ML based CSI prediction, consider following CSI-RS configuration
· Periodic: 5 ms periodicity (baseline), 20 ms periodicity (encouraged) 
· Aperiodic: Optional, CSI-RS burst with K resources and time interval m slots (based on R18 MIMO eType-II)
Note: Companies to report observation window (number/distance) and prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance) on their evaluation.

Fine tuning of ML models is a promising approach to cope with a large range of generalization parameter values, while still using a single or very few ML models. In [3] we proposed one possible method for fine tuning, which mainly consists of the steps of i) infer the need for fine tuning based on the latest channel observations, ii) triggering the transmission of a set of semi persistent CSI-RSs so that the UE can generate fine tuning training data over, e.g., 100 ms to few hundreds of ms, iii) retraining of the UE sided ML model over few epochs using the just observed and estimated fine tuning training data. Note that fine tuning is an online retraining method with respect to the basic ML model. In Figure 3 and Figure 4, we show two examples of fine tuning. The starting point for fine tuning is the predictor reported in Table 2.
Related to the latest agreement an aperiodic CSI configuration, which supports CSI-RS burst with K resources and time interval m slots (based on R18 MIMO eType-II) seems to be useful for fine tuning. As fine tuning is typically applied quite seldomly, i.e., only when a UE enters a new spatial area with quite different large scale channel conditions compared to the current channel conditions. For that reason, triggering an aperiodic CSI RS burst with K resources over a time interval of m slots for fine tuning seems to be reasonable. Then, the UE can get a retraining data set of m channel estimates covering, for example, a time duration of one to few hundreds of ms.  
Proposal 6: Use CSI-RS burst with K resources and time interval m slots (based on R18 MIMO eType-II) as a starting point for fine tuning methods. Furthermore, consider more efficient triggering of CSI RS configurations for fine tuning.  
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[bookmark: _Ref158718200]Figure 3 - Example one of improved AI/ML CSI prediction performance via fine tuning. The CDF is UE specific and combines the variation of prediction quality over frequency sub-bands and time.
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[bookmark: _Ref158718204]Figure 4 - Example two of improved AI/ML CSI prediction performance via fine tuning. The CDF is UE specific and combines the variation of prediction quality over frequency sub-bands and time.

Alternatively, or, in addition, the UEs might benefit from cell/cell area specific CSI information, which the gNB might learn over time from the CSI feedback of UEs served previously in the same cell at similar cell locations.
The gNB must inform UEs about the availability of cell/cell area specific ML information. Note that it might be useful to limit the cell/cell area specific retraining of ML models to areas with very specific radio channel conditions.  
· The overall method might include the following steps:
· gNB collects data from UEs including UE positions and learns CSI characteristics per cell location.
· gNB extracts cell/cell area specific channel characteristics.
· gNB generates retraining data sets covering the cell/cell area specific channel characteristics.
· gNB broadcasts/multicasts training data sets generated from the training data set generator to ensure an efficient transfer of large training data sets.
· UEs use their position specific training data sets for offline/online retraining of their ML models with the goal to maximize the channel prediction performance and benefiting from inherent denoising effects.

