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1	Introduction
The approval of the Rel-19 work package marks the next wave of 5G Advanced evolution [1]. The package includes a work item on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface [2].
The work item consists of multiple objectives, including further study on AI/ML-enabled CSI prediction:
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 

At RAN1#116, initial agreements on additional study on AI-enabled CSI prediction were agreed (see Appendix). 
In this contribution, we discuss the remaining issues of additional study on AI-enabled CSI prediction.
2	Background
AI/ML techniques can be used in CSI prediction. The problem of the current CSI reporting framework is that there is a delay between the time to which the reported CSI relates and the time when the BS receives the CSI report. In 5G non-terrestrial networks for satellite communications, the delay can range from a few milliseconds to hundreds of milliseconds. Such large delay can well cause the CSI to become outdated. In terrestrial networks where the delay is not large, the wireless channel can vary rapidly due to, e.g., high UE mobility, which can also cause the CSI to become outdated. CSI prediction reporting using, e.g., AI/ML algorithms, is one approach to mitigating the effect of the outdated CSI in the CSI reporting framework. In addition, CSI prediction can help reduce reference signal overhead and measurement reporting overhead. Therefore, it is of high interest to study AI/ML based algorithms for CSI prediction.
Unlike AI/ML based CSI compression where a two-sided structure (CSI encoder at UE and CSI decoder at gNB) is needed, a one-sided structure is sufficient for AI/ML based CSI prediction. The AI/ML inference of the one-sided model can be performed at either gNB or UE. It was agreed that time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement. Time domain CSI prediction using gNB sided model should also be evaluated to assess the potential gains of performing CSI prediction at gNB side.   
[bookmark: _Hlk126244235]Proposal 1: The inference of one-sided AI/ML model for CSI prediction can be performed at either gNB or UE. Besides studying CSI prediction at UE side, companies are encouraged to study CSI prediction at gNB side to understand the potential gains of performing CSI prediction at gNB side vs. UE side.
3	Performance study
For the AI/ML based CSI prediction, we can consider several baseline schemes for the benchmark of performance comparison: 1) the nearest historical CSI without prediction, 2) non-AI/ML based CSI prediction compatible with Rel-18 MIMO, and 3) collaboration level x AI/ML based CSI prediction (e.g., implementation-based AI/ML compatible with Rel-18 MIMO). 
To evaluate AI/ML based algorithms for CSI feedback enhancement, datasets are needed. Both real data and synthetic data can be used to develop and evaluate AI/ML based algorithms. 3GPP has well established simulation methodology, which can be used to generate synthetic data. CSI enhancement would be most valuable in the scenarios where there is high-capacity demand. Therefore, the evaluation could focus on UMi-street canyon and UMa scenarios.
In general, the statistical models in TR 38.901 can be used as baseline for link and system evaluation of AI/ML based algorithms for CSI feedback enhancement. However, the Rel-18 study shows that using data generated from stochastic channel models is not sufficient to demonstrate the performance gain of CSI prediction compared to non-AI/ML based algorithms.
Observation 1: The Rel-18 study shows that using data generated from stochastic channel models is not sufficient to demonstrate the performance gain of CSI prediction compared to non-AI/ML based algorithms.
To improve the performance gain, site-specific AI/ML models for CSI prediction should be considered. Site-specific optimization refers to the continuous process of fine-tuning network configurations on a per-site basis. The goal is to ensure optimal performance for individual cell-sites in terms of key performance indicators (KPIs) like coverage, capacity, quality-of-service (QoS), quality of experience (QoE) and energy efficiency. Which attributes are tuneable and important for site-specific optimization depends on the RAN deployment architecture, as well as the capabilities of cell-site specific network elements. As cellular networks continue to evolve with the emergence and deployment of innovative technologies beyond 5G, site-specific RAN optimization is poised to become more sophisticated due to the increasing number of frequency bands, demanding KPIs (e.g., higher data rates, ultra-low latency, wider coverage, lower energy consumption, and high-accuracy positioning) and innovation of more advanced antenna technologies.
Proposal 2: Site-specific AI/ML models for CSI prediction should be considered to improve performance gain.
It was agreed that for the evaluation of AI/ML-based CSI prediction using localized models in Release 19, consider the following options as a starting point to model the spatial correlation in the dataset for a local region:
· Option 1: The dataset is derived from UEs dropped within the local region, with spatial consistency modelling as per TR 38.901. 
· E.g., Dropped in a specific cell or within a specific boundary.
· Option 2: By using a scenario/configuration specific to the local region. 
· E.g., Indoor-outdoor ratio, LOS-NLOS ratio, TXRU mapping, etc.
It was emphasized that while modelling the spatial correlation, companies should ensure that the dataset distribution also correctly captures the decorrelation due to temporal variations in the channel.
Nonetheless, to enable the development and evaluation of site-specific AI/ML models, it is beneficial to define a common reference scenario with site specificity. 
There are two options for defining a common reference scenario with site specificity:
· Option 1: Real-scenario map that is a virtual representation of a real area on earth. 
· Option 2: Synthetic-scenario map that is artificially constructed to mimic a certain environment such as urban macro, rural macro, indoor office, and indoor factory.
Proposal 3: Define a common reference scenario with site specificity as a basis for further study of AI/ML based CSI prediction. 
Proposal 4: Select one the following options to define a common reference scenario with site specificity as a basis for further study of AI/ML based CSI prediction:
· Option 1: Real-scenario map that is a virtual representation of a real area on earth. 
· Option 2: Synthetic-scenario map that is artificially constructed to mimic a certain environment such as urban macro, rural macro, indoor office, or indoor factory.
As a starting point of the discussion, 3GPP may consider the existing scenarios, e.g., those defined by METIS [3]. Specifically, for urban scenarios, the Madrid grid developed by the METIS project can be considered.
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Figure 1: Madrid grid for Urban Micro and Urban Macro. Source: METIS D6.1 [3].
Proposal 5: Consider the Madrid grid developed by the METIS project for urban scenarios for further study of site-specific AI/ML based CSI prediction. 
Once a scenario is defined, ray tracing can be used to generate data for the development and evaluation of site-specific AI/ML models for CSI prediction. Ray tracing is a rendering and simulation technique used in computer graphics, optics, and other fields to simulate the way rays of light or other radiation travel through a virtual environment. In the context of wireless communication and radio wave propagation, ray tracing is often employed to model and simulate the paths that EM waves take as they propagate through various materials and interact with surfaces and obstacles. It provides a deterministic and physics-based modelling approach that simulates the paths of individual rays of EM waves, considering reflections, refractions, diffractions, and other interactions with objects and surfaces. It offers high-resolution simulations, capturing the specific paths of rays and the effects of the surrounding environment, making it valuable for site-specific planning, antenna design, and network optimization in the field of wireless communication. 
Proposal 6: With a common reference scenario with site specificity, ray tracing is used to generate channel data for the development and evaluation of site-specific AI/ML models for CSI prediction.
Conclusion
In the previous sections, we discuss general aspects of AI/ML framework for NR air interface and make the following observations:
Observation 1: The Rel-18 study shows that using data generated from stochastic channel models is not sufficient to demonstrate the performance gain of CSI prediction compared to non-AI/ML based algorithms.
Based on the discussion in the previous sections we propose the following:
Proposal 1: The inference of one-sided AI/ML model for CSI prediction can be performed at either gNB or UE. Besides studying CSI prediction at UE side, companies are encouraged to study CSI prediction at gNB side to understand the potential gains of performing CSI prediction at gNB side vs. UE side.
Proposal 2: Site-specific AI/ML models for CSI prediction should be considered to improve performance gain.
Proposal 3: Define a common reference scenario with site specificity as a basis for further study of AI/ML based CSI prediction. 
Proposal 4: Select one the following options to define a common reference scenario with site specificity as a basis for further study of AI/ML based CSI prediction:
· Option 1: Real-scenario map that is a virtual representation of a real area on earth. 
· Option 2: Synthetic-scenario map that is artificially constructed to mimic a certain environment such as urban macro, rural macro, indoor office, or indoor factory.
Proposal 5: Consider the Madrid grid developed by the METIS project for urban scenarios for further study of site-specific AI/ML based CSI prediction. 
Proposal 6: With a common reference scenario with site specificity, ray tracing is used to generate channel data for the development and evaluation of site-specific AI/ML models for CSI prediction.
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Appendix: Evaluation results
In this section, we provide initial evaluation results on CSI prediction using AI/ML based algorithms. The system-level simulation assumption and scenarios are built on the basis of the RAN1 agreements.
A.1	Basic Setup

