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Introduction
In this contribution, we will provide our view on the remaining aspects of evaluation on AI/ML for BM in general, and some further discussions on the assumptions, KPIs, and preliminary results for each sub-use cases.
Remaining issues on KPIs
0.1 Clarification of Predicted L1-RSRP difference for DL Tx beam prediction. 
In previous meeting, the following was agreed:
	Agreement: 
the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
Agreement
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams



Based on the definition, we think the L1-RSRP of Top-1 predicted beam shall be the L1-RSRP from the best Rx beam of the Top-1 predicted beam. 

[bookmark: _Ref135069756]Proposal # 1: Clarify that the L1-RSRP of Top-1 predicted beam is the L1-RSRP from the best Rx beam of the Top-1 predicted beam.

Remaining issues on evaluation Methodologies 
0.2 Assumptions of measurement error
In previous meeting, RAN 1 had some discussion on measurement errors, with the latest proposals from FL as follow:
	(FL5) Proposal 1.1i(measurement error) 
· The performance impact of the relative L1-RSRP measurement error can be optionally evaluated for both DL Tx beam and beam pair prediction, where the relative L1-RSRP measurement error can be modelled as noise among beams as a starting point
·  Additive Gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise for the error due to baseband and/or RF impairment.
· For modelling of measurement error caused by RF impairment, which is optional, the measurement accuracy range are reported by companies.
· Companies report whether/how to change Rx beams for both DL Tx beam and beam pair prediction and corresponding impact on the measurement error.
· Other modelling methods are not precluded and can be reported by companies.   
· Companies report how to model the measurement error and the measurement accuracy range in training and test data and labels.
· Companies report the baseline performance with the relative L1-RSRP measurement error.  



  
In our view, the measurement error can be modeled as truncated Gaussian as described in the above proposal. Moreover, whether to separately model RF impairment and baseband error can be reported by companies. Besides, we think the measurement error will have impact on the baseline performance option 1, i.e., by measuring all Set A beams(pairs), which will be the upper bound or the prediction accuracy, unless AI can denoise. 
  
[bookmark: _Ref135069757]Proposal # 2: The measurement error can be modeled as truncated Gaussian and whether to separately model RF impairment and baseband error is reported by companies.
[bookmark: _Ref135069762]Proposal # 3: The performance difference to the baseline option 1, i.e., with all beams(pairs) in Set A is used to verify performance with AI in BM with measurement error. 

0.3 Evaluation for LCM/Model monitoring
The following has been identified as potential metric(s) for AI/ML monitoring for BMCase-1 and BMCase-2. 
	Agreement 
Regarding the performance metric(s) of AI/ML model monitoring for BM-Case1 and BM-Case2, study the following alternatives (including feasibility/necessity) with potential down-selection:
· Alt.1: Beam prediction accuracy related KPIs, e.g., Top-K/1 beam prediction accuracy
· Alt.2: Link quality related KPIs, e.g., throughput, L1-RSRP, L1-SINR, hypothetical BLER
· Alt.3: Performance metric based on input/output data distribution of AI/ML 
· Alt.4: The L1-RSRP difference evaluated by comparing measured RSRP and predicted RSRP 
· Other alternatives are not precluded
· Note: At least the performance and spec impact should be considered



For Alt 1, with all measurements from Set A of beams(pairs), the information on ideal Top1/K beam can be obtained. By putting the measurements of Set B of beams(pairs), prediction of Top1/K can be generated by AI. Comparing the ideal Top1/K and predicted Top1/K can obtain the beam predication accuracy. Therefore, Alt 1 is feasible, however, to obtain a stable accuracy (%), a certain amount of data needs to be collected. Moreover, in order to identify whether the performance gap is caused by AI or channel condition, beam prediction accuracy under different measurement error can be studied.  
For Alt 2, the intention is to monitor AI performance with the link quality of the selected beam. However, it is hard to identify whether the poor link quality is due to wrong prediction or due to channel fading. Therefore, it is not recommended to define any performance requirement by link quality for performance monitoring.
For Alt 3, with classification model, probabilities of Top-1 beam for all Tx beam in Set A is the AI output. We have analyzed the relationship of the absolution values of the probabilities of Top-1 beam and the Top-1 beam prediction accuracy. Figure 1 shows the Cumulative Distribution Function (CDF) of the probabilities of Top-1 beam with different Top-1 beam prediction accuracies. In Figure 1, the Top-1 beam prediction accuracy is 90%. In this case, we can observe that the   probability value of the top1-beam is relatively larger, and the CDF curve is generally on the right side of the figure. In Figure 2, the Top-1 beam prediction accuracy is 30%. In this case, the probability value of the top1-beam nearly follows uniform distribution, and the CDF curve can be approximately regarded as a straight line. Therefore, we think probabilities of Top-1 beam can be used to monitor the performance of AI/ML. More details can be further investigated. 
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[bookmark: _Ref135071735]Figure 1 CDF of the probabilities of Top-1 beam (Top-1 beam prediction accuracy is 90%)
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[bookmark: _Ref135071801]Figure 2 CDF of the probabilities of Top-1 beam (Top-1 beam prediction accuracy is 30%)
Similar as Alt 3, Alt 4 only applies to regression model. In order to obtain the L1-RSRP difference between prediction L1-RSRP to idea L1-RSRP of the predicted beam, idea L1-RSRP of the predicted beam is needed. However, even the difference is small, it doesn’t mean that the beam prediction accuracy is high since the predicted beam may be wrong. Therefore, mode study is needed.  
[bookmark: _Ref135066824]Observation # 1: Alt 1: beam prediction accuracy related KPIs is feasible for model monitoring. However, in order to obtain a stable result, a certain amount of data needs to be collected. 
[bookmark: _Ref135066834]Observation # 2: Alt 2: Link quality related KPIs, is not feasible since it is hard to identify whether the poor link quality is due to wrong prediction or due to channel status.
[bookmark: _Ref135066835]Observation # 3: Alt 3: Probabilities of Top-1 beam is feasible for model monitoring. However, it can only applicable to the classification model.
[bookmark: _Ref135066836]Observation # 4: Alt 4: The L1-RSRP difference is not feasible for model monitoring. 

0.4 Assumption on UE rotation
UE rotation is very important for beam pair prediction. Therefore, in order to verify the feasibility of beam pair prediction, some assumption is needed. the following aspects and alternatives can be considered. 
· Rotation speed, e.g., RPM reported by company
· Rotation direction
· Alt1: elevation direction only
· Alt2: horizontal direction only
· Alt3: both elevation direction and horizontal direction
· Note: this may need companies to report their Rx beam direction. 
· Change of rotation direction 
· Case 0: same rotation direction in all trajectories
· Case 1: same rotation direction of each trajectory/drop, different trajectories/drops may have different rotation directions
· Case 2: rotation direction changed (random/predefined patterns) after a certain time 
· Rotation speed
· Case 0: same rotation speed in all trajectories
· Case 1: same rotation speed in each trajectory/drop, different trajectories/drops may have different rotation speeds
· Case 2: rotation speed changed (random/predefined patterns) after a certain time 

In our view, RPM =60 R/m can be the baseline. For rotation direction, we think Alt 3 is closer to practical, however, consider the workload, companies can report the assumption consider the above three alternatives. For rotation direction, 
all three alternatives can be considered and mixed for training and inference to emulate the practical situation. Moreover, in order to reduce the simulation load, fixed rotation speed can be assumed, but mixing with and without rotation can be considered. 

Moreover, we think UE rotation shall apply to both BMCase-1 and BM Case-2. 

[bookmark: _Ref135069764]Proposal # 4: For both BMCase-1 and BM-Case-2, considering the following assumption for UE rotation
· Rotation speed, e.g., RPM = 60 R/M
· Rotation direction
· Alt1: elevation direction only
· Alt2: horizontal direction only
· Alt3: both elevation direction and horizontal direction
· Note: this may need companies to report their Rx beam direction. 
· Change of rotation direction 
· Case 0: same rotation direction in all trajectories
· Case 1: same rotation direction of each trajectory/drop, different trajectories/drops may have different rotation directions
· Case 2: rotation direction changed (random/predefined patterns) after a certain time 
· Note: mixed data from the above cases can be considered 


0.5 Beam management procedures
To evaluate the performance of AI/ML in beam management and to have proper assumptions for evaluation, it is better to identify where AI/ML can help during beam management procedure.  In Table 1, we categorize AI/ML assumptions in beam management procedure by the potential usage of the AI/ML output (e.g., Top-1 or Top-K beams), considering different model location (e.g., UE side, NW side). 
[bookmark: _Ref127463079]Table 1 Summary of usage for different AI/ML output
	
	
	UE side model
	NW side model

	Tx beam prediction
	Top-1 beam 
	· The best beam selection for data transmission
· P3 (Rx beam sweeping) may be needed for UE to obtain the best Rx beam for the selected best Tx beam

	
	Top-K beam
	· Top-K Tx beam can be used for P2 (further measurement to obtain the best DL Tx beam)
· P3 (Rx beam sweeping) may be needed for UE to obtain the best Rx beam for the selected best Tx beam

	Tx-Rx beam pair prediction 
	Top-1 beam pair
	· Selection the best Rx beam for the best Tx beam 
· Recommend the best Tx beam to gNB
· P3 (Rx beam sweeping) is not needed if the DL Tx beam is one of the recommended Tx beams
	· The best Tx beam selection
· Cannot restrict UE Rx beam and P3 (Rx beam sweeping) is still needed for UE to select the best Rx beam for the Tx beam. 

	
	Top-K beam pair
	· Recommend the Top-K Tx beams to gNB for P2
· Obtain the best Rx beam for the recommended Tx beams
· P3 procedure is not needed if the DL Tx beam is one of the recommended Tx beams
	· Top-K Tx beam can be used for P2 (further measurement to obtain the best DL Tx beam)
· Cannot restrict UE Rx beam and P3 (Rx beam sweeping) is still needed for UE to select the best Rx beam for the Tx beam.



