	[bookmark: historyclause][bookmark: _Toc383764588]3GPP TSG RAN WG1 #115
	R1-2311993

	Chicago, USA, November 13th –17th, 2023
	

Agenda Item: 8.14.2
Source: MediaTek Inc.
Title:	Other Aspects on AI/ML for CSI Feedback Enhancement
Document for: Discussion & Decision
[bookmark: _Ref4683067] Introduction
[bookmark: _Hlk126161272]In the study item [1] scope, it has been agreed to study CSI feedback enhancement including CSI compression and CSI prediction as representative sub use cases. In this contribution, we study spec impact, requirements, and advantage of each sub use case.
CSI Compression
Training strategies of two-sided AI/ML models
Unlike other sub use cases, where AI/ML models can be merely deployed at a single entity, CSI compression sub use case focuses on two-sided AI/ML models. The two-sided AI/ML models in CSI compression are auto-encoders (AEs) from which encoders are used by UEs and decoders are employed by NWs during the inference stage. The two-sided AI/ML models in CSI compression raise some fundamental issues. As each vendor may own its exclusive encoder or decoder depending on the vendor’s purpose, the performance of such an encoder/decoder in conjunction with other vendors’ decoder/encoder entails a big question mark. In fact, new training strategies are required to make encoders and decoders of different vendors inter-operable. To facilitate inter-operability of AI/ML models from different vendors, three types of training strategies have been focused in [2]. We cast our detailed view on these training strategies in the following.
Training type 1: Joint training at a single entity
Training type 1 aims at training a well-designed AE at a single entity (either UE or NW) during the training phase and offering the pre-trained encoder or decoder of AE to other entities upon their request in the inference phase. This training type does not offer a solution for inter-operability of encoders and decoders from different vendors, instead it bypasses the problem by guaranteeing that the encoders used by UEs and decoders used by NWs are already inter-operable (matched in structure and their performance has already been verified). Naturally such a training strategy has superior performance to all other training strategies that we will discuss shortly. Training type 1 can be pursued in two directions depending on which side (UE or NW) takes the responsibility of training.
UE-side Training type 1: As shown in Figure 1(a), in the training phase, UE takes full responsibility of training a whole AE including an encoder and a decoder. UE can leverage proprietary/public dataset and train AE in an individual forward pass (FP) and backpropagation (BP) loop. Once the training of AE is finished, UE obtains an encoder and a decoder which effectively perform compression and decompression, respectively. In the inference phase, the NW requests pre-trained decoder to establish a two-sided AI/ML model with the aid of UE. UE uploads the decoder (exchangeable part of AE) for the NW and keeps the encoder (unexchangeable part of AE). NW deploys the received decoder and uses it for decompressing the CSI feedback afterward.
NW-side Training type: As shown in Figure 1(b), in the training phase, NW takes full responsibility of training an entire AE including an encoder and a decoder. NW uses a proprietary/public dataset and trains the AE in an individual FP and BP loop. In the inference phase, UE requests pre-trained encoder for CSI compression. UE downloads the encoder (exchangeable part of AE), and NW keeps the decoder (unexchangeable part of AE). UE and NW leverage encoder and decoder to form a two-sided AI/ML model and perform CSI compression and decompression, respectively.
	[image:]
(a) UE-side training type 1
	[image:]
(b) NW-side training type 1

[bookmark: _Ref117693209]Figure 21: Illustration of training type 1 when AE is trained at UE or NW side
Whether UE or NW trains the model, finally a two-sided AI/ML model is established in which encoder has learned how to provide rich latent vectors (compressed CSI maintaining essential information) and decoder has learned how to interpret the latent vectors. Thereby, inter-operability of vendors is no longer an issue. As revealed by our companion document [3], training type 1 not only has superior performance to other types of training, but it also brings the following advantages which mainly roots in its centralized style of training:
· It does not need inter-vendor collaboration in the training phase
· It does not need inter-vendor signalling in the training phase
· BP and FP can maintain high precision for representing elements in latent vectors and gradients
· LCM is generally easier as all engineering efforts for re-training, debugging, and improving AI/ML model is centralized

Despite prominent advantages offered by training type 1 in the training phase, it has some drawbacks in the inference phase:
· The exchangeable part of AE may not be pre-tested and optimized at HW/SW architecture of the entity which uses the model trained at the other entity
· The exchangeable part of AE and processing related to it cannot be proprietary. For example, if UE trains AE, it should share information of decoder, dequantization, post-processing, and output type. If NW trains AE, it should share information of encoder, quantization, and pre-processing.
· Depending on the number and size of AI/ML models that one entity may requests from others, the inference signalling overhead can be quite high.

In our view, due to less AI/ML model switching demand for UE compared to NW, it is reasonable to prioritize type 1-training at NW, where NW can offer the proper AI/ML models to UEs upon request. However, given the heterogenous computational budget of UE devices, a single AI/ML model at NW does not guarantee any inference latency or even feasibility of deployment (in term of storage) for all potential UE devices. In this regard, training type 1 shall not be regarded as a mean for NW to store and offer a universal AI/ML model for all UEs. A reasonable choice is that NW offers a range of AI/ML models to be selected by UEs based on their budget. We also believe training type 1 should not preclude the opportunity of having optimized AI/ML models for specific UE devices. For example, based on demography of UE vendors and UE devices, NW may decide to offer an optimized pre-tested AI/ML model, called “UE-dedicated”, for some UE devices to enhance latency and throughput of transmissions. UE-dedicated AI/ML models stand in opposite to “UE-non-dedicated” AI/ML models which are not tailored for a set of specific UE devices.
On the other hand, NW may use different CSI-RS port configurations which can prohibit one AI/ML model from working well in all possible scenarios. In this regard, even if we ignore the challenges regarding the heterogenous capabilities of UE devices, it is still very unlikely that NW offers one model for all possible cases. This motivates further categorization of AI/ML models at NW side. In overall, all possible options ahead of NW in offering/storing AI/ML models obtained through training type 1 are shown in Figure 22. It should be noted the “mixed” option in this figure is the mixture of UE-dedicated and UE-non-dedicated AI/ML models at NW.
[image:]
[bookmark: _Ref134386568]Figure 22: Categorization of AI/ML model(s) offered by NW in training type 1
Therefore, as opposed to the proposal 2-1-1 in [7], keeping one AI/ML model at NW should not be regarded as one of the main attributes of training type 1.
Training type 2: Joint training at different entities
Training type 2 is introduced to avoid the model exchange issues in the training type 1 which breaks the proprietariness of AE and entails possible large signalling overhead in the inference phase. In training type 2, UE vendors participate with their encoders, and NW vendors participate with their decoders in a training session. UE and NW vendors jointly collaborate to train AEs. While the training is done jointly, each entity does not exchange any part of its AI/ML model and instead it exchanges other necessary information including latent vectors and gradient vectors to complete an FP and BP loop across two or more entities. Figure 23 shows the procedure of type 2 training for a single encoder and a single decoder pair, and it shows the signalling among encoder and decoder which completes the FP and BP loop across two different entities (i.e., UE and NW). Simply put, a shared dataset is used by both encoder (at UE) and decoder (at NW) for training purpose. The encoder generates the latent vectors and passes them to the decoder for CSI reconstruction. The reconstructed CSI samples will be compared to the target/label CSI samples, and loss will be calculated. The gradient of loss w.r.t. parameters will propagate through the decoder, and the decoder’s parameter will be updated accordingly. The decoder then will pass the gradient vector on its input layer to the encoder, and the encoder will resume BP and updating learnable parameters. While the encoder and decoder are proprietary, the applicable quantization/dequantization as well as format/precision of gradient vectors, latent vectors, and CSI samples may need to be aligned.

[image:]
[bookmark: _Ref117700055]Figure 23: Illustration of training type 2 for a single encoder and single decoder

Unlike training type 1, in training type 2, the UE and NW are not necessarily aware of detailed or type of AI/ML model structure used at the other side, and the structure of encoder and decoder may not match in type, number of layers, complexity, computational requirement, etc. For example, encoder may leverage a simple convolutional neural network (CNN) while decoder may use transformer (TF) as its core architecture. This architecture mismatch results a performance degradation compared to training type 1 where the training entity is implicitly responsible to train a matched architecture of encoder and decoder in its AE. In our companion contribution [3], our evaluation shows that the encoder/decoder mismatch will cause 2.23% performance loss for UE and 2.26% performance loss for NW. Despite this performance degradation, training type 2 has three prominent advantages:
· Maintains the proprietariness of encoders and decoders
· Naturally serves as performance upper-bound to training type 3
· Much less signalling (over the air interface) overhead in the inference phase
Extension to single-encoder multi-decoder setting
The extension of training type 2 to single-encoder multi-decoder setting is straightforward as the single UE (encoder) can coordinate the training/updating its parameters and triggering different decoders in a Round-Robbin fashion or at the same time. We note that if the UE divides the training session into multiple sub-sessions and sequentially assigns each sub-session for exposing itself to only one of NWs (decoders), it finally will be biased toward the last decoder which has been exposed to.
Extension to multi-encoder single-decoder setting
Extension of training type 2 to multi-encoder single-decoder scenario requires more provisions depending on data ownership and inter-vendor learning/update schedule. From data ownership point of view, two cases can be imagined, common/shared dataset and UE-specific datasets. With common dataset, all UEs and the NW have access to the same CSI samples to generate the latent vectors and calculate CSI reconstruction loss. Using UE-specific datasets, each UE vendor does not share its CSI sample with other UE vendors, and it may share the CSI sample (with desired type, e.g., eigenvectors or raw CSI) with the NW to make NW able to calculate the CSI reconstruction loss. In this sense, if vendors use UE-specific datasets, the type of target CSI (shared with NW) should be aligned among UE vendors.
[bookmark: _Hlk118465786]From learning/update scheduling perspective, three major cases with different levels of coordination can be implemented: i) concurrent update scheduling, ii) alternating update scheduling, and iii) sequential update scheduling.
Concurrent update scheduling: In this case, for each parameters’ update at UEs’ encoders and NW’s decoder, a batch (minibatch) of CSI data samples can flow through encoders and the decoder. As the CSI samples in the batches are shared with the NW, NW is able to calculate the joint loss accumulated from all CSI reconstructions and initiate BP. The procedure is shown in Figure 24.