The AI/ML-based CSI prediction utilizes a convolutional neural network (CNN). 
· CSI-RS periodicity is assumed to be 4 ms and each AI/ML model input uses 4 latest measurements. 
· The raw channel matrices of the four latest CSI-RS measurement instances are used as the AI/ML model input. The raw channel matrices are associated with the first PRB.
· The AI/ML model output is the predicted raw channel matrix at 4 ms ahead.
· The UE speed is 30 km/h.
As a benchmark, we assume no prediction with sample-and-hold, i.e., the most recently estimated raw channel matrix is assumed to be the channel matrix at 4 ms ahead.
We consider both NMSE and squared cosine similarity to measure the performance. 
· Denoting by  and  the ground-truth channel and the predicted channel respectively, NMSE is equal to .
· Denoting by  and  the strongest eigenvector associated with the ground-truth channel  and the strongest eigenvector associated with the predicted channel  respectively, squared cosine similarity is equal to .
Figure 7 shows the CDFs of the NMSE of AI/ML based CSI prediction vs. no prediction (sample-and-hold). Figure 8 shows the CDFs of the squared cosine similarity of AI/ML based CSI prediction vs. no prediction (sample-and-hold). Table 3 summarizes the average values of NMSE and squared cosine similarity. The results show that AI/ML based CSI prediction significantly outperform the baseline case without prediction (sample-and-hold). 
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Figure 2: NMSE of AI/ML based CSI prediction vs. no prediction: Observation window with 4/4ms and UE speed of 30km/h.
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Figure 3: Squared cosine similarity of AI/ML based CSI prediction vs. no prediction: Observation window with 4/4ms and UE speed of 30km/h.
Table 1: Average NMSE and average squared cosine similarity of AI/ML based CSI prediction vs. no prediction: Observation window with 4/4ms.
	