Based on the above analysis, for Tx beam prediction, P3 procedure may be needed. While for Tx-Rx beam pair prediction, P3 procedure may or may not be needed. Moreover, for Top-K beam (pair) prediction, P2 procedure may be needed. For UE side Tx-Rx beam pair prediction, if the Tx beam selected by NW for data transmission is not the recommended Tx beam, P3 procedure may still be needed. 
In addition, based on NR design principle, it doesn’t make sense for NW to prediction best Rx beam (i.e., Tx-Rx beam pair).  
In order to evaluate the RS overhead performance, it is better to have some common understanding on P3 procedure to obtain the Tx-Rx beam pair, and the required RS to obtain the measurements for AI/ML inputs. 

[bookmark: _Ref135069765]Proposal # 5: For the evaluation of Tx-Rx beam pair prediction, NW side model is deprioritized. 
[bookmark: _Ref135069766]Proposal # 6: For the evaluation of DL Tx beam prediction, the RS overhead in P3 needs to be considered. 
[bookmark: _Ref135069767]Proposal # 7: For both: For Top-K beam (pair) prediction, the RS overhead in P2 procedure needs to be considered. 
Evaluation results
0.6 Evaluation results for BM-Case 1 
0.6.1 General performance when Set B is a subset of Set A

Table 2 summarized the evaluation results for DL Tx beam prediction with 1/4 and 1/8 measurement overhead. Based on the results, the following observation is made:

[bookmark: _Ref135066839]Observation # 5: 
· For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering generalization aspects with the measurements from the best Rx beam without UE rotation.
· (A)With measurements of fixed Set B of beams that of 1/4 of Set A of beams
· evaluation results indicate that, AI/ML can achieve more than 90% beam prediction accuracy of Top-1 DL Tx beam
· evaluation results indicate that, AI/ML can achieve more than 95% beam prediction accuracy for Top-1 DL Tx beam with 1dB margin
· evaluation results indicate that, AI/ML can achieve more than 97% beam prediction accuracy for Top-2 DL Tx beam. The beam prediction accuracy increases with K.  
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be about 0.1dB.
 
· (B) With measurements of fixed Set B of beams that of 1/8 of Set A of beams
· evaluation results indicate that, AI/ML can provide about 85% beam prediction accuracy of Top-1 DL Tx beam.
· evaluation results indicate that, AI/ML can achieve more than 90% beam prediction accuracy for Top-1 DL Tx beam prediction with 1dB margin
· evaluation results indicate that, AI/ML can achieve more than 90% beam prediction accuracy for Top-2 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be about 0.13dB.

[bookmark: _Ref134900208]Table 2 Evaluation results for DL Tx beam prediction with 1/4 and 1/8 measurement 
	Assumption
	Set B selection
option 1b: Fixed set B(engineer experience)
	Set B selection
option 1b: Fixed set B(engineer experience)

	Settings
	Number of beams in Set A
	32
	32

	
	Number of beams in Set B

	F8
	F8

	
	[Pattern of Set B]
	[2, 8, 12, 14, 17, 19, 23, 29]
	[8,12,18,22]

	
	[Rx beam assumption]
	Opt 1: Best Rx beam
Case 2: the best Rx beam for each Tx beam within Set B
	Opt 1: Best Rx beam
Case 2: the best Rx beam for each Tx beam within Set

	
	Baseline scheme
(Opt1 or 2, or described by companies)
	Option 2
Select best Tx among Set B
	Option 2
Select best Tx among Set B

	AI/ML model
	Model input
	L1-RSRP, implicty  Tx beam ID
	L1-RSRP, implicty  Tx beam ID

	
	Model output
	Predicted Top Tx beam ID
	Predicted Top Tx beam ID

	Data Size
	Training
	2100*0.8*625
	2100*0.8*625

	
	Testing
	2100*0.2*625
	2100*0.2*625

	AI/ML model
	[Short model description, e.g., CNN, LSTM]
	DNN
	DNN

	
	Model complexity
[size (e.g. Mbyte)]
	0.65
	0.65

	
	Computational complexity [FLOPs]
	1.3*10e6
	1.3*10e6

	Evaluation results with [AI/ML/
baseline]
	[Beam prediction accuracy (%)]
	Top-1(%)
	93.01
	88.52

	
	
	Top-1(%) with 1dB margin
	97.95

	94.36

	
	
	Top-1/2(%) , Top-1/3(%) ,Top-1/4(%) 
	[97.74, 99.05, 99.50]

	 [93.57, 95.99, 96.41]

	
	[L1-RSRP Diff]
	Average L1-RSRP diff (dB)

	0.064

	0.127




Table 3 summarized the evaluation results for beam pair prediction with 1/4 and 1/8 measurement overhead. Based on the results, the following observation is made:

[bookmark: _Ref135066840]Observation # 6: 
· For BM-Case1 Tx-Rx beam pair prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering generalization aspects with the measurements from all Rx beams without UE rotation.
· (A)With measurements of fixed Set B of beams that of 1/4 of Set A of beams
· evaluation results indicate that, AI/ML can achieve more than 75% beam prediction accuracy of Top-1 DL Tx beam
· evaluation results indicate that, AI/ML can achieve about 85% beam prediction accuracy for Top-1 DL Tx beam with 1dB margin
· evaluation results indicate that, AI/ML can achieve about 85% beam prediction accuracy for Top-2 DL Tx beam. The beam prediction accuracy increases with K.  
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be about 1dB.
 
· (B) With measurements of fixed Set B of beams that of 1/8 of Set A of beams
· evaluation results indicate that, AI/ML can more than 70% beam prediction accuracy of Top-1 DL Tx beam.
· evaluation results indicate that, AI/ML can achieve about 80% beam prediction accuracy for Top-1 DL Tx beam prediction with 1dB margin
· evaluation results indicate that, AI/ML can achieve about 80% beam prediction accuracy for Top-2 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be about 1.3dB.


[bookmark: _Ref134901232]Table 3 Evaluation results for beam pair prediction with 1/4 and 1/8 measurement 

	Assumption
	BM-Case1
Classification
	BM-Case1
Classification

	Settings
	Number of beam pairs in Set A
	256 (32Tx 8Rx)
	256 (32Tx 8Rx)

	
	Number of beam pairs in Set B 
	F8*8
8 Fixed Tx with all Rxs
	F4*8
4 Fixed Tx with all Rxs

	
	[Pattern of Set B]
	[2, 8, 12, 14, 17, 19, 23, 29]Tx with all Rx beams
	[8,12,18,22] Tx with all Rx beams

	AI/ML model
	Model input
	L1-RSRP, implicty Tx beam ID, and Rx beam ID
	L1-RSRP, implicty Tx beam ID, and Rx beam ID

	
	Model output
	Probablities of Top-1 beam pair

	Probablities of Top-1 beam pair


	
	[Short model description, e.g., CNN, LSTM]
	DNN
	DNN

	
	[Model complexity
in a number of model size (e.g. Mbyte)]
	0.65
	0.65

	
	Computational complexity [FLOPs]
	1.3*10e6
	1.3*10e6

	Data Size
	Training
	2100*0.8*625
	2100*0.8*625

	
	Testing
	2100*0.2*625
	2100*0.2*625

	Evaluation results with [AI/ML/
baseline]
	[Beam prediction accuracy (%)]
Note2
	Top-1(%)
	76.78
	73.37

	
	
	Top-1(%) with 1dB margin
	84.72
	81.28

	
	
	Top-2/1(%) , Top-4/1(%) , other values
	84.24  88.16  90.23
	81.41  84.71  86.93  

	
	[L1-RSRP Diff]
Note2
	Average L1-RSRP diff (dB) 
	1.161
	1.322

	
	[System performance]
	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	75%
	88%


 

0.6.2 General performance when Set B are widebeams and Set A are narrow beams

Beam related assumptions:
For the case that Set A consists of narrow beams and Set B consists of wide beams. 4 SSB based wide beams with 2 x 4 antenna configuration is used, with the beam pattern shown in Figure 3. 32 CSI-RS based narrow beams with 4 x 8 antenna configuration, the beam direction is illustrated in Figure 4 with green cycle marked.
Regarding to the RSRP measurement and report, firstly, UE measures the SS-RSRP based on 4 SSB resources corresponding to the 4 wide beams, with RX beam sweeping. Then, after the best wide beam is determined, UE will further measure CSI-RSRP based on a set of narrow beams associated with the best wide beam with the same RX beam for measuring the best SS-RSRP wide beam.
To obtain one RSRP report containing the measurements of wide beams and associated narrow beams, 20*8=160ms is needed for UE RX beam sweeping. 8 reports are used for AI training as the inputs, as in Figure 5. In the simulation, UE trajectory is modeled, therefore, the best wide beam might not be the same among 8 RSRP reports.  
[image: ]
[bookmark: _Ref127532853]Figure 3 BS beam pattern for wide beams
[image: ]
[bookmark: _Ref127532875]Figure 4 Setting of Set A and Set B