[image:]
[bookmark: _Ref117764901]Figure 24: Concurrent update scheduling in multi-encoder single-decoder setting for training type 2

Alternating update scheduling: Coordinating concurrent update may not be feasible due to alignment in size of batch, defining an appropriate joint loss, etc. In this case, UE vendors can individually trigger FP and BP using a batch or multiple batches of their specific CSI samples in an alternating pattern to maintain the fairness of their exposure to the common decoder. This training style is shown in Figure 25, where one parameters’ update (FP and BP) using a batch at UE vendor A is followed by a parameters’ update at UE vendor B, and these alternating updates last till the end of the training session. However, the inter-vendor synchronization is required at the UE side to not interfere parameter updates of each other.

[image:]
[bookmark: _Ref117765679]Figure 25: Alternating update scheduling in multi-encoder single-decoder setting for training type 2
Sequential update scheduling: If concurrent or alternating update scheduling among UE vendors is not reachable/preferred, the training session can be divided into multiple sub-sessions during each of which one UE vendor uses its dataset (shared or specific) for training purpose as shown in Figure 26. While the synchronization requirement is almost rectified in this case, NW vendor needs additional provisions to maintain its performance with the UE vendors which it has been exposed to them during initial sub-sessions.

[image:]
[bookmark: _Ref117766811]Figure 26: Alternating update scheduling in multi-encoder single-decoder setting for training type 2
[bookmark: _Hlk118471965]Another possible issue in multi-encoder setting is unintentional bias created by a UE-vendor such as excessive size of its dataset compared to the others, abnormal statistics of some datasets, unfair loss functions, etc. For example, consider NW is using MSE function and dataset from a certain UE has samples with large values. Probably, NW will be tempted to minimize loss function with focusing on large-valued samples and give up on the rest. As another example consider the case where one UE bombards NW with its excessively large dataset. If the underlying distribution of those CSI samples is different from CSI samples of other UEs, the NW again trains a decoder that may not properly work for UEs with smaller datasets. As such, even if the UE vendors leverage UE-specific datasets, sharing information on training-related parameters such as size of datasets, statistics of datasets, training loss, update schedule, etc. is helpful to assure UE vendors about fairness of training sessions they are involved into.
In brief, the major advantage of training type 2 is enhancing the performance of unmatched encoder-decoder pair (as a single AE) in the inference phase by exposing them to each other in the training phase. The costs of this enhancement are frequent inter-vendor information exchange (e.g., latent vectors and gradient vectors) and the need for possible inter-vendor coordination.
Training type 3: Sequential separate training
Training type 3 relaxes the coordination requirements of training type 2 by offering a sequential separate training at UE and NW sides. In this training type, either NWs’ decoders or UEs’ encoders will be trained first, and then other parties will train their corresponding part of AEs accordingly. Based on possible order of training, the training type 3 has two categories: UE-first separate training and NW-first separate training. A simple implementation of sequential separate training is described in the following for the most general setting where multiple encoders (at UEs) and multiple decoders (at NWs) are trained in a single training session.
UE-first separate training: An example implementation of UE-first separate training may entail the following steps in order:
Step 1: Each UE leverages training type 1 to train an AE
Step 2: Each UE uses its trained encoder on an alignment dataset and generates latent vectors
Step 3: UEs provide compound datasets including CSI samples and corresponding latent vectors to NWs
Step 4: NWs collect compound datasets from all UEs and train their decoders.

NW-first separate training: An example implementation of NW-first separate training may entail the following steps in order:
Step 1: Each NW leverages training type I to train an AE
Step 2: Each NW uses its trained encoder on an alignment dataset and generates latent vectors
Step 3: NWs provide compound datasets including CSI samples and corresponding latent vectors to UEs
Step 4: UEs collect compound datasets from all NWs and train their encoders.
In our companion contribution [3], we have evaluated training type 3 including both UE-first and NW-first cases. In general, our results confirm the natural performance degradation of training type 3 compared to training 1 and training type 2. We also identified the risk of pairing unmatched encoder and decoders are higher in the training type 3, and between UE-first and NW-first separate training, this risk is higher for NW-first training. How to avoid such a degradation from unmatched pairs is a challenge that need information other than training inputs/outputs, i.e., latent vectors and CSI samples. Information such as encoders’/decoders’ types and complexity can be useful for the parties come second in the training order.
Comparison of different training strategies
In RAN1#114 it has been agreed to discuss pros and cons of four variants of training type 1 separately. The four variants of training type 1 are: i) UE-side model with known structure at NW; ii) UE-side model with unknown structure at NW; iii) NW-side model with known structure at UE; iv) NW-side model with unknown structure at UE.
In our view, UE-side model cases do not offer a practical solution as the NW will be congested with hundreds of device-specific and vendor-specific AI/ML models. As the results, NW will finally have to do switching between AI/ML models at a high rate. Another con of the NW-side model is that the identity of vendors sending CSI feedback should be specified. For NW-side model if the structure is unknown, the UE will remain blind from models’ complexity and storage requirements perspective. The UE cannot find whether it can store the model and execute it within an acceptable latency until the model is received and complied. However, if the model structure is known by UE, it will be UE’s choice to whether trigger AI/ML-based CSI feedback procedure or not. Our comprehensive comparison is provided in the following table.
Table 21: Comparison of training type 1’s variants
	
	Type 1: NW-side
	Type 1: UE-side

	
	Unknown structure at UE
	Known structure at UE
	Unknown structure at NW
	Known structure at NW

	Pros
	Flexibility of training area-specific models
Better capability of NW side to maintain numerous models
Not revealing UE’s identity
No need to carry/store multiple pre-defined architectures with UE
	Flexibility of training area-specific models
Better capability of NW side to maintain numerous models
Not revealing UE’s ID
Possible pre-test/planning at UE
UE can consider its budget when requesting model
	Easier data collection
Proprietariness of data
UE-side optimized models
lower inference latency compared to NW-side cases
	Easier data collection
Proprietariness of data
UE-side optimized models
Guaranteed inference latency
NW’s pre-test/planning to store numerous models from vendors

	Cons
	UE’s Data collection burden
No per-device/per-vendor optimization at UE side
No pre-test/planning at UE side
Unknown inference latency
Possible failure at deployment stage due to storage and computation constraints
	Data collection burden on UE
No per-device optimization at UE side
	Less flexibility to train area-specific models
Larger size of models is expected as UE tends to train general models
NW will be congested with hundreds of models
Very high switching rate at NW
Frequent compiling of new models compared to NW side cases
Needs very dynamic planning
	Less flexibility to train area-specific models
Larger size of models are expected as UE tends to train general models
NW will be congested with hundreds of models
Very high switching rate at NW

In RAN1#114, training type 2 and 3 methods have also been discussed to provide a holistic view on pros and cons of each. To cast MTK view on this unfinished subject, we have provided our understanding in the following table.
In our view, sequential form of training type 2 does not provide significant advantage compared its simultaneous variant expect for flexibility of training new compatible UE side models. Therefore, most of their pros and cons are similar. In general, training type 2 demands higher engineering efforts to establish a strict synchronized scheduling and data between servers from different vendors and it is not a pragmatic starting point for inter-vendor model development. As such training type 3 is a better option; however, suffering from scalability issues. We suggested meticulous reviewing the scalability issue and its effect on final performance of resultant model if CSI compression is selected as normative work in future.