The difference between fine tuning and cell specific ML models is that for fine tuning the UEs require additional channel estimation shortly before the channel prediction inference. The cell specific retraining of a ML model is possible without the need for new channel estimates at the UE side, but instead the UE must get the cell specific retraining data set, for example, when entering a new cell. One should note that potentially one of the options, i.e., fine tuning or cell specific retraining of ML models might be sufficient. For example, in case perfect fine tuning of the ML model is possible, then cell specific retraining might be less useful.
Cell/cell area specific retraining requires that the UEs report to the gNB during the learning phase, beside the CSI itself, their position information as well. The gNB could directly train a cell/cell area specific ML model and transfer these models to UEs when they move to similar locations in the cell. But such an approach generates some issues like how to optimize a ML model for an unknown UE vendor device, etc.
A more practical approach might be then to derive from the reported CSI information cell/cell area specific training data sets as these will be ML model agnostic. Then, any UE vendor can apply these model retraining data sets to its implemented UE specific ML model.
It is therefore important to have an efficient transfer of the cell/cell area specific retraining data sets, e.g., by transmitting the related information of a training data set generator. As soon as the UEs have the retraining data sets of their serving cell(s) available, the UEs might retrain their ML models. Compared to the fine tuning as described above, the cell specific retraining might use larger training data sets and is generally independent of ongoing data transmissions. Therefore, this retraining might be seen as an offline training. Similarly, the UE might retrain its ML model during an active data transmission as part of a cell handover. In this case it has more similarities with online training.
The specification impact of fine tuning as well as for the provision of cell/cell area specific retraining data sets is more relevant for a potential future work item. So far, it is expected that fine tuning might be possible already for Release 18 at least to some extent by triggering of aperiodic CSI-RS from UE side at the gNB. More efficient might be the reporting of a suitably defined closeness value by the UE, which triggers, dependent on the value of the closeness parameter, longer or shorter sets of regular fine-tuning CSI-RS depending on the UE channel conditions. When the gNB knows about the ongoing fine tuning at a UE then it might support the fine-tuning process, e.g., by minimizing any interference at the fine-tuning CSI-RSs.
Observation 7: The gNB might learn its cell/cell area specific channel conditions by combining over time multiple UE CSI reports from the same cell area, where the UE CSI reports must include the UE position information. Performance might then improve from the retraining of UE models entering the same cell/cell area.
Observation 8:  Providing training data sets for retraining of ML models to cell/cell area specific channel conditions requires a proper definition of the training data transfer mechanism.
To compare and evaluate the benefits of fine tuning as well as of cell/cell area specific ML models it is proposed to compare channel prediction performance in specific scenarios, with and without fine tuning, or with or without making use of cell/cell area specific retraining data sets.
Typically, the analysis makes sense for cases, where the basic ML model is trained for a scenario A and then tested in another scenario B so that there is a larger benefit for fine tuning. For the cell specific retraining of ML models, cell specific channel characteristics are needed which should be different from the channel characteristics over all radio cells. Ray tracing simulations are one option to get area specific channel conditions, but such ray tracing simulations might become quite complex. Alternatively, it might be possible to extract from the overall training dataset, for all cells of the network, a subset of radio channels with similar channel characteristics, such as similar K-factor, similar delay spread, etc. This subset of training data might then be artificially allocated to one of the radio cell/cell areas so that one ML model can be retrained for this radio channel subset.
[bookmark: _Hlk159184548]Observation 9:  The evaluation of fine-tuning benefits from the definition of different scenarios A and B, where the ML model generalizes badly to at least one of these scenarios.
Observation 10:  As discussed in the latest agreement, the evaluation of cell area specific ML models requires the definition of cell specific channel characteristics, which should be different from the channel characteristics of all radio cells.
Observation 11:  Retraining of cell/cell area specific ML models based on retraining data sets avoids the need for cell/cell area specific ML model transfer and is therefore preferable. Efficient broadcast/multicast of retraining data sets, for example, by means of training data set generators should be considered.
To summarize, the alternatives we have discussed include both online and offline training options:
· Online training:
a. Cell/cell area specific models trained via a data set downloaded from the serving gNB.
b. Fine-tuned models based on CSI-RS measurements at the UE.
· Offline training:
· Cell/cell area specific models either loaded from a database of models, either via model transfer or a UE-sided set of stored models.

We have shown the potential for fine tuning in the examples above, but additional evaluation of the standardization details and complexity are required.
Proposal 7:  We propose to evaluate the benefits of fine tuning as it might be able to adapt to any relevant channel conditions for a single or few generalized ML models. Furthermore, it might provide an upper bound for what can be achieved with cell/cell area specific model retraining without the need to define new localized channel conditions.