[bookmark: _Ref127532949]Figure 5 AI/ML input data format and time window T1/T2 for spatial domain beam prediction with Set B is wide beam and Set B is narrow beam
KPI: 
The following KPIs are used:
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top1/K(%):percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· In 1/3/6 dB: Beam prediction accuracy (%) with 1/3/6 dB margin for Top-1 beam
· Ave RSRP diff: Average L1-RSRP difference of Top-1 predicted beam
Baseline scheme (Non-AI):
· Non-AI 4WB+4/8NB: Firstly, select the best wide beam, and then select the best narrow beam out of 4/8 narrow beams (fixed) associated with best wide beam as the predicted best beam.
· Non-AI 4WB+1NB: Use the recent 8 reports of the 4 wide beams and 1 associated narrow beams of the best wide beam, then select the best narrow beam out of the 8 Tx beams from 8 reports (i.e., among RSRP values of 8 narrow beams) as the predicted best beam. The one narrow beam is round-robin selected from the 8 narrow beams (the index of narrow beam changes in each report by following a pre-defined rule). If the best wide beam changes among multiple measurement sets, the fixed index of narrow beam is used corresponding to the associated wide beams and the Top-K beams are selected among on the measurements of narrow beams. 
· Non-AI 4WB only: Select the best wide beam as the predicted best beam.
AI input/output:
· AI 4WB+4NB: Use the recent 8 RSRP reports of the 4 wide beams and 4 fixed associated narrow beams of the best wide beam, to predict the best narrow beam in Set A.
· AI 4WB+1NB: Use the recent 8 RSRP report of the 4 wide beams and 1 associated narrow beams of the best wide beam, to predict the best narrow beam in Set A. The 1 narrow beam is round-robin selected from the 8 narrow beams of the best wide beam.
· AI 4WB only: Use the recent 8 RSRP report of the 4 wide beams only, to predict the best narrow beam in Set A. 
The evaluation results are summarized in Table 4  and Table 5. Other assumptions can be found in Table 54 in Appendix same as for section 2.2. 
From the results, we can see that, similar as when Set B is a subset of Set A, AI schemes can achieve better performance than non-AI scheme assuming the same measurements/RS overhead. By measuring the wide beam only, with the help of AI, gNB can predict the best narrow beam with good performance. 
[bookmark: _Ref111198817]Observation # 7 : For spatial domain prediction, AI can provide better performance in terms of beam prediction accuracy than non-AI based scheme with the measurements of a set of wide beams and a subset of narrow beams to select a best beam among a full set of narrow beams.
[bookmark: _Ref111198819]Observation # 8: For spatial domain prediction, AI can predict the best narrow beam based on the measurements of wide beams only with decent performance. 
[bookmark: _Ref131779093][bookmark: _Ref115464075][bookmark: _Ref110632396]Table 4 L1-RSRP performance with 3km/h
	Scheme
	Config.
	Top1
	Top1/2
	Top1/3
	Top1/4
	Top1/5
	In 1dB
	In 3dB
	In 6dB
	Ave RSRP diff

	Non-AI
	4WB+8NB
	93.44%
	97.96%
	98.89%
	99.37%
	99.66%
	97.33%
	99.03%
	99.72%
	0.097 dB

	
	4WB+4NB
	60.50%
	91.90%
	97.71%
	98.86%
	99.30%
	78.03%
	93.51%
	99.14%
	0.656 dB

	
	4WB+1NB
	59.60%
	78.48%
	87.42%
	91.55%
	93.93%
	75.52%
	88.96%
	95.47%
	1.063 dB

	
	4WB Only
	NA
	NA
	NA
	NA
	NA
	1.02%
	2.26%
	6.61%
	11.497 dB

	AI
	4WB+4NB
	83.27%
	95.71%
	98.21%
	98.97%
	99.37%
	94.98%
	98.65%
	99.62%
	0.178 dB

	
	4WB+1NB
	70.63%
	87.45%
	93.99%
	96.04%
	97.20%
	85.89%
	94.82%
	98.21%
	0.533 dB

	
	4WB Only
	54.96%
	77.74%
	89.88%
	94.10%
	95.84%
	72.32%
	88.66%
	96.37%
	1.049 dB



[bookmark: _Ref110632398][bookmark: _Ref127532995]Table 5 L1-RSRP performance with 30km/h
	Scheme
	Config.
	Top1
	Top1/2
	Top1/3
	Top1/4
	Top1/5
	In 1dB
	In 3dB
	In 6dB
	Ave RSRP diff

	Non-AI
	4WB+8NB
	92.04%
	96.89%
	98.20%
	98.92%
	99.41%
	95.92%
	98.31%
	99.49%
	0.151 dB

	
	4WB+4NB
	58.24%
	89.78%
	95.89%
	97.56%
	98.43%
	73.24%
	92.05%
	98.15%
	0.819 dB

	
	4WB+1NB
	47.63%
	68.85%
	80.82%
	86.79%
	90.12%
	62.39%
	81.63%
	91.58%
	1.786 dB

	
	4WB Only
	NA
	NA
	NA
	NA
	NA
	0.69%
	1.65%
	5.13%
	11.710 dB

	AI
	4WB+4NB
	81.06%
	93.39%
	96.63%
	97.89%
	98.60%
	91.79%
	97.07%
	99.04%
	0.303 dB

	
	4WB+1NB
	66.72%
	83.57%
	90.64%
	93.43%
	95.15%
	80.65%
	91.40%
	96.42%
	0.821 dB

	
	4WB Only
	54.37%
	74.27%
	85.37%
	89.43%
	91.87%
	68.70%
	84.51%
	92.75%
	1.469 dB




0.6.3 Performance with different UE distribution 

We have multiple options for indoor UE ratios (e.g., 0, 20%, 40%, 60%, 80%, 100%). Here, we only consider two possible ratios and the configurations of different UE distribution scenarios are as shown in Table 2.
[bookmark: _Ref127307616]Table 6 Various UE distribution scenarios configurations
	Scenarios
	Deployment
	UE speed
	Indoor UE distribution
	Codebook  

	Scenario#A
	Uma
	3 km/h
	20%
	Codebook 1

	Scenario#B
	Uma
	3 km/h
	80%
	Codebook 1




Table 7 Simulation results for various UE distribution scenarios configurations
	Cases
	Top1
	Top1/2
	Top1/3
	Top1/4
	Top1/5
	Ave RSRP diff

	Scenario#A
	91.06%
	96.80%
	98.20%
	98.88%
	99.19%
	0.114

	Scenario#B
	90.41%
	96.57%
	98.10%
	98.84%
	99.17%
	0.124




[bookmark: _Ref135066895][bookmark: _Ref135066961]Observation # 9: For BM-Case1, AI/ML may have different performance in different scenarios. For example, based on the evaluation results AI/ML can achieve better beam prediction performance with 20% outdoor UE distribution than with UE distribution: 20% indoor and 80% outdoor. 

0.7 Evaluation results for BM-Case 2
0.7.1 General performance for BM-Case 2

In this section, we will evaluate the performance of the combined time domain and spatial domain beam prediction. 
Assumption of beam management procedures
In observation window T1, the recent 8 times of RSRP measurements are used with a periodicity of 160ms. That is, the measurement time T1 is 1440ms. The target predict time is denoted as T2 as in Figure 6. We evaluate the case that Set B is a subset of Set A so we assume the same assumption described in Section 2.1.1. UE has total 8 RX beams (4 RX beams per panel), and the periodicity the SSB burst is 20ms, so UE needs 20*8 = 160ms to finish one round of RX beam sweeping. Therefore, for each TX beam, there are 8 RSRP values corresponding to 8 RX beams measured in 160ms. UE will choose the highest one out of these 8 RSRP values as the reporting RSRP for this TX beam.


[bookmark: _Ref118736691]Figure 6 AI/ML input data format and time window T1/T2 for temporal beam prediction
Description of AI/ML models 
The AI/ML model for our temporal beam prediction is shown in below Figure 7. The AI/ML model consists of 3 FC layers with 128, 64, and 32 cells per layer where the input size and the output size of the AI/ML model are respectively 256 and 32. Activation function of output layer is softmax.
[image: ]
[bookmark: _Ref118721883]Figure 7 AI/ML model for BM-Case2

Complexity of AI/ML models
Summary of Params and FLOPs of the AI/ML model can be calculated in Table 8.
[bookmark: _Ref118722022]Table 8 Summary of Params and FLOPs
	Layer Index
	Model Type
	Params
	FLOPs

	1
	FC
	256*128=32768
	(2*256-1)*128=65408

	2
	FC
	128*64=8192
	(2*128-1)*64=16320

	3
	FC
	64*32=2048
	(2*64-1)*32=4064

	Total
	N/A
	4
	9



[bookmark: _Ref118733568]Observation # 10: In BM-Case2, the Params of the AI/ML model used in the simulation are about Params. 
[bookmark: _Ref118733589]Observation # 11: In BM-Case2, FLOPs of the AI/ML model is about . 
Beam related assumptions
There are total 32 beams at BS side as the Set A, with 4 x 8 antenna configuration. There are 4 beams in the vertical direction with 6-degree step within [84°, 102°] range, and 8 beams in the horizontal direction within [-60°, +60°] range. 
Fixed 16 beams, 12 beams, 8 beams or 4 beams out of the total 32 beams are chosen as the Set B. The detailed beam direction of these 8 beams or 4 beams for measurement are marked with red cycles as in Figure 8. 
[image: ]
[image: ]
[bookmark: _Ref118730880]Figure 8 Setting of Set A and Set B
KPI:
The following KPIs are used:
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
Baseline scheme (Non-AI):
In this scenario, we select the best K beams in Set B of beam as the predicted Top K beams as baseline performance, by assuming the same measurement/resource are used by UE. Therefore, the baseline performance depends on whether the best genie aided beam fall into the pre-defined beams in Set B. 
AI inputs/outputs
The recent 8 RSRP reports of the 8 beams or 4 beams in Set B is used as AI inputs. For the L1-RSRP reports, existing quantization error is assumed (1dB for the best beam and 2dB for the difference to the best beam with 4bits). For the evaluation of Opt D of variable Set B, Case 2 described in Section 2.9 is assumed as implicit information of Tx beam ID. AI output is the best beam in Set A at target predict time T2.
For temporal domain DL Tx beam prediction, we assume LLS to generate training data set. Other assumptions can be found in Table 55 in Appendix. Since we emulate the beam sweeping as in practical as explained earlier, both spatial consistency procedure (reusing the evaluation methodologies in the Rel-17 HST-SFN) and UE trajectory (Option 4) are modeled. 
Evaluation result
For baseline scheme, we use the latest RSRP measurement to select the best beam. That is, the observation window T1 is the most recent 160ms.
Figure 9 shows Top-K/1 performance with 30km/h of UE speed with 4 beams in Set B. Various target predict time is assumed, which are given by {160, 320, 480, 640, 800, 900} ms. In order to investigate whether temporal domain prediction has a gain or not with spatial domain prediction (i.e., Set B is subset of Set A), 0 ms of target prediction time is also considered. In the case of non-AI, there is almost no performance degradation due to the increase in target predict time. Since the coverage of beams in Set B is wide, Top-1 prediction accuracy of the selected beam in Set B slightly decreases as the target predict time increases. In the case of AI, the performance is superior to non-AI, but it can be observed that it decreases as the target predict time increases. Due to the narrow coverage of beams in Set A, it would be hard for AI to learn the Top-1 beam after longer time later based on the latest measurement. From the results in the target predict time, we can observe AI still have ability to predict spatial domain beams. The evaluation results are summarized in Table 9.
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[bookmark: _Ref118731195]Figure 9 Top-K/1 performance with 30km/h with 4 beams in Set B
[bookmark: _Ref118731268]Table 9 Top-K/1 performance with 30km/h with 4 beams in Set B
	Scheme
	Target Predict
Time
	Top-1
	Top-K/1
(K = 2)
	Top-K/1
(K = 3)
	Top-K/1
(K = 4)