Table 22: Pros and cons of training type 2 and type 3
	Training types
Characteristics
	Type 2
	Type 3

	
	Simultaneous
	Sequential
NW first (note 1)
	NW first
	UE first

	Whether model can be kept proprietary
	Yes
	Yes
	Yes
	Yes

	Whether require privacy-sensitive dataset sharing
	No
	No
	No
	No

	Flexibility to support cell/site/scenario/configuration specific model
	Difficult
	
Less flexible compared to type 3
	Semi flexible
	Semi flexible

	Whether gNB/device specific optimization is allowed
	Yes
	Yes
	Yes
	Yes

	Model update flexibility after deployment
	Not flexible
	Not flexible
	Semi-flexible
	Semi-flexible.

	Feasibility of allowing UE side and NW side to develop/update models separately
	Infeasible
	Feasible only for UE side
	Feasible only for UE side
	Feasible only for NW side

	Whether gNB can maintain/store a single/unified model over different UE vendors for a CSI report configuration
	Yes
	Yes
	Yes
	Yes

	Whether UE device can maintain/store a single/unified model over different NW vendors for a CSI report configuration
	Yes
	Yes
	Yes
	Yes

	Extendibility: to train new UE-side model compatible with NW-side model in use;
	Not support
	Support
	Support
	Not support

	Extendibility: To train new NW-side model compatible with UE-side model in use
	Not support
	Not Support
	Not support
	Support

	Whether training data distribution can match the inference device
	Limited
	Limited
	Limited
	Limited

	Software/hardware compatibility (Whether device capability can be considered for model development)
	Compatible
	Compatible
	Compatible
	Compatible

	Model performance based on evaluation in 9.2.2.1
	Performance refers to 9.2.2.1 observations
	Performance refers to 9.2.2.1 observations
	Performance refers to 9.2.2.1 observations
	Performance refers to 9.2.2.1 observations

Quantization
Quantization on CSI feedback
As shown in Figure 27, quantization is an indispensable step of CSI compression, where the quantizer module first converts the (latent) output of the encoder into a bitstream at the UE side, and later the de-quantizer module will translates back the bitstream into the latent input of the decoder at the NW side. However, two-sidedness of the quantization, its natural non-differentiability, and abondance of quantization techniques bring unique challenges to the CSI compression sub use case, necessitating extensive study to identify scalable, accurate, and yet simple quantization technique which fit the budget of NW/UE and tolerate multi-vendor wireless ecosystem.
[image:]
[bookmark: _Ref127377021]Figure 27: Quantization framework in CSI compression
The goal of this contribution is to study and identify effective quantization methods for CSI compression and further analyse the requirements and spec impacts of each. To do so, we first numerate the major features that distinguish quantization methods, including training-awareness, learnability, and mapping (from latent to quantization space).
Quantization awareness of training
Training-aware indicates whether the quantization has been exposed to the encoder and decoder parts of AI/ML model in the training stage or not. This awareness is particularly helpful as exposure of the quantization to the AI/ML model helps it to compensate the inflicting error of quantization and adjust its parameters accordingly. This further avoids possible CSI reconstruction accuracy mismatch in the training and inference stages.

	[image:]
(a) Training-non-aware quantization

	[image:]
(b) Training-aware quantization

[bookmark: _Ref127377888]Figure 28: Illustration of the difference between training-aware and training-non-aware quantization
As shown in Figure 28(a), in a quantization-non-aware training (QNAT) approach, the training stage happens in the absence of the quantization, while the quantization method will be later deployed between the encoder and decoder of AI/ML model in the inference stage. Therefore, the sudden introduction of quantization may deteriorate the overall performance of AI /ML model. As shown in Figure 28(b), in quantization-aware training (QAT) approach, the quantization will be presented in the training stage, avoiding any mismatch between training and inference stages. As evaluation results in our companion contribution [4] show, training awareness improves the overall performance of AI/ML models for CSI compression by 6.5%. Thereby, we propose to prioritize TA quantization methods.
Quantization (including quantizer and dequantizer modules) is a non-differentiable function by nature. Therefore, some provisions required to perform backpropagation in its presence. There are some techniques to rectify non-differentiability of quantization function such as artificial gradient, approximation of quantization in FP, approximation of quantization in BP, etc. However, pros and cons of each method are not well-studied. Also, it is not clear whether a general alignment is required among the techniques being used at NW (dequantizer) and UE (quantizer) for training awareness.
[bookmark: _Hlk127379376]Nevertheless, any training awareness technique which is adopted by NW can highly impact the BP at UE’s encoder if training type 2 is applied. As an example, let us assume during training type 2, NW applies a dequantizer and does not treat its BP behavior at all. In this case, while decoder can perform BP without any problem, encoder fails to do it. As another example, let us assume NW injects a large constant gradient for the sake of making BP able to go through dequantizer. Such an action highly de-stabilizes the training of the UE’s encoder. As such, we believe the NW should inform UE about the training awareness technique used for its dequantizer at least for training type 2.
Learnability
Another aspect of quantization schemes is learnability of their parameters/configurations. Learnability implies whether the quantization parameters/configurations will change in the course of training stage. Thereby, it is a unique feature of QAT quantization methods. An example of non-learnable (NL) quantization is a fixed uniform quantization whose intervals and levels remain unchanged during the training stage. An example of learnable quantizer is a uniform quantizer whose levels and range will be adjusted in the course of training stage.
Mapping/Codeword assignment
Regardless of training awareness and learnability, any quantization method aims at discretizing the feasible space of the encoder’s output and mapping an entire sub-space into a single representative point (a.k.a. codeword). How to generate a codeword for each sub-space is another point of classification. There are two major approaches, “vector quantization (VQ)” and “scalar quantization (SQ)”. In the SQ, each element on the latent output will be mapped to a new discretized element, and the final codeword will be a vector of all individually discretized elements. In the VQ, however, there is unique mapping from multiple/all elements on latent output to multiple/all elements of discretized/quantization space. VQ also suffers from two problems. First, the codebook design for VQ is computationally expensive, and its complexity will increase with the dimension of its input. Second, the number of CSI samples in the training dataset should exceed the number of representative points in the codebook which is simply . Therefore, for a high accuracy and large feedback overhead, the number of required CSI samples grows to an unpragmatic number, which hinders us to design a codebook that can handle the entire latent output together. To address these issues, it is inevitable to break down the latent vectors to smaller segments. With the aid of segmentation, a codebook will be designed for each segment as shown in Figure 29. In the inference stage, the same segmentation approach will be applied to the latent, and a codeword will be assigned to each segment. The final codeword will be the concatenation of all codewords of segments.
[image:]
[bookmark: _Ref127396938][bookmark: _Ref127396926]Figure 29: General framework of designing a VQ
In our companion contribution [4], it is shown that segmentation harms the performance of VQ, and the SQ methods may outperform VQ as they do not suffer from the aforementioned issue. Also, VQ is very sensitive to any changes in AI/ML model. Thereby, we believe if VQ is used for quantization of latent space, it should be aligned at UE and NW sides. Also, we could not find any advantage for VQ over SQ even though VQ needs more computational and alignment efforts, and its performance is not very promising.
Quantization on input/ground-truth CSI
Data collection stage comes with a huge overhead, mainly due to sending bulky CSI reports. To facilitate the data collection, it is inevitable to quantize CSI samples. It has been shown in [4], the quantization can significantly reduce the overhead of data collection with negligible impact on the accuracy of the AI/ML model. In [4], we have shown it is feasible to compress the training dataset 10 times with only 3.1% performance degradation compared to non-quantized (ideal) dataset. We have also shown incorporating few ideal CSI samples for finetuning reduces the performance gap caused by dataset quantization. However, it is still unclear to us which entity is responsible for configuring quantization and whether configuration changes per sample or remains unchanged for the entire data collection period.
Life Cycle Management
Life cycle management (LCM) includes the crucial steps of using the best CSI compression solution at any moment. LCM mainly consists of model training, model deployment, and monitoring. In this section, we go over to the main steps of LCM.
Data collection for model training
UE-side data collection
UE is the first and only entity to perform RF measurements and calculate CSI samples based on CSI-RS configuration. It is then up to UE to decide about CSI type, possible quantization, and applicable pre-processing before sending data to its server. One question to ask is whether any enhancement on CSI-RS is required for UE-side data collection or not. In our view, modification/enhancement of CSI-RS need to be studies to reveal its potential benefit in getting high-resolution CSI samples for training and monitoring purposes.
NW-side data collection
NW-side data collection relies on sending the UE-side measured CSI samples back to NW. NW can use two options in this regard: i) NW’s server collects CSI samples from UEs’ servers; and ii) NW collects CSI samples from UE devices using air interface. The former option does not rely on 3gpp signalling and does not need to be discussed here. The latter option, however, uses 3gpp signalling on air interface and should be discussed. The main issues with this option are two-fold.
First, in NW-side data collection, it is natural that NW establishes the data collection procedure. However, with disregarding UE’s capabilities, computational power, and storage budget, this procedure may inflict a huge burden on UEs. Also, UEs’ specs vary on both device and vendor basis. Therefore, we believe even in a NW-centric data collection framework, UE should provide NW with a range of possible options for various aspects of the data collection procedures including but not limited to types of input CSI, types of assistant information, quantization parameters, periodicity of data collection, and maximum amount of data collected per period.
Second, using air interface for data collection comes with significant overhead which consequently harms network throughput and latency. While the quantization can relax this issue to some extent, we believe the issue can be re-solved if NW itself does RF measurement and CSI estimation. Given promising generalization capability of AI/ML model over carrier frequency as shown in 9.2.2.1, NW can rely on SRS to measure CSI in the uplink. We also believe for the sake of avoiding any performance gap, NW should have the option of using finetuning with actual downlink CSI. In this regard, CSI-RS-based data collection should not be precluded for NW-side data collection. As shown in our companion documents for 9.2.2.1, if NW trains its CSI reconstruction parts and/or CSI generation part with uplink CSI collected from SRS (even in a frequency with 200MHz shift from that in the downlink of inference stage), the performance is negligible (between 0%~3%). This gap can be further reduced if UE send downlink CSI in inference frequency for finetuning or forming a mixed dataset for training (0%~1.5%).
Model management
It has already been agreed that UE and NW have access to a set of AI/ML models each of which are associated with an ID and a range of representative information. However, there is no agreement what those representative attributes are. In brief, NW can take a monitoring action based on detecting a monitoring event or inspecting the representative information of candidate AI/ML models. NW then is able to inform UE about the ID of suitable AI/ML model that fits current RF environment or configuration. If no suitable AI/ML model is found among possible AI/ML models, NW may decide to initiate fallback to non-AI/ML-based solution as well. So far, little progress has been made in detailing such a procedure, and we had just a consensus on the overall concept. Also, all efforts have focused on monitoring the AI/ML models that are currently being used by UE and NW. It is not discussed how to monitor the performance of other candidate AI/ML models which are not being used at the moment of monitoring. Then, the question is how UE and NW can identify the best candidate AI/ML model if a monitoring event is detected.
Model monitoring
Model monitoring aims at tracking the changes of RF environment and AI/ML model effectiveness in CSI compression to adopt the best possible solution at any situation. While the decisioning entity in taking a monitoring action is NW, monitoring entity can be either UE or NW. To do this task, NW and UE may rely on statistics of input/output CSI, intermediate KPIs, and system-level indicators (eventual KPIs).
General framework
In general model monitoring entity can be either UE or NW, where monitoring entity only has the role to identify/report an event and request for subsequent action. In our view, while UE can detect a monitoring event, NW side is the final decisioning entity.
UE-side monitoring
UE-side monitoring comprises two parts: event detection and assisting NW. For event detection, UE may use L1 physical signaling to report to NW about model failure/malfunctioning using one of the schemes which will be discussed later in this section. L1 signaling is pretty fast and can aware NW about failure in timely manner. However, L1 containers are too small to carry detailed information about CSI samples, drift distribution, etc. RRC signals can be used to transfer such data upon NW request. NW may decide to request more info from UE or decide to directly fallback to non-AI/ML method.
NW-side monitoring
In NW-side monitoring, NW may not report the event detection to UE separately; it can directly request UE information which may be needed for possible monitoring action. NW also may configure UE to receive such monitoring-related information in both periodic and aperiodic manner. Periodic reports are received to persistently monitor whether AI/ML model is performing well, and aperiodic for the case of monitoring event detection. NW can configure UE about the periodicity of reports and types of included information.
Input/output-based model monitoring
It is natural that any changes in RF environment will be reflected in input CSI, and as there is a unique mapping between input CSI and output CSI, such changes will flow through output CSI as well. Therefore, it is possible for UE and NW to identify monitoring events based on input CSI and output CSI, respectively. For the UE-side input-based model monitoring, UE is able to inspect statistics of input CSI samples like range, variance, distance to anchor points, etc. and compare to that of the training scenario and identify possible discrepancy. NW can similarly monitor the discrepancy between statistics of output CSI in training and inference stages of an AI/ML model for detecting a monitoring event. It has been already shown such statistics (at least for input CSI) is able to identify monitoring events [6]. This monitoring method inflicts no spec impact w.r.t. what already is introduced for general monitoring purposes. Also, the monitoring mechanism only resides at the UE or NW. It neither necessitates AI/ML model disclosure of any party nor imposes large overhead of exchanging raw input/output CSI, making it an amenable candidate for practical implementation. Our companion document in 9.2.2.1 has shown feasibility of conducting an input-based monitoring use a new metric called power spectral entropy.
[bookmark: _Hlk127439863]Intermediate-KPI-based model monitoring
The effectiveness of an AI/ML model for CSI compression cannot be better measured than monitoring the intermediate KPIs, such as GCS, SGCS, MSE, and NMSE. It is essentially the most accurate monitoring method to identify a monitoring event or compare a set of candidate AI/ML models. The intermediate-KPI-based monitoring can be either performed by UE or NW as described in what follows.
UE-side intermediate-KPI-based model monitoring
In UE-side intermediate-KPI-based model monitoring, UE is the first entity to measure the intermediate KPI. UE will later inform NW about monitoring events and intermediate KPIs to take possible monitoring actions. Such an approach can be implemented through two alternatives as shown in Figure 211.
	[image:]
(a) UE-side monitoring - Alternative 1
	[image:]
(b) UE-side monitoring - Alternative 2