Performance monitoring accuracy
UE sided monitoring has been described to some extent in [3]. The main open issues are:
· What are the Key Performance Indicators (KPI’s)?
· What are the roles of UE and BS in obtaining KPI’s and monitoring the performance?
· What is the specification impact?
Performance monitoring should ensure the proper operation of ML models and should verify that the current inferences of the channel predictor at least outperform zero order hold (ZOH) prediction. The main KPI of interest is the user throughput for the reported predicted CSI relative to the ideally possible throughput with ideal CSI. As the UE throughput depends on the gNB precoder, which is unknown to the UE, therefore typically one might fall back to SGCS as an intermediate KPI value. Especially for high SINR, the NMSE might also be a reasonable KPI.
Generally, UE sided channel prediction lends itself best to UE sided performance monitoring or UE assisted performance monitoring since the measured channel and ground truth predicted channel would both be first available at the UE.  UE sided monitoring would avoid the transfer of either CSI estimates or of monitoring related data from the UE to the gNB. UE sided monitoring might then mainly require periodic (infrequent relative to the frequency of CSI feedback) CSI-RS transmissions for the predicted time instances to get an estimate of the ground truth evolution of the radio channel.  However, the gNB would not then be aware of changes made by the UE and cannot know if the UE should revert to a legacy, ZOH-based approach.
With UE assisted monitoring, the gNB remains involved in performance monitoring and can indicate when changes are required – either to the prediction model or reversion to a legacy approach. Options for UE assisted monitoring include:
· Feedback of the ground-truth predicted channel, covariance matrix, or CSI.
· Feedback of simpler metrics based on UE measurements.
The first option is likely to incur relatively large feedback overhead due to the need to feedback ground truth information.  However, since the UE has access both to the measurements used to predict the CSI and can have access to the ground truth, the UE can provide simpler metrics derived from this information which can inform the gNB of the state of model performance.
The main challenge is probably that the UE does not have a direct access to the ground truth CSI but must estimate the ground truth based on noisy and interfered CSI-RSs. One option to improve the quality of the ground truth estimate is by the transmission of interference free monitoring CSI-RSs, potentially including some CSI-RS power boosting. In case of relatively infrequent monitoring of the radio channel, the related extra overhead for these additional CSI-RSs might be acceptable. For more permanent monitoring, at least as long as the UE is actively reporting predicted CSI then a more efficient monitoring solution might be desirable. Therefore, it is proposed to evaluate the monitoring performance for different interference and noise levels and to consider specific noise reduction methods exploiting correlations in time, frequency, or space.
Potentially, a comparison of the statistical distributions of predicted versus estimated CSI can be useful as well.
For UE sided monitoring, there is no direct need for new specifications, but the monitoring might benefit, e.g., from less noisy and less interfered monitoring CSI-RSs, which must be properly defined between the UE and gNB. In addition, some monitoring timings might be defined by the gNB like the maximum allowed latency between a channel prediction and a monitoring result. For large latencies the performance degradation of an ML model might be detected quite late so that multiple data packets might be affected negatively.
Observation 12:  Note that UE sided extraction of ground truth CSI might be challenging for CSI-RSs, which are corrupted by noise and interference. For verification of the proper monitoring performance, it must be evaluated under various SINR conditions.
Proposal 8:  Further investigate the details of UE assisted performance monitoring including reference signal timing and overhead, feedback metrics, and supported actions by the gNB.

Data Collection
Data collection is required for training of the UE sided ML models. From the descriptions in Section 2.3 we can conclude that there are three different types of training data, e.g., i) training data for the main generalized ML model, ii) training data for fine tuning, and iii) training data for cell/cell area specific retraining of ML models.
The training of the basic generalized ML model is up to the UE vendor and should cover all expected relevant radio channel characteristics over as many generalization parameters as possible. The related data set size will be large, which is acceptable for the assumed offline training.
The data sets for the cell/cell area specific retraining are derived and learned from the CSI feedback of many UEs which have been served within the cell. The retraining data sets of moderate size might then be compressed specifically so that the overhead for the data transfer over the air will be acceptably low.
The retraining data sets for fine tuning are generated on the fly at the UE side based on multiple recent channel observations estimated from the known CSI-RSs which are specifically configured to support fine tuning. In this case, low noise and interference free CSI-RSs are useful to get a good estimate of the ground truth of the channel evolution.
Observation 13: There might be different sets of training data, i.e., i) for the offline training of the generalized ML models, ii) for the fine tuning of ML models and, iii) for the cell/cell area specific retraining of ML models.
Ideally the CSI training data should be sufficiently oversampled in time, frequency, and space. This is, for example, relevant for the number of CSI-RSs per PRB for a certain frequency selectivity and the repetition rate of the CSI-RSs dependent on the UE speed. For the offline training of the baseline generalized ML model this can be most often ensured, while for the cell/cell area specific retraining data the over the air data rate might increase with denser CSI-RS in time and frequency. Similarly, for fine tuning, a dense set of CSI-RSs in time and frequency might lead to a larger pilot overhead. For example, for high speed UEs it might be even useful to have CSI-RSs per every TTI, i.e., every ms. In such a case, it will be useful to provide user group specific CSI-RSs and to inform all UEs in a cell about the next fine-tuning opportunity.
Observation 14:  Training of the baseline generalized ML models is expected to be UE vendor specific which allows for UE vendor specific data formats. Cell/cell area specific retraining data sets are provided by gNBs to UEs which may require some data format specification. Similarly, ML model fine tuning requires configurations of CSI-RSs to fit to current UE radio channel conditions, which might therefore benefit from additional CSI-RS configuration options.