	Non-AI
	0ms
	9.15%
	9.21%
	9.21%
	9.21%

	AI
	0ms
	67.40%
	89.37%
	94.62%
	96.81%

	Non-AI
	160ms
	9.03%
	9.30%
	9.30%
	9.30%

	AI
	160ms
	67.77%
	90.57%
	95.02%
	96.56%

	Non-AI
	320ms
	8.90%
	9.43%
	9.43%
	9.43%

	AI
	320ms
	70.02%
	89.63%
	94.26%
	96.47%

	Non-AI
	480ms
	8.81%
	9.62%
	9.62%
	9.62%

	AI
	480ms
	66.88%
	88.61%
	93.63%
	96.00%

	Non-AI
	640ms
	8.69%
	9.82%
	9.82%
	9.82%

	AI
	640ms
	67.50%
	87.96%
	92.90%
	95.33%

	Non-AI
	800ms
	8.52%
	9.90%
	9.95%
	9.95%

	AI
	800ms
	64.92%
	86.51%
	92.21%
	95.47%

	Non-AI
	960ms
	8.41%
	10.07%
	10.22%
	10.23%

	AI
	960ms
	62.92%
	83.71%
	90.41%
	94.10%



[bookmark: _Ref127535544]Observation # 12: In the case of non-AI, there is almost no performance degradation due to the increase in target predict time. Since the coverage of beams in Set B is wide, Top-1 prediction accuracy of the selected beam in Set B slightly decreases as the target predict time increases.
[bookmark: _Ref127535547]Observation # 13: In the case of AI, the performance is superior to non-AI, but it can be observed that it decreases as the target predict time increases. Due to the narrow coverage of beams in Set A, it would be hard for AI to learn the Top-1 beam after longer time later based on the latest measurement.
In the following, Opt D in Variable Set B is evaluated. In Figure 10, Top-K/1 performance with 30km/h of UE speed with 8 beams in Set C is considered. Here, Set C consists of the beams measured by UE and it is a superset of Set B. For example, according to the current NR beam management procedure, UE reports the best N beams that corresponds to the best L1-RSRP out of a set of measurement beams. Hence, in this example, Set B is the |Set B| beams reported by UE and Set C is the set of measured beams. We investigate whether there is benefit with increasing the number of reported beams when the number of beams of Set C is larger than 4. As a baseline, we choose |Set B| = 4 for both AI and non-AI schemes as specified in the current specification. We assume |Set B| in training data set is the same as |Set B| in test dataset
From the evaluation result, even if UE reports only half of Set C, we can observe gain in Top-K/1 prediction accuracy compared to non-AI. As the number of reporting beams increases, there is a benefit, but it does not increase significantly. The evaluation results are summarized in Table 10.
[bookmark: _Ref127535548]Observation # 14: Even if UE reports only half of Set C, we can observe gain in top K/1 prediction accuracy compared to non-AI, but about 10% loss in Top 1 prediction accuracy compared to all beams reporting in Set C. As the number of reporting beams increases more than half of Set C, there is a benefit, but it does not increase significantly.
[image: ]
[bookmark: _Ref118731750]Figure 10 Top-K/1 performance with 30km/h with 8 beams in Set C

[bookmark: _Ref118731837]Table 10 Top-K/1 performance with 30km/h with 8 beams in Set C
	# of beams
in Set C
	# of reported beams 
(|Set B|)
	Target Prediction Time
	Scheme
	Top-1
	Top-K/1
(K = 2)
	Top-K/1
(K = 3)
	Top-K/1
(K = 4)

	8
	4
	160ms
	Non-AI
	20.26%
	21.31%
	21.31%
	21.31%

	8
	8
	160ms
	AI
	76.74%
	94.26%
	97.01%
	97.87%

	8
	7
	160ms
	AI
	76.60%
	93.54%
	96.83%
	97.88%

	8
	6
	160ms
	AI
	75.02%
	93.72%
	96.91%
	97.94%

	8
	5
	160ms
	AI
	72.05%
	92.09%
	96.24%
	97.63%

	8
	4 (Baseline)
	160ms
	AI
	66.06%
	89.85%
	95.47%
	97.18%



0.7.2 Performance with different T1/T2 assumptions.

	Conclusion
To evaluate the performance of BMCase-2 for both DL Tx beam and pair prediction, aiming to analysis the following aspects:
· Clarify the baseline performance in terms of beam prediction accuracy and/or average L1-RSRP.
· Observations based on the metrics to be considered:
· Top-1/K [=2] beam prediction accuracy, Top-1 beam prediction accuracy with 1dB, average L1-RSRP difference
· Measurement/RS overhead reduction
· UCI overhead (reduction) potentially with different quantization
· User throughput
· Model size and complexity
· Average predicted L1-RSRP difference, if applicable
· Scenarios/assumptions/Cases for basic observations
· Set A and Set B relationship
· Set A= Set B
· Set B /Set A =1/4, [1/6], 1/8, 1/16, [1/32]
· UE speed: 30km/h
· No UE rotation
· FFS the following cases for results reporting.
· Case 1:  based on T1 and T2, where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 = 40ms, 80ms, 160ms, [320ms], [640ms]
· T2 = 40ms, 80ms, 160ms, 320ms, [960ms]
· M= [1, 2, 3, 4, 5, 8], where M is the number of time instance(s) for measurement/report in T1 as AI/ML inputs (per model)
· P= [1, 2, 4, 5, …], where P is the number of time instance(s) P for prediction as AI/ML model output(s)/label(s) (per model)
· Case 2: based on the number of prediction instance(s) Y for every number of measurement instance(s) X, at least consider the following values:
· Minimal periodicity for time instances for measurement(s) and prediction(s) = [40ms, 80ms, 160ms]
· X = [1, 2]
· Y = [1, 2, 4, 5, 10]
· P= [1, 2, 4, 5, …], where P is the number of time instance(s) P for prediction as AI/ML model output(s)/label(s) (per model)
· The number of measurement instance(s) as AI inputs are up to implementation.
· FFS whether separated observations are needed or not for the following:
· UE trajectories
· Performance difference based on the reported results from each company
· With UE rotation
· Different UE speed: e.g., 60km/h, 90km/h, 120km/h
· Different observation/prediction windows or periodicity for time instances.
· Different Set B assumption when Set A is a subset of Set B
· Opt A/B, Opt C, Opt D
· Other settings:
· Other percentage of Set B and Set A if reported by companies
· When Set B is different from Set A (e.g., Set B is composed of wide beams and Set A is composed of narrow beams).
· Other aspects are not precluded
· Observation/analysis may consider UE-side and NW-side model when applicable




In RAN1#112bis-e, performance evaluation regarding different T1/T2 assumptions were agreed. We consider Case 2 with following options as follows:
· Option 1: X = 1 and Y = 4 with: periodicity for time instances for measurement(s) and prediction(s) = [40ms, 80ms, 160ms]
· Option 2: X = 2 and Y = 4 with: periodicity for time instances for measurement(s) and prediction(s) = [40ms, 80ms, 160ms]

The following tables show Top-K/1 performance with 30km/h with 8 beams in Set B for above setting. We assume one model predict 1 time instance (i.e., P=1) so for Y = 4, 4 models are assumed for BM-Case2 (y = 1, 2, 3, 4). In the tables, ‘y = 0’ refers BM-Case1. From the results, we observe that Top-K/1(%) differences across different T2 (y = 1, 2, 3, 4) are less than ~2% when a different model predicts different T2. Under the linear trajectory without UE rotation and T2640ms assumptions, frequency of genie beam changes may be small, so different models would classify a label with similar performance. Note that the performance difference may be due to the typical error range in a classification model with different model initialization in the following tables. Under these assumptions, we can consider measurement reduction of BM-Case1 over BM-Case2 as shown in Figure 9. From the following tables and figure, we can observe that compared with BM-Case1 (y = 0) and BM-Case2 (y = 1, 2, 3, 4), there is less than ~3% performance degradation for Top-1 in BM-Case2 than BM-Case1. The number of measurements for BM-Case2 can be reduced by X/(X+Y) lower than the number of measurements for BM-Case1.

[image: ]
Figure 11 Example of measurement instances and prediction instances for BM-Case1, Option 1 (X=1, Y=4), and Option 2 (X=2, Y=4) in time domain

[bookmark: _Ref135068968]Observation # 15: Top-K/1(%) differences across different T2 (y = 1, 2, 3, 4) are less than ~2% when a different model predicts different T2 under the linear trajectory and T2640ms assumptions. 
[bookmark: _Ref135068969]Observation # 16: Compared with BM-Case1 (y = 0) and BM-Case2 (y = 1, 2, 3, 4), there is less than ~3% performance degradation for Top-1 in BM-Case2 than BM-Case1. The number of measurements for BM-Case2 can be reduced by X/(X+Y) lower than the number of measurements for BM-Case1.