[bookmark: _Ref127440059]Figure 210: Illustration of two different alternatives for UE-side monitoring
Alternative 1: As shown in Figure 211(a), NW can send its decoder to the UE. Thereafter, UE can access to the entire AI/ML autoencoder model and measure intermediate KPIs upon estimating input CSI.
Alternative 2: As shown in Figure 211(b), NW can send output CSI to the UE. The UE can measure intermediate KPIs as it has access to both input and output CSI samples.
Both alternatives come with significant shortcomings. In Alternative 1, NW must disclose its AI/ML model, making it impossible to maintain any proprietary AI/ML model at the NW side. Also, the NW’s AI/ML model is not designed w.r.t. UE’s capabilities and budgets. UE may struggle in handling NW’s AI/ML model due to excessive complexity. It may also go through the re-compiling, pruning, and quantization of AI/ML model as well to finally deploy the full AI/ML autoencoder model. Alternative 2 does not suffer from such issues. However, it comes with large airtime overhead in the downlink as the output CSI with equal overhead of input CSI should be sent to the UE.
NW-side intermediate-KPI-based model monitoring
In NW-side intermediate-KPI-based model monitoring, NW is the first entity to measure the intermediate KPIs with the help of UE. NW will use an intermediate KPI as a point of judgement to take possible monitoring actions. Such an approach can be implemented through two alternatives as shown in Figure 212.
	[image:]
(a) NW-side monitoring - Alternative 1
	[image:]
(b) NW-side monitoring - Alternative 2

[bookmark: _Ref127440343]Figure 211: Illustration of two different alternatives for NW-side monitoring
[bookmark: _Hlk127442628]Alternative 1: As shown in Figure 212(a), UE can send its encoder to the NW. Thereafter, UE can access to the entire AI/ML autoencoder model. For the sake of monitoring, UE will send input CSI to the NW, and NW measures intermediate KPIs upon receiving input CSI and calculating output CSI.
Alternative 2: As shown in Figure 212 (b), UE will send latent output of its AI/ML model in conjugation with input CSI to the NW. Having access to input CSI, NW can measure intermediate KPIs upon calculating output CSI.
Both alternatives, however, suffer from large airtime overhead imposed by exchanging input CSI. Also, Alternative 1 mandates disclosure of AI/ML model at UE which is not appealing for UE vendors.
UE/NW-side proxy-based monitoring
A promising alternative to previous intermediated-KPI-based monitoring is proxy-based monitoring where one party discloses a proxy AI/ML model instead of its actual model. Proxy AI/ML model can be used for constructing a proxy AI/ML autoencoder which results an intermediate KPI which is drifted from the actual one. The proxy AI/ML model is much simpler than the actual one and it does not necessarily bear the same structure type. The core idea is that any changes which can be captured by actual intermediate KPI, it can be captured by the drifted intermediate KPI as well. Our companion contribution [4] has shown the feasibility of detecting monitoring events by drifted KPI. The UE/NW-side proxy-based monitoring is made possible through the alternatives shown in Figure 213.
	[image:]
(a) Proxy-based monitoring - Alternative 1
	[image:]
(b) Proxy-based monitoring - Alternative 2