Conclusion
In this contribution, we have addressed the open issues for AI/ML-based CSI prediction.  Our observations and proposals are:
Proposal 1: Study the performance of CSI predictors for non-ideal CSI-RS conditions.
Observation 1: An initial complexity analysis suggests that Rel-18 non-AI/ML prediction is less computationally complex than AI/ML-based CSI prediction. However, additional issues must be considered including complexity reduction of prediction models.
Proposal 2: Continue to study the relative complexity of AI/ML and non-AI/ML-based CSI prediction techniques, considering the possibility of AI/ML model complexity reduction/optimization.
Proposal 3: Consider suitable data preprocessing to overcome or avoid phase discontinuities of wideband Singular vectors or W1 during the time of the observation plus prediction window.
Observation 2:  Scalability parameters are generally known at the UE and the gNB and, typically, do not change during the active time of a UE in a certain cell. Therefore, one straight forward solution is to provide optimally trained ML models per scalability value.
Observation 3:  There exist different options to deal with various scalability parameters such as
1. Switching to ML models trained for specific scalability parameters;
2. Reconfigurations of ML models depending on known scalability parameters such as the number of antenna ports, bandwidth, or carrier frequency; 
3. Specific type of data preprocessing converting various input parameters to the same type of input signal for the ML model;
4. Using one larger ML model inherently adapting to various scalability parameter values.
Observation 4:  Generalization parameters like the overall scenario (LOS, NLOS, indoor, outdoor, etc.), SINR, UE speed, etc. are generally not known at the UE nor the gNB. Therefore, the definition of specific estimation procedures might be considered, which should lead to a higher estimation quality.
Observation 5:  A single ML model generalizing to multiple scenarios including multiple UE speeds, or various SINR values might get large, require larger training data sets, and might still degrade performance when compared to scenario specific ML models.
Proposal 4:  Consider the following alternative solutions to cope with varying scalability and generalization parameters:  
1. Scenario specific ML model selection, switching and (de)activation, where each model is trained for specific UE speeds, SINRs, etc. 
2. One single ML model, or very few ML models, with high generalization and high scalability capabilities. 
3. UE sided finetuning of generalized ML models based on most recent channel observations over one to few hundreds of ms such that a single ML model can be used in many scenarios.
4. Cell and/or location specific retraining of ML models based on training data sets provided by the gNB.
Observation 6: Evaluation of the benefit of localized models by dropping of UEs in a specific boundary of the cell seems to be the most suitable option, but requires spatial consistent channel models. It has to be checked how far spatial consistency A or B is suitable for the intended purpose and a proper evaluation requires the definition of other side conditions like size of the boundaries, variation of the statistical channel characteristics over time, etc.
Proposal 5:  Consider in a first step fine tuning performance as an upper bound of what can be achieved by localized models. 
Proposal 6: Use CSI-RS burst with K resources and time interval m slots (based on R18 MIMO eType-II) as a starting point for fine tuning methods. Furthermore, consider more efficient triggering of CSI RS configurations for fine tuning.
Observation 7: The gNB might learn its cell/cell area specific channel conditions by combining over time multiple UE CSI reports from the same cell area, where the UE CSI reports must include the UE position information. Performance might then improve from the retraining of UE models entering the same cell/cell area.
Observation 8:  Providing training data sets for retraining of ML models to cell/cell area specific channel conditions requires a proper definition of the training data transfer mechanism.
Observation 9:  The evaluation of fine-tuning benefits from the definition of different scenarios A and B, where the ML model generalizes badly to at least one of these scenarios.
Observation 10:  As discussed in the latest agreement, the evaluation of cell area specific ML models requires the definition of cell specific channel characteristics, which should be different from the channel characteristics of all radio cells.
Observation 11:  Retraining of cell/cell area specific ML models based on retraining data sets avoids the need for cell/cell area specific ML model transfer and is therefore preferable. Efficient broadcast/multicast of retraining data sets, for example, by means of training data set generators should be considered.
Proposal 7:  We propose to evaluate the benefits of fine tuning as it might be able to adapt to any relevant channel conditions for a single or few generalized ML models. Furthermore, it might provide an upper bound for what can be achieved with cell/cell area specific model retraining without the need to define new localized channel conditions.
Observation 12:  Note that UE sided extraction of ground truth CSI might be challenging for CSI-RSs, which are corrupted by noise and interference. For verification of the proper monitoring performance, it must be evaluated under various SINR conditions.
Proposal 8:  Further investigate the details of UE assisted performance monitoring including reference signal timing and overhead, feedback metrics, and supported actions by the gNB.
Observation 13: There might be different sets of training data, i.e., i) for the offline training of the generalized ML models, ii) for the fine tuning of ML models and, iii) for the cell/cell area specific retraining of ML models.
Observation 14:  Training of the baseline generalized ML models is expected to be UE vendor specific which allows for UE vendor specific data formats. Cell/cell area specific retraining data sets are provided by gNBs to UEs which may require some data format specification. Similarly, ML model fine tuning requires configurations of CSI-RSs to fit to current UE radio channel conditions, which might therefore benefit from additional CSI-RS configuration options.
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