Table 11 Top-K/1 performance with 30km/h with 8 beams in Set B for X = 1 and the periodicity for time instances for measurement(s) and prediction(s) is 40ms (Option 1)
	
	K/1 (%)

	y
	K=1
	K=2
	K=3
	K=4

	0
	58.29%
	79.88%
	88.05%
	92.63%

	1
	57.27%
	79.18%
	87.54%
	92.97%

	2
	56.59%
	79.49%
	88.62%
	92.84%

	3
	55.92%
	78.70%
	87.36%
	92.00%

	4
	57.17%
	79.95%
	87.84%
	92.18%


Table 12 Top-K/1 performance with 30km/h with 8 beams in Set B for X = 2 and the periodicity for time instances for measurement(s) and prediction(s) is 40ms (Option 2)
	
	K/1 (%)

	y
	K=1
	K=2
	K=3
	K=4

	0
	58.18%
	80.95%
	89.09%
	93.35%

	1
	57.13%
	78.79%
	88.21%
	93.28%

	2
	56.89%
	80.51%
	89.14%
	93.12%

	3
	57.78%
	79.70%
	88.43%
	92.70%

	4
	58.26%
	82.24%
	89.14%
	92.56%


Table 13 Top-K/1 performance with 30km/h with 8 beams in Set B for X = 1 and the periodicity for time instances for measurement(s) and prediction(s) is 80ms (Option 1)
	
	K/1 (%)

	y
	K=1
	K=2
	K=3
	K=4

	0
	58.01%
	81.23%
	88.07%
	92.11%

	1
	55.01%
	79.15%
	87.49%
	92.45%

	2
	56.20%
	80.24%
	88.68%
	92.70%

	3
	55.66%
	79.60%
	87.47%
	91.63%

	4
	55.39%
	77.70%
	86.51%
	91.54%


Table 14 Top-K/1 performance with 30km/h with 8 beams in Set B for X = 2 and the periodicity for time instances for measurement(s) and prediction(s) is 80ms (Option 2)
	
	K/1 (%)

	y
	K=1
	K=2
	K=3
	K=4

	0
	59.11%
	81.49%
	89.46%
	92.86%

	1
	57.54%
	82.05%
	89.16%
	92.82%

	2
	56.99%
	80.84%
	88.57%
	93.15%

	3
	58.59%
	81.83%
	89.22%
	92.38%

	4
	56.66%
	81.31%
	88.78%
	92.15%


Table 15 Top-K/1 performance with 30km/h with 8 beams in Set B for X = 1 and the periodicity for time instances for measurement(s) and prediction(s) is 160ms (Option 1)
	
	K/1 (%)

	y
	K=1
	K=2
	K=3
	K=4

	0
	57.18%
	81.08%
	88.56%
	92.87%

	1
	54.21%
	78.03%
	87.24%
	91.64%

	2
	54.09%
	76.36%
	86.50%
	91.85%

	3
	54.84%
	77.97%
	86.34%
	91.30%

	4
	55.47%
	76.34%
	85.68%
	90.06%


Table 16 Top-K/1 performance with 30km/h with 8 beams in Set B for X = 2 and the periodicity for time instances for measurement(s) and prediction(s) is 160ms (Option 2)
	
	K/1 (%)

	y
	K=1
	K=2
	K=3
	K=4

	0
	60.93%
	83.44%
	89.89%
	93.44%

	1
	60.55%
	85.76%
	92.27%
	94.69%

	2
	61.06%
	83.74%
	90.40%
	94.20%

	3
	58.41%
	79.89%
	88.00%
	92.65%

	4
	59.16%
	82.27%
	90.29%
	93.55%




0.8 Evaluation for some aspects common to BMCase-1 and BMCase-2
0.8.1 Performance with different Set B 
In RAN 1#110b-e, the following options were identified: 
	Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 


Moreover, in RAN 1#112, the following option was agreed. 
	Agreement
· Additionally study the following option on the selection of Set B of beams (pairs) (for Option 2: Set B is variable) 
· Opt D: Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g. Top-K beams(pairs) of Set C
· Companies report the number of pre-configured patterns used in the evaluation for Option 2: Set B is variable if applicable (e.g. Opt A and Opt B)



The performance of the AI/ML model depends on whether the Top 1 beam falls into the pre-defined beams in Set B. The effects of the selection of Set B are further considered in this section. To simplify the evaluation, the measurements from the best Rx beams are used, and we also assume the beam sweeping can be done in a short time (i.e., the L1-RSRPs with the best Rx beam can be obtained in one time). In the simulation, we considered fixed Set B, and variable Set B cases with 32 Tx beam. 

Table 17 shows the prediction accuracy of the AI/ML model with different Set B assumptions. By comparing Option 1 (Opt1a and Opt 1b, first and second columns among options in the table) with Option 2C, we observe that the AI/ML model can achieve the best performance while being fed with some deterministic information. In Option 2C, the Tx beams in Set B are randomly selected and vary among different timesteps, which introduces randomness and then disturbs the training process. In Option 2A-2B, we specify the value range of Set B to reduce the randomness, so that Option 2A-2B can achieve a better performance as compared to Option 2C. However, since Set B is still variable among different timesteps, the prediction accuracy in Option 2A-2B is thus lower than that in Option 1. Note that there is a slight performance gap between Option 1A and 1B. One possible explanation is that Option 1B determines Set B based on some statistics information, so that the Top 1 beam can fall into Set B with a higher probability, which can in turn increase the prediction accuracy of the AI/ML model. Specifically, in Option 2D, Set B is fixed across training and inference, but we only report the L1-RSRPs of the Top 4 beams in Set B, i.e., the actual Set B in each time step can be regarded as a subset of the pre-defined Set B. Moreover, in model inference and training phase, we provide a specific default value as the inputs of the beams in Set B that didn’t have reports, which provides information different from the beams not in Set C. From Table 17, Option 2D experiences a worse performance than Option 1 due to information loss, but it can effectively reduce the overhead since we only report 4 L1-RSRPs to gNB. Accordingly, Option 2D can be considered as a promising scheme to achieve a better tradeoff between overhead and performance. 
[bookmark: _Ref131779156]Observation # 17: With decent number of beams in Set B, e.g., ¼ beams of Set A, fixed Set B or pre-known different patterns in each time step has similar performance. 
[bookmark: _Ref131779245]Observation # 18: Select from pre-known patterns with or without knowing the order has similar performance.  
[bookmark: _Ref131779248]Observation # 19: Random Set B (option 2C) has the worst performance comparing with fixed or pre-known Set B patterns.  
[bookmark: _Ref131779250]Observation # 20: Opt 2D has some performance degradation comparing with all measurements in fixed Set B, however, it can save reporting overhead for NW side AI/ML. 
[bookmark: _Ref131779330]Proposal # 8: For both BM Case1 and BM Case, deprioritize the study of Opt C: Set B is randomly changed among Set A beams (pairs).
 
Moreover, the pattern design of Set B was discussed in RAN 1 #112 meeting, the following proposal has been proposed and discussed. We also simulated two patterns of Set B, shown as Figure 12. Pattern A is equal spacing and pattern B selected more beams in the middle of two lines and only one beam at the first and last line. This is because based on our observation of L1-RSRPs of all the beams in Set A (Tx beams), there are more variation in horizontal than vertical. Different Set B pattern designs will have some impact on the performance. 
[bookmark: _Ref131779251]Observation # 21: At least for Tx beam prediction, well designed Set B of beams can slightly improve the performance. 

[image: ] [image: ]

Pattern A: Equal spacing         Pattern B: Engineer experience design
[bookmark: _Ref131625138]Figure 12 Pattern of Set B

[bookmark: _Ref131624406]Table 17 Results with different Set B assumptions
	
	Opt 1a: Fixed set B (equal spacing)
	Opt 1b: Fixed set B
(Engineer experience)
	Opt 2A: pre-configured set B with an order
	Opt 2B: Randomly in pre-configured set B 
	Opt 2C: random set B
	Opt 2D: Top 4 results of a fixed Set B (N=8)

	Settings
	Number of beams in Set A
	32

	
	[Pattern of Set B]
	[0, 4, 8, 12, 16, 20, 24, 28]
	[2, 8, 12, 14, 17, 19, 23, 29]
	[0, 4, 8, 12, 16, 20, 24, 28]; 
[1, 5, 9, 13, 17, 21, 25, 29]; 
[0, 1, 2, 3, 11, 13, 17, 30]
	[0, 4, 8, 12, 16, 20, 24, 28]; 
[1, 5, 9, 13, 17, 21, 25, 29]; 
[0, 1, 2, 3, 11, 13, 17, 30]
	Randomly generated 
	[2, 6, 10, 14, 18, 22, 26, 30]

	
	[Rx beam assumption]
	Opt 1: Best Rx beam
Case 2: the best Rx beam for each Tx beam within Set B

	
	Baseline scheme
	Option 2
Select best Tx among Set B

	AI/ML model
	Model input
	L1-RSRP, implicit Tx beam ID

	
	Model output
	Probabilities of Top-1 beam for all Tx beam in Set A

	Data Size
	Training
	2100*0.8*625

	
	Testing
	2100*0.2*625

	AI/ML model
	Short model description
	LSTM

	
	Model complexity 
	15 Mbyte

	
	Computational complexity 
	8*10e6 FLOPs

	Evaluation results with [AI/ML/
baseline]
	[Beam prediction accuracy (%)]
Note2
	Top-1(%)
	86.69
	91.63/
24.78
	84.17/
30.64
	83.16/
30.18
	51.59/
24.88
	83.70/
28.97

	
	
	Top-1(%) with 1dB margin
	 
	96.95/
24.78
	91.45/
35.72
	90.55/
34.93
	60.09/
33.78
	90.57/
32.76

	
	
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%) 
	 
	[97.37,  98.94,  99.73]/
[24.78,  24.78,  24.78]
	[92.73,  95.54,  97.87]/
[30.64,  30.64,  30.64]
	[91.89  95.11  97.57]/
[30.18,  30.18,  30.18]
	[68.92,  78.21,  87.68]/
[24.88,  24.88,  24.88]
	[93.65,  96.96,  99.00]/
[28.97, 28.97, 28.97]