[bookmark: _Ref127442583]Figure 212: Illustration of two different alternatives for proxy-based monitoring
Alternative 1: As shown in Figure 213 (a), NW can send a proxy AI/ML model for UE to enable forming a proxy AI/ML autoencoder model. Upon measuring the input CSI, UE is able to obtain the drifted KPI and share this information with NW if a monitoring event is detected.
Alternative 2: As shown in Figure 213 (b), UE can send a proxy AI/ML model for NW to enable forming a proxy AI/ML autoencoder model. Thereafter, UE will send input CSI for the sake of monitoring purposes, and NW will calculate the drifted KPI for possible monitoring actions.
While these approaches secure proprietariness of AI/ML models at both parties, the second alternative comes with large airtime overhead due to input CSI transmission. However, this is not the case for Alternative 1. In overall, Alternative 1 neither discloses the AI/ML model nor imposes large airtime overhead. It is indeed the best possible solution among all six alternatives for intermediate-KPI-based monitoring.
System-level model monitoring
The system-level indicators/eventual KPIs, such as throughput, spectral efficiency, ACK/NACK rate, and BLER can also detect the monitoring events, e.g., when an AI/ML model falls short in handing underlying RF environment and configurations. These indicators, however, bear the effects of both AI/ML model and RF environment which are impossible to be distinguished. As such, variation in system-level indicators cannot be regarded as the single point of decisioning for detection of monitoring events.
Multi-stage model monitoring
We believe none of the aforementioned monitoring methods can individually offer an efficient monitoring tool in terms of overhead, accuracy, and proprietariness. Instead, it would be more pragmatic to adopt a multi-stage monitoring approach where a low-overhead low-accuracy method triggers a more accurate intermediate-KPI based solution with higher overhead as shown in Figure 214. Such an approach comes effective in terms of overhead, accuracy, and proprietariness of AI/ML models at all parties.
[image:]
[bookmark: _Ref127444758]Figure 213: Multi-stage model monitoring
Monitoring generalized AI/ML models
In our discussion about model monitoring, the monitoring actions mainly focus on performing an action on entire model upon detecting a monitoring event. This idea causes a dilemma for generalized AI/ML models, especially those generalized over input, output, and latent dimensions. In such cases, a monitoring action can deprive UE from all generalized scenarios/configs only because AI/ML model fails in the current scenario/config. In such a case, it is possible, changing the input, latent, or output preparation for the AI/ML model fixes the issues. We believe model monitoring should also incorporate signaling and frameworks that can keep a fixed AI/ML model while changing other preparation steps on input, latent, and output as shown in Figure 215.
[image:]
[bookmark: _Ref131673081]Figure 214: Illustration of model monitoring for preparation steps on input, latent, and output

Inference-related Spec Impact
CQI determination
In the RAN1#112 meeting, the following agreement about CQI determination has been achieved.
	Agreement
In CSI compression using two-sided model use case, further study the following options for CQI determination in CSI report, if CQI in CSI report is configured.
· Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment
· Option 1c: CQI is calculated based on legacy codebook
· Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
· Note: CSI reconstruction part at the UE can be different comparing to the actual CSI reconstruction part used at the NW.
· Option 2b: CQI is calculated using two stage approach, UE derive CQI using precoded CSI-RS transmitted with a reconstructed precoder.
· Other options are not precluded
· Note1: feasibility of different options should be evaluated
· Note2: Gap analyses between the UE side CQI calculation results and the NW side results, as well as the impact on the scheduling performance should be evaluated
· Note3: Complexity of CQI calculation needs to be evaluated, including the computing complexity and potential RS/signaling overhead

Option 2 relies on existing of NW’s decoder at the UE and ignores all the efforts have been made so far to maintain proprietiness of NW’s AI/ML model. As such, we suggest to study option 1, “CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation” as the starting point. Per option 1c, UE devices must measure CQI twice based on realistic CSI and legacy codebook which impose additional computations to UEs. As such, we believe other two options, i.e., options 1a and 1b, are more efficient solutions for CQI calculation. Per option 1a, UE measures CQI based on realistic CSI which is different from recovered CSI at NW. Such misalignment between target and recovered CSI results an inevitable discrepancy between CQI measured by UE and NW. Current NWs are already equipped with CQI adjustment mechanism to compensates effects such as CSI aging. Therefore, even if UE does not adjust the CQI, NW may apply adjustment. The option 1b, however, explicitly emphasize on such adjustment, where CQI is measured from target CSI and adjusted subsequently. In our view, the adjustment can be drawn through one of the following methods: i) UE receives assistant signaling from NW about its observed CQI; ii) UE reports measured CQI to NW and later receives information on how to adjust its CQI measurement. We believe as CQI can be reported as a part of AI/ML CSI feedback, the latter option is more feasible and brings less signaling requirement. In brief, we believe options 1a and 1b are more practical to calculate CQI.
Concluding Rel-18 SI on AI/ML for CSI Compression
During RAN1#112-114bis, companies have reported multiple rounds of the results and basic information about AI/ML models developed for evaluation purposes. The further analysis on the results captured by companies raised a big question mark on worthiness of using AI/ML for CSI compression and progress of RAN1 on this sub use case during Rel-18 SI phase. We have notified several challenges for this sub use case, which makes us more determined that CSI compression may be not a good domain problem for leveraging AI/ML. We in fact suggest investing 3GPP efforts on new sub use cases with promising AI/ML performance and solving modeling/optimization problems for which classical non-AI methods fall short.
Diverge and inconsistent observations
From the beginning of Rel-18 SI, RAN1 has endeavored to align evaluations from different companies by defining EVMs. However, defined EVMs cannot cover all aspects of simulations/evaluations which finally result to very diverge observations from different companies on performance of both AI/ML models and eType II as the baseline. This problem could be easily solved by benchmarking AI/ML models and baselines using publicly shared datasets, which was not agreed by RAN1 unfortunately. In horizon of such a diverge results, drawing any solid conclusion is infeasible. The extent of divergence is not only about the magnitude of gains but also about its gain or loss nature. In the following figures, we have picked few examples out of many to illustrate such diverge observations.
[image:]
Figure 215: Diverged results on both AI/ML models’ and eType II’s performance
	[image:]
(a) Diverge observations on comparison of different quantization methods
	[image:]
(b) Diverge observations on impact of training data quantization

Figure 216: Diverge observation on impact of quantization methods on training and latent data
Insignificant gain at the cost of significant complexity
AI/ML models have shown insignificant gains over eType II; however, given the size and computational complexity of AI/ML models, these reported gains become disappointing. Specially if we consider the size and complexity of AI/ML models used in other sub use cases, e.g., those used in beam management sub use case, we observe the complexity of AI/ML models are tens of times higher. So, by introducing CSI compression on products, we are inflicting devices to do a major upgrade in their hardware, computation, power supply only because of a marginal gain from CSI compression.
Complexity comparison with baseline
Another problem is drawing a conclusion on complexity of AI/ML models compared with eType II as the baseline. To the best of our knowledge, only one company in [8] provided such a comparison and showed that AI/ML’s complexity can be 280 to 1400 times greater than that of eType II. Other companies only reported the complexity of their AI/ML models in both size and FLOPs, which again the reported values are very diverged so that drawing a conclusion is infeasible again. Example of reported sizes and FLOPs for an AI/ML model from several companies shown in the following figure. It can be seen the range of sizes and FLOPs are too extended to draw a solid conclusion.
 [image:]
Figure 217: A sample of reported complexities for encoder and decoder from several companies.
Unexplored and underexplored area
Many issues remained unexplored from RAN1’s perspective such as pairing, functionality and additional conditions for CSI compression, power consumptions, quantization alignment, model quantization and pruning, hardware requirements, assistant information, etc. to name but a few. Also, some areas such as model monitoring are underexplored, and we only evaluated one/few option(s) out of many. For model monitoring, we have only evaluated NW-side intermediate KPI-based monitoring and overlooked other options such as I/O-based, proxy-based, UE-side methods due to shortage of time. Finally, for the explored areas, we have not precluded introducing new methods nor down selected on current options. All in all, given the progress we made during Rel-18 SI, we suspect that Rel-19 would be enough to handle the remaining workload.
Ambiguous assumptions and diverge understanding of RAN#1
RAN1 has no common understanding even on the fundamental aspects of LCM and training of two-sided models. One good example is comparison of training types where majority of discussions came out without any consensus. This makes future progress even more difficult.
Significant spec impact and framework requirements
CSI compression is only sub use case that needs two-sided AI/ML models. Two-sidedness raises many complications which flow in every aspect of LCM from data collection and training to model monitoring and decisioning. Also, majority of controversial issues in the framework are also related to this sub use case. However, other one-sided cases have more promising performance with less spec impact. We believe CSI compression with its unique complications is not a good starting point to embrace AI/ML models into cellular communications.
In light of the above arguments, we do believe CSI compression should not be adopted as normative work during Rel-19, and it is better to focus 3GPP efforts on more fruitful directions.
Capture in the TR, AI/ML for CSI compression is not recommended for normative work in Rel-19.
CSI Prediction
In RAN1 #112 bis-e, the following agreement was achieved:
	Agreement
In CSI prediction using UE-side model use case, whether to address the potential spec impact of CSI prediction depends on RAN#100 final conclusion, focusing on the following
· data collection procedure, mainly including RS configuration, measurement and report configuration, reusing as much as possible what is defined for UE side use cases
· monitoring procedure and metric for AI-based CSI prediction.
· Model/functionality selection/switching and finetuning procedure.
· Note: Discussion on potential specification impact is limited to aspects which would NOT duplicate the work in Rel-18 MIMO WI.
· Note: Minimize LCM related potential specification impact discussion that follow the high-level principle of other one-sided model sub-cases.