	No prediction (sample-and-hold)
	AI/ML based prediction

	Average NMSE
	-0.74 dB
	-14.54 dB

	Average squared cosine similarity
	 0.857 
	0.976



In the above results, AI/ML training and inference are performed on the first PRB. Next, we use the AI/ML model trained on the first PRB to carry out inference/testing on different PRBs. 
Table 4 shows the performance of applying the AI/ML model trained on the first PRB to the inference of the 11th, 21st, 31st, 41st, and 51st PRB. From the results, we can see that the performance is consistent across the whole band. This implies that we can train only one AI/ML model associated with a specific PRB, and use the same AI/ML model for other PRBs to save memory and reduce complexity.
Table 2: Generalization of AI/ML based CSI prediction over different PRBs.
	
	1st PRB
	11th PRB
	21st PRB
	31st PRB
	41st PRB
	51st PRB

	Average NMSE
	-14.54 dB
	-14.39 dB
	-14.43 dB
	-14.43 dB
	-14.40 dB
	-14.45 dB

	Average squared cosine similarity
	0.976
	0.974
	0.975
	0.975
	0.973
	0.975



A.2	Observation Window: Number/Distance = 5/5ms 

In this section, we evaluate the AI/ML-based CSI prediction with a different observation window as described below.
· CSI-RS periodicity is assumed to be 5 ms and each AI/ML model input uses 5 latest measurements.
· The AI/ML model output is the predicted raw channel matrix at 5 ms ahead.
· The UE speed is 10 km/h, 30 km/h, or 60 km/h.
As a benchmark, we assume no prediction with sample-and-hold, i.e., the most recently estimated raw channel matrix is assumed to be the channel matrix at 5 ms ahead.
Figures 9, 10, and 11 show the CDFs of the NMSE of AI/ML based CSI prediction vs. no prediction (sample-and-hold) for UE speed of 10 km/h, 30 km/h, 60 km/h, respectively. 
Figures 12, 13, and 14 show the CDFs of the squared cosine similarity of AI/ML based CSI prediction vs. no prediction (sample-and-hold) for UE speed of 10 km/h, 30 km/h, 60 km/h, respectively. 
Table 5 summarizes the average values of NMSE and squared cosine similarity. Several observations are in order.
· The NMSE results show that AI/ML based CSI prediction significantly outperforms the baseline case without prediction (sample-and-hold), for all the UE speeds of 10 km/h, 30 km/h, and 60 km/h. The NMSE gain at the 30 km/h UE speed is about 14 dB, and the NMSE gain at the 10/60 km/h UE speed is about 10 dB.
· The SCS results show that AI/ML based CSI prediction outperforms the baseline case without prediction (sample-and-hold), for all the UE speeds of 10 km/h, 30 km/h, and 60 km/h. The SCS gain at the 30 km/h UE speed is about 19%, and the SCS gain at the 10/60 km/h UE speed is about 2.5%.
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Figure 4: NMSE of AI/ML based CSI prediction vs. no prediction: Observation window with 5/5ms and UE speed of 10 km/h.
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Figure 5: NMSE of AI/ML based CSI prediction vs. no prediction: Observation window with 5/5ms and UE speed of 30 km/h.
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Figure 6: NMSE of AI/ML based CSI prediction vs. no prediction: Observation window with 5/5ms and UE speed of 60 km/h.
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Figure 7: Squared cosine similarity of AI/ML based CSI prediction vs. no prediction: Observation window with 5/5ms and UE speed of 10 km/h.
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Figure 8: Squared cosine similarity of AI/ML based CSI prediction vs. no prediction: Observation window with 5/5ms and UE speed of 30 km/h.
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Figure 9: Squared cosine similarity of AI/ML based CSI prediction vs. no prediction: Observation window with 5/5ms and UE speed of 60 km/h.
Table 3: Average NMSE and average squared cosine similarity of AI/ML based CSI prediction vs. no prediction: Observation window with 5/5ms.
	