	
	
	Top-1/2(%), Top-1/3(%), Top-1/5(%) 
	[93.31, 95.25, 96.87]
	[96.99  98.56  99.54]/
[50.56,  75.97,  95.80]
	[91.80,  94.06,  95.88]/
[41.36  53.56  69.15]
	[90.71,  93.30,  95.52]/
[41.25,  51.56,  66.27]
	[63.41,  69.67,  78.53]/
[44.27,  59.10,  78.77]
	[90.87, 93.03, 95.39]/
[35.98, 38.88, 49.95]

	
	[L1-RSRP Diff]
Note2
	Average L1-RSRP diff (dB)
	 
	0.093/
2.110
	0.568/
4.892
	0.621/
5.108
	3.615/
3.835
	0.727/
6.941




Moreover, we evaluate generalization performance when |Set B| in training data set is different with |Set B| in test dataset. We assume |Set B| = |Set C| in training dataset and |Set B| |Set C| in test dataset. Also, we evaluate generalization performance for mixed training dataset. This mixed training dataset can be obtained by partitioning the training dataset used in Figure 13, which consists of |Set B| = |Set C|. For example, in order to obtain new training dataset with |Set B| = 4, it only takes strongest 4 RSRPs from the original data. As a result, the mixed dataset consists |Set B| = {4, 5, 6, … , |Set C|} and no need to generate additional training dataset for mixed dataset.
From evaluation result in Figure 13 (Generalization case 2), we can observe huge performance degradation for Top-K/1 (%) (e.g., about 44% loss in Top-1(%) when |Set B| = 4). Even though, implicit beam information of Tx beam ID of the beams not in Set B but in Set C is used as AI inputs, loss of RSRP information may impact on loss of prediction accuracy significantly, when this situation was not trained at the model.
From the evaluation result in (Generalization case 3), we can observe that for different size of Set B, training a model with a mixture of dataset obtained from the dataset consists of the maximum size of Set B allows the model to perform than non-AI scheme. However, comparing the performance from the models with |Set B| = |Set C| (generalization case 1), shown in Figure 10 and Table 10, about 5% and 10% of performance degradation for Top-1(%) is observed. The evaluation results are summarized in Table 18 and Table 19
[bookmark: _Ref135314156]Observation # 22: If the number of Set B is not the same in training and inference phase, huge generalization performance degradation is observed. 
[bookmark: _Ref135314158]Observation # 23: For different size of Set B, training a model with a mixture of dataset obtained from the dataset consists of the maximum size of Set B allows the model to perform than non-AI scheme. However, about 5% and 10% of performance degradations are respectively observed with |Set B| = 4 and |Set B| = 5 for Top-1(%) comparing with the case |Set B| = |Set C|. 
[image: ]
[bookmark: _Ref135067938]Figure 13 Top-K/1 performance with 30km/h with 8 beams in Set C for different |Set B| in training dataset and test dataset
[bookmark: _Ref135068156]Table 18 Top-K/1 performance with 30km/h with 8 beams in Set C for different |Set B| in training dataset and test dataset
	# of beams
in Set C
	# of reported beams 
(|Set B|)
	Target Prediction Time
	Scheme
	Top-1
	Top-K/1
(K = 2)
	Top-K/1
(K = 3)
	Top-K/1
(K = 4)

	8
	4
	160ms
	Non-AI
	20.26%
	21.31%
	21.31%
	21.31%

	8
	8
	160ms
	AI
	76.66%
	94.43%
	97.38%
	98.21%

	8
	7
	160ms
	AI
	54.91%
	78.53%
	87.71%
	92.68%

	8
	6
	160ms
	AI
	46.56%
	68.60%
	80.55%
	87.98%

	8
	5
	160ms
	AI
	39.73%
	61.09%
	72.85%
	81.55%

	8
	4 (Baseline)
	160ms
	AI
	32.34%
	52.71%
	65.63%
	73.02%



[image: ]
Figure 14 Top-K/1 performance with 30km/h with 8 beams in Set C for mixed |Set B| in training dataset

[bookmark: _Ref135068159]Table 19 Top-K/1 performance with 30km/h with 8 beams in Set C for mixed |Set B| in training dataset
	# of beams
in Set C
	# of reported beams 
(|Set B|)
	Target Prediction Time
	Scheme
	Top-1
	Top-K/1
(K = 2)
	Top-K/1
(K = 3)
	Top-K/1
(K = 4)

	8
	4
	160ms
	Non-AI
	20.26%
	21.31%
	21.31%
	21.31%

	8
	8
	160ms
	AI
	73.14%
	93.91%
	96.90%
	97.84%

	8
	7
	160ms
	AI
	73.11%
	93.22%
	96.66%
	97.77%

	8
	6
	160ms
	AI
	72.75%
	93.61%
	97.07%
	97.86%

	8
	5
	160ms
	AI
	70.39%
	93.14%
	96.97%
	98.16%

	8
	4 (Baseline)
	160ms
	AI
	66.61%
	90.38%
	95.83%
	97.44%



0.8.2 Performance with different Rx beam assumption

	Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample 
· Companies report how to select the “best” Rx beam(s) 
· Option 2: Measurements of specific Rx beam(s)
· Companies report how to select specific Rx beam(s) 
· Option 3: Measurements of random Rx beam(s) per model input sample
Other options are not precluded and can be reported by companies.




For DL Tx beam prediction, there is no need for the information of Rx beam. In the simulation, 8 Tx beams in Set B of beams are used for AI inputs to predict the Top N Tx beam(s) of Set A consisted with 32 Tx beams. More assumptions can be found in Appendix and detailed beam setting can be found in Section 2.1. Five cases were tested:
· Case 1: The best L1-RSRPs of 8 Tx beams, where the best L1-RSRP of each Tx beam is obtained by exhaustive beam sweeping with 8 Rx beams.
· Case 2: L1-RSRPs of 8 Tx beams are measured by the fixed two Rx beams from the same panel with index [0, 2]. 
· Case 3: L1-RSRPs of 8 Tx beams are measured by the fixed two Rx beams from different panels with index [0, 4]. 
· Case 4: L1-RSRPs of 8 Tx beams are measured by the fixed one Rx beams with index [2].
· Case 5: L1-RSRPs of 8 Tx beams are measured by the randomly selected one Rx beam.
· Non-AI baseline: Select based on the best L1-RSRP of 8Tx*8Rx beam.
For Case 1, the best L1-RSRPs associated with the chosen 8 Tx beams are used as AI inputs, where each of them is the best among all measurements by exhaustive beam sweeping with 8 Rx beams. In Case 2 and Case 3, double information (measurements from two Rx) is used as AI inputs comparing with other cases. In Case 4 and Case 5, L1-RSRPs of one fixed or one randomly selected Rx beam associated with the chosen 8 Tx beams are used as AI inputs. Moreover, the information of the chosen 8 Tx beams is also implicitly learned from the matrix of the AI inputs. However, there is no information of Rx beam. 
[bookmark: _Ref127482341]Table 20 Simulation results for different Rx beams assumptions
	Config.
	Top-1/1
	Top-2/1
	Top-3/1
	Top-4/1
	Top-5/1
	Ave RSRP diff

	Case 1: Best Rx beam
	90.35%
	96.47%
	98.09%
	98.84%
	99.21%
	0.121

	Case 2: Two fixed Rx beam [0,2]
	78.51%
	86.96%
	90.42%
	92.38%
	93.88%
	0.746

	Case 3: Two fixed Rx beam [0,4]
	82.27%
	90.54%
	93.63%
	95.44%
	96.61%
	0.415

	Case 4: One fixed Rx beam [0]
	64.35%
	76.94%
	82.28%
	85.64%
	88.17%
	1.534

	Case 5: Random one Rx beam
	61.49%
	73.64%
	79.27%
	82.7%
	85.45%
	1.854

	Baseline (non-AI): 

	38.59%
	58.09%
	72.52%
	83.35%
	89.96%
	2.342


Table 20 summarizes the evaluation results with different Rx beam assumptions for BM-Case 1 (spatial domain prediction only) with fixed Set B. From the results in Table 20, we can observe that the AI/ML model can achieve the best performance while the L1-RSRPs are measured by the best Rx beam. However, this requires more measurements at UE side (exhaustive beam sweeping is needed). By comparing Case 2-3 with Case 4-5, we can observe that, as the number of Rx beams increase, the AI/ML model can be fed with more information, and the prediction accuracy increases accordingly. Note that there is a slight performance gap between Case 2 and Case 3. One possible reason is that the two fixed Rx beams in Case 3 come from different panels, which can in turn provide more direction information to the AI/ML model. By comparing Case 4 and Case 5, we can observe that the AI/ML model can achieve a better performance while being fed with deterministic information. In Case 5, the Rx beam is randomly selected, which introduces randomness and thus disturbs the training process. 
[bookmark: _Ref127535468]Observation # 24: Using the L1-RSRP of the “best” Rx beam with exhaustive beam sweep as inputs can provide the best performance for the accuracy of Top-1/N beam prediction than fixed or randomly selected one or two Rx beams with fixed or random Tx beams for BM-Case 1. 
[bookmark: _Ref127535470]Observation # 25: With L1-RSRPs of fixed Rx beam(s) as AI inputs can provide better performance than L1-RSRP of random Rx beam(s) for DL Tx beam prediction for BM-Case 1.  
When it comes to best Rx beam, we manage to obtain the best Rx beam for each Tx beam in Set B, which however is quite time-consuming. Except this, there are still many other options for best Rx beam assumption as discussed in FL summary [1] as below:
· Case 0: the best Rx beam for the best Tx beam within Set B
· Case 1: the best Rx beam searched for one Tx beam within Set B
· Case 2: the best Rx beam for each Tx beam within Set B
· Case 3: the best Rx beam among specific Rx beams for each Tx beam within Set B
· Case 4: the best Rx beam among specific Rx beams for the best Tx beam within Set B
· Case 5: the best Rx beam for the best Tx beam within Set A