In the following sections, we will provide our thoughts in this document to highlight the potential spec impact of the CSI prediction. However, it should be emphasized that when discussing potential specification impacts, we should primarily focus on LCM aspects. As for other aspects, we should strive to align with the agreements made in Rel-18 MIMO and refrain from repeatedly discussing the spec impact of CSI prediction.
Report Configuration
There are multiple options available for handling the CSI prediction, each with its own impact on specifications. Since it has been decided to implement CSI prediction on the UE side, it is important to determine how the CSI feedback to the NW will be executed. To compress the predicted CSI during the reporting process, the UE can use the following mechanism: (Figure 31 shows the illustration of the reporting mechanism)
· Option 1: Reporting the pre-Rel-18 codebook. This option requires only one instance of future CSI. The UE can provide PMI/RI/CQI feedback using the existing Rel-16 codebook (e.g., Rel-16 eType II codebook). By doing so, the NW can compensate for channel effects caused by CSI feedback delay. Furthermore, adopting the method of reporting the existing codebook types will not have any specifications impact.
· Option 2: Reporting the Rel-18 codebook. This option requires one or multiple instances of future CSI. If there are multiple predicted CSI instances, time domain fluctuations will be taken into account. The UE can feedback PMI/RI/CQI information using the Rel-18 codebook discussed in the Rel-18 MIMO WI (e.g., Rel-18 Type II codebook) along with Doppler domain information. This allows the NW to obtain more accurate channel information, thereby reducing the CSI aging problem. In addition, implementing the AI/ML-based CSI prediction in the current Rel-18 frameworks does not require any new signaling or spec impact for reporting purposes.
· Option 3: AI/ML assistance. In this case, the UE can compress the predicted CSI channels using an AI/ML-based approach for CSI compression. Depending on the number of prediction instances, either temporal-spatial-frequency (TSF) domain or spatial-frequency (SF) domain CSI compression can be used. For single CSI instance predictions, SF compression is recommended, whereas for multiple predictions of CSI instances, TSF compression should be used. This option will not have any additional spec impact, just follow CSI compression to discuss how the results will be reported to NW.
[image:]
[bookmark: _Ref142052369]Figure 31: Illustration of reporting mechanism

[bookmark: _Ref142310072]Data Collection
The purpose of data collection can be divided into three aspects: model training, model inference, and model monitoring.
· Data collection for model training: When it comes to collecting data for model training, performing online training can be challenging. Therefore, it may be more suitable to assume that we are discussing offline training here. Ideally, the UE would have an OTT server or cloud platform for model training because on-device training requires higher hardware requirements on the UE. In this scenario, the UE can collect data and transmit the collected CSIs to a server for training. Regarding how the UE should perform data collection, we believe it should be done in advance, and the model should be pre-trained before the device is released (i.e., before the UE receives the device). If pre-collected data is agreed upon, then we should de-prioritize the discussions on the potential specification impact on data collection for model training. The challenges of real-time data collection are listed below:
· The purpose of CSI prediction is to solve the CSI aging problem. It is expected that UE will activate the process above a certain speed, rather than in a static state. In addition, based on the generalization evaluation in 9.2.2.1, we know that the generalization results of CSI prediction are not good, especially with regards to UE speed. Therefore, it may be necessary to collect data from different scenarios and train different models based on corresponding scenarios. Due to these reasons, it is difficult for UE to collect the massive data in real-time with a specific speed or specific speed range because predicting and grasping the user's movement status is challenging, and their movement cannot be guaranteed or limited.
· Consider the impact of UEs switching between several BSs during data collection. This can cause interruptions in the data collection process.
· There are challenges related to long latency and power consumption issues that can have a negative impact on user experience when collecting large amounts of data in real-time.
· Data collection for model inference: To collect data for model inference, we can use the CSI-RS configured by gNB directly. The UE can determine the number of instances of CSI-RS channels to store in memory based on its capabilities or pre-stored models request. For aperiodic CSI-RS, the UE can start collecting data after receiving a triggering signal from DCI. Therefore, the data collection for model inference may not have any additional specification impact.
· Data collection for model monitoring: Model monitoring and model inference can be conducted independently of each other, utilizing the same collected CSI-RS channels for different purposes. However, model monitoring may require additional ground truth CSI in order to calculate performance metrics. In these situations, we can consider the current CSI as the ground truth CSI and the stored CSI as the observed CSI.
Model Training
Training Style
Some companies mention whether to use the NW-side training or UE-side training for CSI prediction. In our opinion, we suggest that supporting UE-side training (includes the UE-side OTT cloud server) can help avoid complexities in model transfer from NW to UE. Moreover, since CSI prediction is performed on the UE-side, this approach appears to be more straightforward. The discussion in the following sections assume the UE-side model training.
Training Methodology
Model training can be separated into two different methodologies, both of which involves the offline training. As emphasized in section 3.2, the on-device training is not practical and we will not be considered it in our discussion. The first methodology entails the UE sending a request to the OTT server to initiate the model training process. The second methodology involves the UE storing pre-trained models either on the mobile device or on the OTT cloud server. In Table 31, we summarize the advantages and disadvantages of these two methods and provide more detailed information in subsequent subsections.
[bookmark: _Ref142308568]Table 31: Comparison between two different training methodologies
	Methodology 1: UE sends the request to OTT server to enable model training.

· Pros: Higher flexibility. CSI prediction can be triggered in various scenarios to further enhance the performance.

· Cons:
(a) Difficult for UE to collect the data with a specific speed range.
(b) Collecting massive data and sending to the server can lead to long latency and power consumption issues.
(c) Require UE to have the sufficient memory size to store the training datasets.

	Methodology 2: UE storing pre-trained models on the mobile device/OTT cloud server.

· Pros:
(a) Avoid massive data transmission.
(b) Faster model switching.

· Cons:
(a) UE need sufficient memory to store the multiple models for various scenarios.
(b) Lower flexibility. If there are unexpected situations, UE should revert to traditional methods.

Methodology 1
For method 1, the model training takes place on a UE-side OTT server. Figure 32 illustrates a potential procedure for this method. Firstly, NW sends the CSI-RS resources to UE. Based on certain conditions, such as UE speed, UE can independently determine whether to initiate CSI prediction training. If it chooses to do so, it sends a request to the OTT server for model training processes. Once both sides confirm that model training is needed, CSI channels are sent from UE to OTT server. Once enough data is collected, the model training begins on the OTT server. After the training is complete, the UE downloads and uses this trained model for subsequent inference process.
As mentioned in Table 31, the main advantage of this method is its higher flexibility. Models can be trained in various scenarios that reflect more realistic channels, which may further enhance the performance. However, as explained in section 3.2, real-time data collection and model training are difficult to achieve. Therefore, we prefer the methodology 2, which will be introduced later.
[image:]
[bookmark: _Ref142310252]Figure 32: Procedure of the methodology 1
[bookmark: _Ref142561762]Methodology 2
In this method, the UE vender and infra vender can work together to configure the different CSI-RS configurations. These configurations include different CSI-RS periodicities, length of observation windows, and CSI-RS patterns (such as periodic/semi-persistent CSI-RS or aperiodic CSI-RS bursts discussed in Rel-18 MIMO). Once the configurations are confirmed, the reliable and stable data can be collected, and the corresponding AI/ML models can be trained within the network serving area. We can use model/functionality IDs to differentiate between different models based on different scenarios. For example:
· Functionality ID #1: CSI-RS periodicity is 5ms, the length of the observation window is 5, and the UE speed is within the range of 10~30km/h
· Functionality ID #2: CSI-RS periodicity is 5ms, the length of the observation window is 10, and UE speed is within the range of 30~60km/h
· Functionality ID #3: Aperiodic CSI-RS burst with 5ms time interval and UE speed is within the range of 30~60km/h
As shown in Figure 33, if each pre-trained model is labeled and both UE and NW are aware of their usage scenarios, the subsequent model switching process will also be faster. The main advantage is that there is no need to collect data and train the model in real-time. The number of models that need to be pre-trained depends on the requirements of UE. If UE cannot store many AI/ML models since the limitations of memory, it can only store commonly used ones and store the remaining models in the UE-side OTT server. If needed, UE can send a request to the server for download the corresponding model from the server.
[image:]
[bookmark: _Ref142313251][bookmark: _Ref142561748]Figure 33: Illustration of the methodology 2
It is recommended to pre-define applicable conditions and corresponding functionality IDs if the methodology 2 is adopted. This can increase efficiency when monitoring or switching the models. Below are some potential conditions that may apply:
· According to the NW configuration:
· CSI-RS patterns (e.g., periodic, semi-persistent, aperiodic CSI-RS burst)
· CSI-RS periodicity (e.g., 5ms, 10ms)
· Observation and prediction time intervals
· Antenna ports (If using the SISO-based AI/ML model, we don't need to define this item)
· The number of RBs
· According to the environment:
· UE speeds or range of speeds (e.g., 10~30km/h, 30~60km/h)
· Deployment (e.g., Uma, Umi, Rma, LOS, NLOS)
The main drawback of this approach arises when if the scenario being used differs significantly from that of the training data. In such cases, it becomes impossible to apply the pre-stored model. Furthermore, if a specific scenario has not been considered beforehand, there is hard to utilize the pre-stored model and we are forced to fallback to the traditional methods. This lack of flexibility is mentioned in Table 31 as a disadvantage of this methodology. However, there are still options available to address this issue. One possibility is fine-tuning or updating the model in real-time to maintain flexibility. The amount of data required for this fine-tuning process is relatively small. In addition, fine-tuning can be performed for different environments in order to ensure that the model remains suitable for its current environment. Figure 34 shows the procedure of fine-tuning the pre-trained model. We can observe that the UE only needs to download the updated weights from the OTT server.
[image:]
[bookmark: _Ref142315665]Figure 34: Procedure of fine-tuning the pre-trained model