	UE speed
	No prediction (sample-and-hold)
	AI/ML based prediction
	Difference

	Average NMSE
	10 km/h
	-8.01 dB
	-18.47 dB
	10.46 dB

	
	30 km/h
	1.03 dB
	-13.03 dB
	14.06 dB

	
	60 km/h
	4.56 dB
	-5.15 dB
	9.71 dB

	Average squared cosine similarity
	10 km/h
	0.9648
	0.9911
	2.73%

	
	30 km/h
	0.8059
	0.9605
	19.18%

	
	60 km/h
	0.7185
	0.7348
	2.27%



Appendix B
B.1	RAN1#116 agreements
Agreement
For Rel-19 study on CSI prediction, consider EVM agreed in Rel-18 CSI prediction based on UE-sided model as a starting point.
· FFS on additional assumptions, e.g., channel estimation error, phase discontinuity, CSI-RS periodicity.
· Note: Rel-18 CSI-RS configuration/reporting can be reused. 
· Note: additional EVM and corresponding template to collect the results can be updated.

Agreement
For Rel-19 study on CSI prediction, companies are encouraged to evaluate throughput performance by comparing performance with non-AI/ML based CSI prediction. 
· R18 eType II doppler codebook is assumed for CSI report for both AI/ML and Non AI/ML prediction. 
· Companies to report the assumption for N4, which could be 1, 2, 4, 8.

Note: Non-AI/ML based CSI prediction (Benchmark 2) can include statistical model based CSI prediction (e.g., based on Kalman filter, Wiener filter, Auto-regression). 

Agreement
For evaluation, to report computational complexity in unit of FLOPs including additional complexity if applicable, e.g., update of filter, and their assumption on non-AI based CSI prediction when performance results are provided. 

Conclusion
For the evaluation of the AI/ML based CSI prediction, it is up to companies to choose the modelling method and companies should report if ‘Channel estimation’ and/or ‘phase discontinuity’ is/are considered by companies.

Agreement
For the evaluation of the AI/ML based CSI prediction, consider following CSI-RS configuration
· Periodic: 5 ms periodicity (baseline), 20 ms periodicity (encouraged) 
· Aperiodic: Optional, CSI-RS burst with K resources and time interval m slots (based on R18 MIMO eType-II)
Note: Companies to report observation window (number/distance) and prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance) on their evaluation.

Conclusion
For Rel-19 study on CSI prediction only, consider UE-sided model only.

Agreement
· For CSI prediction evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations, to evaluate one or more of the following aspects:
· Various UE speeds (e.g., 10km/h, 30km/h, 60km/h, 120km/h)
· Various deployment scenarios
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Various frequency granularity assumptions
· Various antenna port numbers (e.g., 32 ports, 16 ports)
· To report the selected configurations for generalization verification
· To report the method to achieve generalization over various configurations and/or to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.
· To report generalization cases where multiple aspects (e.g., combination of above) are involved in one dataset, if adopted. 
· To report the performance and requirement (e.g., updating filter parameters, convergence of filter) for non-AI/ML-based CSI prediction to handle the various scenarios/configurations.

Agreement
For the evaluation of AI/ML-based CSI prediction using localized models in Release 19, consider the following options as a starting point to model the spatial correlation in the dataset for a local region:
· Option 1: The dataset is derived from UEs dropped within the local region, with spatial consistency modelling as per TR 38.901. 
· E.g., Dropped in a specific cell or within a specific boundary.
· Option 2: By using a scenario/configuration specific to the local region. 
· E.g., Indoor-outdoor ratio, LOS-NLOS ratio, TXRU mapping, etc.
Note: While modelling the spatial correlation, strive to ensure that the dataset distribution also correctly captures the decorrelation due to temporal variations in the channel. To report methods to generate training and testing dataset.
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