Here, we only consider the performance of the top 3 cases, and the remaining cases needs further consideration. UE will do Rx beam sweeping on each Tx beam in Set B to obtain a complete measurement report. Accordingly, each Tx beam has its own best Rx beam. When it comes to best Rx beam, the corresponding Tx beam should be clarified. In Case 0, we first obtain the best Tx beam according to the total measurement result, and further report the measurement result of its best Rx beam to the AI/ML model. In case 1, we randomly select one Tx beam and report the measurement result of its best Rx beam to the AI/ML model. In case 2, for each Tx beam, we utilize its best Rx beam to measure its L1-RSRP and report the measurement result to the AI.ML model. The simulation results in different cases are summarized in the table below:
[bookmark: _Ref131630233]Table 21 Simulation results for different “Best Rx” cases
	Cases
	Top1
	Top1/2
	Top1/3
	Top1/5
	Ave RSRP diff

	Case 0
	86.05%
	93.63%
	96.55%
	98.45%
	0.427

	Case 1
	83.21%
	91.16%
	94.36%
	97.12%
	0.686

	Case 2
	91.99%
	97.63%
	99.02%
	99.72%
	0.136


From Table 21, we observe that the best Rx beam of each Tx beam provides the most information to the AI/ML model. If we utilize one fixed Rx beam to measure the L1-RSRPs of each Tx beams, there will be a performance degradation due to information loss. 
[bookmark: _Ref131779275]Observation # 26: With the L1-RSRP results from the best Rx beam of each Tx beam, AI/ML can provide better performance.

	Agreement
For performance evaluation of AI/ML based DL Tx beam prediction for BM-Case1 and BM-Case2, optionally study the performance with a quasi-optimal Rx beam (i.e., not all the measurements as inputs of AI/ML are from the “best” Rx beam) with less measurement/RS overhead compared to exhaustive Rx beam sweeping. 
· At least the following options can be considered:
· Opt A: Identify the quasi-optimal Rx beams to be utilized for measuring Set B/Set C based on the previous measurements.
· Companies can report the time information and beam type (e.g., whether the same Tx beam(s) in Set B) of the reference signal to use. 
· Companies report how to find the quasi-optimal Rx beam with “previous measurement”
· FFS: Opt B: The Rx beams for measuring Set B/Set C consist of the X% of “best” Rx beam exhaustive Rx beam sweeping and (1-X%) of random Rx beams [or the adjacent Rx beam to the “best” Rx beam].
· X%= 80% or 90%, or other values reported by companies. 
· Note: X% is the percentage of measurements with “best” Rx beams out of all measurements   
· Other options are not precluded.
· Companies report the measurement/RS overhead together with beam prediction accuracy. 




Moreover, to obtain the best Rx beam, beam sweeping is needed. Figure 15 illustrates an example to use SSB for Rx beam sweeping to obtain the best Rx beam. For this case, the best Rx beam is sub-optimal. To collect the measurements for Set B with CSI-RS may be slightly different, since CSI-RSs can be transmitted within a short time. The RS assumption to obtain the best Rx can be reported by companies. Moreover, if SSB is assumed to obtain the best Rx beam or DL Tx beam prediction (considering the periodicity of SSB), SSB overhead (as RS overhead) doesn’t need to be considered.  Similarly, shown as in Figure 15, to obtain/generate one measurement with best Rx beam for the beams in Set B requires 20*8 ms with SSB as the reference signal. And the obtained Rx beam may not be the best Rx beam for the measurement due to the channel various. If more reports/measurements are needed, e.g., for BM-case2, multiple reports/measurements need to be considered. With the assumption of CSI-RS, it is slightly different since CSI-RS is able to be transmitted within a short time. As shown in Figure 16, the measurements with or without Rx beam sweeping can be obtained in a short period. 
[image: ]
[bookmark: _Ref127470991]Figure 15 Example to obtain the best Rx beam with SSB

[image: ]
[bookmark: _Ref127534035]Figure 16 Example to obtain the best Rx beam with CSI-RS in one shot
For each Tx beam in Set B, we utilize multiple Rx beams to measure its L1-RSRP. In simulations, we can obtain all the measurement results simultaneously and report some effective information to the AI/ML model, which however is quite challenging in practice. Rx beam sweeping is needed for UE to obtain the best Rx beam for a single Tx beam in Set B. The sweeping period may be variable, resulting in multiple different ways to get the best Rx beam. 
· Case 0: Rx beam sweeping is performed every 20 ms
· Case 1: Rx beam sweeping is performed every 1 ms
· Case 2: Rx beam sweeping is performed all at once

UE will do RX beam sweeping on the 8 TX beams in Set B with 8 times. In Case 0, a total of 20*8=160ms is needed to obtain the best Rx beam for each Tx beam in Set B. In Case 1, a total of 1*8=8 ms is needed to obtain the best Rx beam for each Tx beam in Set B. In Case 2, the RSRP report of the beams in Set B is obtained all at once. The simulation results in different cases are summarized in the table below:
[bookmark: _Ref131630917]Table 22 Simulation results for various sweeping period with 3km/h
	Cases
	Top1
	Top1/2
	Top1/3
	Top1/5
	Ave RSRP diff

	Case 0
	78.27%
	87.67%
	91.44%
	94.64%
	0.687

	Case 1
	89.44%
	95.2%
	97.03%
	98.29%
	0.263

	Case 2
	91.99%
	97.63%
	99.02%
	99.72%
	0.136



Table 22 summarizes the evaluation results with different beam sweeping period. We can observe that the performance of the AI/ML model gets worse as the sweeping period increases. One possible reason for this is that, since the UE is in a moving state, the best Rx beam for a single Tx beam may change as user moves around. Accordingly, the RSRP report obtained in previous time slots cannot provide accurate information for real-time beam prediction. And the sweeping period should be short enough to ensure that the best Rx beam for each single Tx beam remains unchanged within a complete sweeping period.
[bookmark: _Ref135067074]Observation # 27: With the Rx beams obtained from previous sweeping, the prediction accuracy of Top1/K beam and average RSRP difference has some degradation. ~13% accuracy loss in terms of Top 1 beam prediction accuracy is observed with “quasi-optimal” Rx beam based on SSB burst in the past 160ms with 3km/h without UE rotation. However, the RS/measurement overhead can be reduced from 1/4 to 1/32 without counting measurements of SSB.

0.8.3 Performance impact with quantization 
In practice, L1-RSRP measurements should be quantized before they are reported to gNB, which introduce quantization errors into the AI/ML model. The effects of quantization are further considered in this section. Specifically, we have four options to add quantization to the AI/ML model:
Table 23 Different options for adding quantization
	Options
	Train data
	Train label
	Test data
	Test label

	Option 1
	N/A
	N/A
	N/A
	N/A

	Option 2
	N/A
	N/A
	Add quantization (1dB)
	N/A

	Option 3
	N/A
	N/A
	Add quantization (2dB)
	N/A

	Option 4
	Add quantization (2dB)
	Add quantization (2dB)
	Add quantization (2dB)
	N/A



In Option 1, we do not add quantization to the dataset, and the model is trained and tested without quantization, which further serves as baseline performance. In Option 2-3, we only add quantization to the testing dataset, i.e., the AI/ML model is trained without quantization. In the testing stage, the AI/ML model takes as input the quantized L1-RSRPs, and outputs a prediction result. Note that the testing label is obtained using the original ideal L1-RSRPs. Here, Option 2 and Option 3 adopt two different methods to add quantization to L1-RSRPs. In Option 2, the L1-RSRPs are quantized according to their real values and the quantization error is 1dB. In Option 3, after the selected Rx beam has measured the L1-RSRPs of all the Tx beams in Set A, we first select the highest L1-RSRP, which is quantized according to its real value. All the remaining L1-RSRPs will be quantized according to their differences with the highest L1-RSRP and the quantization error is 2dB. In Option 4, we add quantization to the training and testing dataset. The training label is obtained using the quantized L1-RSRPs, while the testing label is obtained using the original ideal L1-RSRPs. 
[bookmark: _Ref127482500]Table 24 Simulation results for various quantization configurations
	Cases
	Top1
	Top1/2
	Top1/3
	Top1/4
	Top1/5
	Ave RSRP diff

	Option 1
	86.69%
	93.31%
	95.25%
	96.15%
	96.87%
	0.423

	Option 2
	85.21%
	91.76%
	93.91%
	94.97%
	95.86%
	0.557

	Option 3
	82.55%
	89.36%
	91.91 %
	93.37%
	94.43%
	0.848

	Option 4
	86.40%
	92.07%
	94.02%
	95.03%
	95.84%
	0.607



The above table summarizes the evaluation results with different quantization assumptions. Note that the testing label is always obtained using the ideal L1-RSRPs. By comparing Option 2-3 with Option 1, we observe that the quantization errors can slightly decrease the prediction accuracy of the AI/ML model, and such effect can be intensified as the quantization error increases. In addition, the prediction accuracy in Option 4 can approach that in Option 1, indicating that the networks can be trained to overcome the effects of quantization by selecting proper training dataset and labels. 
[bookmark: _Ref135067075]Observation # 28: Quantization error has a minor negative effect on the prediction accuracy with classification model. 
Another aspect to study the impact of quantization error is the quantization range of differential RSRP. Specifically, we have three options to limit the quantization range of differential RSRP to the AI/ML model:

Table 25 Different options for the quantization range of differential RSRP
	Options
	Train data
	Test data

	Option A
	N/A
	N/A

	Option B
	-30 dB
	-30 dB

	Option C
	-14 dB
	-14 dB


In Option A, we do not limit the quantization range of differential RSRP. In Option B, we limit the quantization range of differential RSRP by -30 dB from the strongest RSRP which serves as baseline performance. In Option C, we limit the quantization range of differential RSRP by -14 dB from the strongest RSRP. Note that existing quantization granularity are applied at the strongest RSRP (i.e., 1dB) and the differential RSRPs (i.e., 2 dB) in all Options. 
[bookmark: _Ref135067262]Table 26 Simulation results for various quantization range configurations
	|Set B|
	Cases
	Top1
	Top2/1
	Top3/1
	Top4/1