Model Monitoring
In RAN1 #114, the following agreement was achieved:
	Agreement
For CSI prediction using UE side model use case, at least the following aspects have been proposed by companies on performance monitoring for functionality-based LCM:
· Type 1:
· UE calculate the performance metric(s)
· UE reports performance monitoring output that facilitates functionality fallback decision at the network
· Performance monitoring output details can be further defined
· NW may configure threshold criterion to facilitate UE side performance monitoring (if needed).
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
· Type 2:
· UE reports predicted CSI and/or the corresponding ground truth
· NW calculates the performance metrics.
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
· Type 3:
· UE calculate the performance metric(s)
· UE report performance metric(s) to the NW
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
· Functionality selection/activation/ deactivation/switching what is defined for other UE side use cases can be reused, if applicable.
· Configuration and procedure for performance monitoring
· CSI-RS configuration for performance monitoring
· Performance metric including at least intermediate KPI (e.g., NMSE or SGCS)
· UE report, including periodic/semi-persistent/aperiodic reporting, and event driven report.
· Note: down selection is not precluded.
· Note: UE may make decision within the same functionality on model selection, activation, deactivation, switching operation transparent to the NW.

[bookmark: _Hlk127196894]
Based on the agreement, we have the following observations and opinions, and Figure 35 illustrate the corresponding figures.
For Type 1, the UE plays a crucial role in determining the appropriate decisions to assist the NW in making the correct decisions. This can be achieved through event-triggered feedback. For instance, when the UE self-detects a significant speed change or needs to fallback to traditional methods, it reports the information to the NW. This approach can conserve resources as it reduces unnecessary communication between the UE and NW unless a significant event occurs that requires a fallback decision.
For Type 2, the UE is required to report both the predicted CSI and the corresponding ground truth CSI. However, this approach could lead to a large transmission overhead, potentially causing resource congestion and wastage. This is because the constant reporting of both predicted and ground truth CSI requires significant bandwidth and processing power, which could be better utilized for other tasks.
For Type 3, the UE only feedback the performance metrics, which could limit the autonomy of the UE. In this UE-sided model, the UE can roughly determine its own speed based on information such as time domain channel property (TDCP) or GNSS. It may also be necessary to send assistance information to the NW to aid in decision-making. However, this will add additional overhead as it requires more communication between the UE and NW.
[image:]
[bookmark: _Ref146700021]Figure 35: Illustration of different types
Model Adjustment
The decision of the model monitoring involves more than just switching the models. It also includes deactivating, switching, fallback and updating (fine-tuning) the models. In this section, we will provide a brief introduction to the decision mechanism for these operations.
Decision of the Model Monitoring
· Model switching: If the current situation matches another suitable existing model, the NW can configure switching to this model. To make this decision, it is important to have assistance information and align the corresponding model/functionality ID between the UE and NW in advance. For instance, if it is detected that the UE has increased speed from a low-speed range to a medium-speed range and has trained a model in the medium-speed range, then switching to this model and applying it on inference could be possible. Model switching is an effective way of overcoming generalization issues.
· Model updating (fine-tuning): If the current situation does not correspond with any existing models and simultaneously fails to meet specific predefined conditions, then the process of updating the model can be triggered. To proceed with this action, two conditions must be fulfilled. The first condition is UE should support the fine-tuning process. The second condition is there should be sufficient resources available for transmitting the fine-tuning data. When fine-tuning a model, it is important to carefully consider the process as it can lead to increased latency and performance degradation.
· Model fallback: If the current situation does not match any other existing models and if the fine-tuning process is not supported, then the current operating model will be terminated. There are two possible mechanisms for model fallback. One mechanism is if the UE supports non-AI based CSI prediction, then the NW can configure signaling to allow the UE to fallback to the non-AI methods (e.g., Auto-regression). The other mechanism is reducing the length of future predicted instances based on the current scenario. For example, when the UE speed is 30km/h, it is possible to estimate 4 future instances. However, as the UE speed increases to 60km/h, the number of the predicted instances will decrease. Figure 36 shows an example of the fallback mechanism.
· Model deactivation: The model will be deactivated if the mentioned situation is not met, resulting in the termination of both the AI/ML-based CSI prediction and monitoring processes.
[image:]
[bookmark: _Ref142557327]Figure 36: Example of the fallback mechanism
Decision Mechanism
Figure 37 illustrates the decision mechanism of the model monitoring process:
· The first block determines whether the monitoring metrics meet the prediction criterion or not. One simple example is calculating the metrics of all candidate models. If the current model is not the most suitable one (i.e.,), then trigger the model switching process. The advantage of this approach is that it provides the most accurate ways to monitor and switch the models. However, the difficulty is it should operate the AI/ML models multiple times, which can result in high power consumption and long latency. In addition, it may be possible that not all models are stored on the UE-side device but on a UE-side OTT server, making it difficult to obtain metrics for all candidates. Based on the above reasons, we suggest two simpler methods for monitoring the model. The first method is PSE-based model monitoring, which discussed in the agenda item 9.2.2.1 section 3.4. The second method is observing the different between the intermediate-KPI values from the last time and the current time. For example, if the difference between the current NMSE and the NMSE calculated from the last monitoring event is larger than a predefined threshold (i.e.,), this means the model may not be suitable. Then we will proceed to the next conditional statement. Conversely, if this criterion is met (i.e.,), then it indicates that the model can continue to be used during the inference.
· The second block determines whether the current scenario matches an existing model or not. To do this, it's necessary to align the corresponding model/functionality IDs between the UE and NW beforehand. The decision on which model to switch to will depend on the assistance information. Once it's confirmed that a model switch is required, NW needs to send a signaling to the UE to trigger this process. If no suitable model can be switched, then proceed to the next conditional statement.
· The third block determines whether to fine-tune the model. As mentioned earlier, if NW want to perform the fine-tuning process, UE should support the fine-tuning process and the require sufficient resources to collect data for the fine-tuning. Once it is confirmed the model fine-tuning is required, the NW needs to send a signaling message to the UE to initiate this process. The fine-tuning process can be performed on the UE-side OTT server, as described in section 3.3.2.2 of Figure 34. If the conditions for fine-tuning are not met, then proceed to the next conditional statement.
· The final block determines whether to fallback the model. If the UE supports non-AI methods, the fallback mechanism can be triggered. Even if UE does not need to inform the NW whether it has the non-AI CSI prediction algorithm or not, the NW just sends a signaling for model fallback. The UE then decides if it can fallback to a traditional non-AI method. If not, it sends a response signal back to the NW instructing it to deactivate the model. Another fallback way is to reduce the predicted CSI so that it can be adapted for higher speed scenarios. This mechanism should be activated only when the UE transitions from a low-speed scenario to a high-speed scenario. If the conditions for fallback are not met, then deactivate the model, which will terminate the AI/ML-based CSI prediction and monitoring processes.
[image:]
[bookmark: _Ref142558239]Figure 37: Decision mechanism of the model monitoring
Attributed-based Model Switching
The model monitoring process is important to detect outdated models, and the model switching is another important process that involves selecting the appropriate model. The control of model switching can be done by either UE or NW, and there are two key factors to consider. Firstly, determine under which conditions the model cannot be generalized. For AI/ML-based CSI prediction, simulation results from 9.2.2.1 reveal that elements with a strong correlation with Doppler such as UE speed and carrier frequencies cannot be generalized. After identifying the key factors, the next step is to find the suitable assistive information to help with the switching process. As mentioned in the previous section, the TDCP and the GNSS information are both possible candidates to indicate the moving speed of the UE. Then, we use this information to assist in model switching and refer to it as attributed-based model switching.
GNSS-based model switching
If the GNSS information is available on the UE device, we can utilize this indicator for model switching purpose. This approach is straightforward because GNSS provides an estimate of the UE's speed, allowing the NW to determine the corresponding model based on this indicator. This method has a minimal specification impact as it only requires the UE to provide feedback on its speed estimated from GNSS to the NW. Therefore, we believe that studying GNSS-based model switching is an easier and worthwhile approach.
TDCP-based model switching
Another attributed-based model switching is using TDCP information calculated by TRS symbols. This has already been approved in Rel-18 MIMO and provides an approximate indication of the UE's Doppler effect. We can simulate the TDCP values corresponding to different speeds in advance to roughly determine the speed of the UE. As shown in Figure 38, different speeds correspond to different ranges of the TDCP values. In the figure, the line represents the average results of all samples, while the large colored area indicates their standard deviation. If there is a 1-slot delay between TRS symbols (represented by blue color in the figure), then the TDCP range is smaller compared to a 2-slot delay between TRS symbols (represented by orange color in the figure). This shows that the spacing between TRS symbols also affects the calculated TDCP value. If we want to detect the speed more sensitive, we can refer to the TDCP calculated by a larger delay.
Similar to GNSS-based model switching, there is minimal specification impact since the UE only needs to report a TDCP value to the NW. Therefore, we also propose studying a process for TDCP-based model switching.
[image: 一張含有 行, 螢幕擷取畫面, 平行, 繪圖 的圖片

自動產生的描述]
[bookmark: _Ref142577096][bookmark: _Ref142577094]Figure 38: TDCP value corresponding to the UE speed
Concluding Rel-18 SI on AI/ML for CSI Prediction
Due to the challenges faced in practical implementations and based on simulation results, we prefer not to include the CSI prediction sub-use case in WI or SI of Rel-19. The reasons list as follows:
1. The traditional non-AI methods (e.g., auto-regression) can perform well for CSI prediction.
2. The gain is insignificant given the significant complexity involved.
3. Poor generalization over UE speed (need to frequently switch the models).
We will provide a more in-depth explanation for these three arguments as follows.
Promising performance of non-AI methods (e.g., auto-regression)
To compare the performance of AI/ML-based and non-AI CSI prediction, most companies provide a “sample-and-hold” approach, which is essentially comparing without making any predictions. This comparison is unfair because it can lead to an overestimation of the benefits of AI/ML-based CSI prediction. Therefore, we believe that a comparison using traditional non-AI methods (benchmark#2, such as auto-regression and Kalman filter) is needed.
Based on the above reasoning, we can draw Figure 39 based on the mean UPT results of those companies listed in the figure. The results are derived from the FL summary in RAN1#114b. Some companies provide results with and without spatial consistency, resulting in two different outcomes which is “#1” and “#2” shown in the figure, respectively. In addition, each observation has three points representing different RU sizes. We can observe that the performance gains diverge at either 30km/h or 60km/h speeds, with some showing improvements and some showing losses. As a result, it is difficult to make a conclusion of AI/ML-based CSI prediction. Given the significant divergence, there are fewer incentives and reasons to continue studying the sub-use case. Additionally, discussing it during work-related discussions is not worth mentioning.
[image:]
[bookmark: _Ref149821802]Figure 39: Comparing the results of different companies

Insignificant gain at the cost of significant complexity
Table 31 illustrates the complexity of AI/ML-based and non-AI based CSI prediction. The complexity of AI/ML-based models, whether utilizing MIMO or SISO architecture, is higher compared to the non-AI-based baseline. However, the performance gain is insignificant given the significant complexity involved. While techniques such as model pruning, quantization, or knowledge distillation can help decrease the complexity of the AI/ML model, they are still considerably more complex than auto-regression (AR) methods, which do not require model training or model monitoring of LCM-related procedure. To avoid increasing the workload during discussions in 3GPP meetings, we recommend not include the CSI prediction sub-use case in Rel-19.
[bookmark: _Ref141799130]Table 31: Complexity of AI/ML-based and non-AI based models
	Complexity analysis

	
	AI/ML-based model
	Non-AI based model

	
	MIMO-CNN
	SISO-DNN
	AR
	Sample-and-hold

	Params (K)
	751
	17.3
	
	

	FLOPs (M)
	1920
	0.0348
	0.34
	0

	Total FLOPs (M)
	
	21.8
	
	

Poor generalization over UE speed
Figure 310 shows the generalization results of various companies according to the FL summary in RAN1#114. The figure shows the results obtained from training on a mixed dataset and performing inference at the speed within the training dataset. The term “gain” refers to comparing Generalization Case 3 over Generalization Case 1. We can observe that there is poor generalization over UE speed for AI/ML-based CSI prediction. Even in Generalization Case 3, the performance will degrade by more than 10%. Especially when the UE speed accelerates from low speed to high speed, the model must be switched. If there is a traditional way with good generalization, such as a non-AI based AR model that directly calculates the coefficient in one-shot based on the currently received channel, why would we need to use an AI/ML model?
[image:]
[bookmark: _Ref149303899]Figure 310: Comparing the results of different companies for generalization analysis

In addition, generalization over UE speed is poor will lead to the following issue:
Impact on model monitoring
Poor generalization over UE speed will result in of frequent model switching when UE frequently changes its speed. However, achieving frequent model switching in short time is a big challenge. Figure 311 illustrates the model switching process.
When implementing NW-side monitoring, it is necessary to wait for the UE to report additional conditions that indicate its speed, such as TDCP. Afterward, the NW will configure the corresponding functionality/model-ID to switch to the appropriate model. If there is a significant delay in this process, it may lead to another change in the UE's speed and result in performance degradation.
[image:]
[bookmark: _Ref149305697]Figure 311: Illustration of model switching

Impact on data collection and model training
The purpose of CSI prediction is to address the CSI aging problem. It is expected that UEs will activate the CSI prediction process above a certain speed rather than in a static state. Furthermore, based on generalization evaluations, it has been observed that generalization over UE speed is not good. As a result, it may be necessary to gather data from various scenarios and train different models accordingly. Due to these reasons, it becomes challenging for UEs to collect massive real-time data at specific speeds or within specific speed ranges. In addition, it is important to consider the impact of UE switching between multiple BSs during data collection.
One additional challenge arises when the UE is collecting the data, as it can lead to long latency and power consumption issues that have a negative impact on the user experience.
If we pre-store the models in either the UE device or the UE-side OTT server, it may lead to another set of questions listed below (the impact on model storage).
[image:]
Figure 312: Illustration of data collection process

Impact on model storage
Since data collection and model training is difficult for CSI prediction already mention above. Another ways is to pre-store the model in the UE-side device/OTT-server with only consider the fine-tuning process.
Given the challenges associated with data collection and model training for CSI prediction, an alternative solution would be to pre-store the model in either the UE-side device or UE-side OTT-server and use the fine-tuning process to assist. However, there are several key factors that affect model training, including UE speed:
· CSI-RS pattern (periodic CSI-RS/semi-persist CSI-RS and aperiodic CSI-RS)
· CSI-RS periodicity (e.g., 5ms, 10ms)
· The number of observation windows (e.g., 5, 10, 15)
· The number of prediction windows (e.g., 1, 3, 5)
· UE speed (e.g., 10km/h, 30km/h, 60km/h)
· Carrier frequency (e.g., 2GHz, 3.5GHz)
· Deployment and environment (e.g., Uma, Umi, LOS, NLOS)
· etc.
Insufficient pre-stored models can lead to frequent fallbacks to non-AI method. Although the NW configuration can be adjusted by reporting UE capability, the issue of storage cannot be ignored.
Capture in the TR, AI/ML for CSI prediction is not recommended for normative work nor continued study in Rel-19.
Conclusion
In summary, based on the above discussion, we have the following proposals:
1. Capture in the TR, AI/ML for CSI compression is not recommended for normative work in Rel-19.
Capture in the TR, AI/ML for CSI prediction is not recommended for normative work nor continued study in Rel-19.
References
[1] [bookmark: _Ref127361231]RP-213599, Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface
[2] [bookmark: _Ref127363302]R1-2210753, “Summary#7 of [110bis-e-R18-AI/ML-02]”, Moderator (Huawei), Oct. 2022.
[3] [bookmark: _Ref127363319]R1-2212227, “Evaluation on AI/ML for CSI feedback enhancement”, MediaTek Inc., TSG-RAN WG1 Meeting #111, Toulouse, France, Nov. 2022.
[4] [bookmark: _Ref127378248]R1-2303336, “Evaluation on AI/ML for CSI feedback enhancement”, MediaTek Inc., TSG-RAN WG1 Meeting #112 bis-e, e-Meeting, April. 2023.
[5] [bookmark: _Ref127405055]R1-2210886, “Discussion on AI/ML for CSI feedback enhancement”, Huawei, TSG-RAN WG1 Meeting #111, Toulouse, France, Nov. 2022.
[6] [bookmark: _Ref127439282]R1-2212109, “Other aspects on AI/ML for CSI feedback enhancement”, Qualcomm Incorporated, TSG-RAN WG1 Meeting #111, Toulouse, France, Nov. 2022.
[7] [bookmark: _Ref134386942]R1-2303983, “Summary #5 on other aspects of AI/ML for CSI enhancement,” Moderator (Apple), RAN WG1 Meeting #112bis-3, e-Meeting, April 2023.
[8] [bookmark: _Ref149830093]R1-2307668, Views on Evaluation of AI/ML for CSI feedback enhancement, Samsung, 3GPP TSG RAN WG1 #114, August 2023
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image1.png

image2.png