	8
	Option A
	76.59%
	95.29%
	97.58%
	98.49%

	
	Option B
	76.74%
	94.26%
	97.01%
	97.87%

	
	Option C
	68.80%
	91.61%
	96.01%
	97.26%

	12
	Option A
	85.04%
	97.32%
	98.80%
	99.15%

	
	Option B
	86.70%
	97.94%
	98.96%
	99.30%

	
	Option C
	83.21%
	96.28%
	97.82%
	98.50%

	16
	Option A
	88.54%
	97.21%
	98.45%
	98.85%

	
	Option B
	87.84%
	97.88%
	98.79%
	99.02%

	
	Option C
	86.35%
	97.09%
	98.01%
	98.41%



The above table summarizes the evaluation results with different quantization range assumptions in LLS (BM-Case2). By comparing Option A with Option B, we observe that with higher quantization range of differential RSRP than existing one, there is no performance gain regarding Top-K/1 prediction accuracy. In addition, by comparing Options A and B with Option C, with lower quantization range of differential RSRP than legacy one, there is minor negative effect on Top-K/1 accuracy with 12 or 16 beams in Set B, while there is about 8% loss in Top-1 accuracy with 8 beams in Set B. Even though 1 bit per reported beam in UCI is saved, there is minor negative effect on beam prediction performance. From the observations, we can get an insight that gNB can carefully select quantization level (bitwidth, step size) of RSRP and/or differential RSRP by considering tradeoff between prediction performance loss and UCI payload size reduction. 
[bookmark: _Ref131779259]Observation # 29: With higher quantization range of differential RSRP (e.g., more than 4 bits for differential RSRP) than legacy one, there is no performance gain regarding Top-K/1 prediction accuracy.
[bookmark: _Ref131779262]Observation # 30: With lower quantization range of differential RSRP (e.g., 3 bits) than legacy one, there is minor negative effect on Top-K/1 accuracy with 12 or 16 beams in Set B, while there is 8% loss in Top 1 accuracy with 8 beams in Set B.
[bookmark: _Ref131779332]Proposal # 9: As one of evaluation for the impact of quantization error of inputted L1-RSRP (for training and inference) for AI/ML model for beam management, study the quantization range of differential L1-RSRP.
· Existing quantization range of differential L1-RSRP (i.e., 30 dB) is the starting point for evaluation at least for network-sided model.
0.8.4 UCI overhead reduction
	Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead (e.g., number of UCI reports and UCI payload size) and/or UCI overhead reduction for inference of AI/ML model can be reported by company. 
· UCI overhead reduction = 1- Total UCI payload size for AI/ML/Total UCI payload size of baseline.
· Companies to report detailed assumption of UCI for AI/ML and baseline, e.g., including quantization mechanism




In this section, we consider three formats as a UCI format to show evaluation results for reporting overhead reduction.
· Format 1: N1 UCI reports are considered where one UCI report consists of M1 ‘CRIs or SSBRIs’ and M1 RSRPs (N1 =  and M1 = 4 are assumed). 
· Format 2: single UCI report is considered where one UCI report consists of M2 ‘CRIs or SSBRIs’, and M2 RSRPs (M2  |Set B| is assumed). 
· Format 3: N3 UCI reports are considered where one UCI report consists of 1 CRI or SSBRI for the best beam and M3 RSRPs (N3 = 1 and M3 = |Set B| are assumed). 
· Baseline: Format 1 with existing quantization bitwidth and range.
Since current specification supports maximum 4 beams reporting in one UCI report, we think that Format 1 does not require spec changes so it serves as a baseline format.
As mentioned in previous section, UCI payload size can be reduced by reducing bitwidth of differential RSRP with marginal prediction accuracy degradation. Table 26summarizes the evaluation results with different quantization range assumptions and different UCI formats in LLS. As mentioned in section 1.2, various UCI formats can be considered for AI/ML. In Format 1, we observe that with lower quantization range of differential RSRP than existing one, there is about 11% reporting overhead reduction. In Format 2, M2 = |Set B| is considered. With this format, there is negative reporting overhead reduction when the bitwidth of differential RSRP is 4. In Format 3, by saving the bits for CRI/SSBRI reporting, 29.63% ~ 34.26% reporting overhead reduction and 42.59% ~ 48.15% reporting overhead reduction are observed with 4 bits and 3 bits of the differential RSRP, respectively.
Table 27 Simulation results for various quantization range and UCI format configurations
	|Set B|
	Bitwdith of differential RSRP
	Format 1
	Format 2
(M2 = |Set B|)
	Format 3

	
	
	Total UCI payload size
	Reporting overhead reduction
	Total UCI payload size
	Reporting overhead reduction
	Total UCI payload size
	Reporting overhead reduction

	8
	4
	54
	0 (Baseline)
	59
	-9.26%
	38
	29.63%

	
	3
	48
	11.11%
	52
	3.70%
	31
	42.59%

	12
	4
	81
	0 (Baseline)
	99
	-22.22%
	55
	32.10%

	
	3
	72
	11.11%
	88
	-8.64%
	44
	45.68%

	16
	4
	108
	0 (Baseline)
	131
	-21.30%
	71
	34.26%

	
	3
	96
	11.11%
	116
	-7.41%
	56
	48.15%



[bookmark: _Ref131779264]Observation # 31: With lower quantization range of differential RSRP (= 3 bits) than legacy one (= 4 bits), reporting overhead reduction is about 11% based on the baseline UCI format for inference.
[bookmark: _Ref131779265]Observation # 32: With single UCI report, the UCI payload overhead is larger than the baseline when all CRIs or SSBRIs and all RSRPs of the beams in Set B are reported.
[bookmark: _Ref131779266]Observation # 33: With single UCI report with CRI/SSBRI omission, the UCI payload overhead is smaller than the baseline when all RSRPs of the beams in Set B are reported.
Even though Format 2 has worst performance about reporting overhead reduction when the number of reported beams and the number of beams in Set B are the same, there should be a room to reduce reporting overhead when beams in a subset of Set B are reported. Note that Format 3 cannot support reporting of beams in subset of Set B. For one example, only best M2 beams can be reported where M2 is smaller than |Set B|. There should be performance degradation due to the loss of information amount, but the marginal degradation is observed in our simulation results which are presented in section for generalization. For another example, the differential RSRP that exceeds quantization range can be omitted as assuming that gNB sets unreported RSRP as value of the minimum differential RSRP (i.e., -30 dB). Here, the prediction accuracy from not omitting RSRP and from omitting RSRP are the same.
[bookmark: _Ref135068481]Table 28 Simulation results for various quantization range and number of reported beams in UCI Format 2
	|Set B|
	Bitwdith of differential RSRP
	M2 
(within quantization range)
	Total UCI payload size
	Reporting overhead reduction

	
	
	Average
	5%-tile
	95%-tile
	Average
	5%-tile
	95%-tile
	Average
	5%-tile
	95%-tile

	8
	4
	7.96
	8
	8
	58.7
	59
	59
	-8.70%
	-9.26%
	-9.26%

	
	3
	4.41
	2
	8
	30.5
	16
	52
	43.52%
	70.37%
	3.70%

	12
	4
	11.86
	11
	12
	97.9
	91
	99
	-20.86%
	-12.35%
	-22.22%

	
	3
	6.15
	3
	11
	47.1
	25
	81
	41.85%
	69.14%
	25.00%

	16
	4
	15.7
	14
	16
	128.6
	115
	131
	-19.07%
	-6.48%
	-21.30%

	
	3
	7.48
	3
	13
	56.4
	25
	95
	47.78%
	76.85%
	12.04%



Table 28 summarizes the evaluation results with different quantization range assumptions and different number of reported beams for Format 2 in LLS*. Here, M2 refers the number of reported beams which are within the quantization range. In practice, M2 can be configured or indicated by gNB (e.g., based on statistical analysis) or M2 can be determined by UE based on RSRP measurements and can be found by gNB based on blind decoding. With the same quantization range of differential RSRP as legacy one (= 4 bits), reporting a subset of beams within the quantization range has negative reporting overhead reduction. With lower quantization range of differential RSRP (= 3 bits) than legacy one, we observe that Format 2 with reporting a subset of beams within the quantization range can reduce the reporting overhead reduction by 43.52% ~ 47.78% in average which is similar with reporting overhead reduction from Format 3. At 5%-tile CDF, 70.37% ~ 76.85% reporting overhead reduction is observed which is larger than reporting overhead reduction from Format 3. Also, at 95%-tile CDF, 3.7% ~ 12.04% reporting overhead reduction is shown which is smaller than reporting overhead reduction from Format 3. Based on our evaluation results, it seems UCI overhead and/or reporting overhead reduction in average, at 5%-tile CDF, and at 95%-tile are helpful to get an insight. 
[bookmark: _Ref131779270]Observation # 34: With same quantization range of differential RSRP as legacy one (= 4 bits), reporting a subset of beams within the quantization range has negative reporting overhead reduction.
[bookmark: _Ref131779272]Observation # 35: With lower quantization range of differential RSRP (= 3 bits) than legacy one (= 4 bits), reporting a subset of beams within the quantization range can reduce the reporting overhead reduction by 43.52% ~ 47.78% in average, 70.37% ~ 76.85% at 5%-tile CDF, and 3.7% ~ 12.04% at 95%-tile CDF.
0.8.5 Measurement error

We often assume that the Rx beam can accurately measure the L1-RSRP of the Tx beams in Set A. However, in fact, we cannot neglect the effect of noise. While Rx beams are measuring the L1-RSRP of any Tx beam, there always exists a large measurement error. If the AI/ML model is trained with ideal data without noise, it is challenging for the AI/ML model to eliminate the effect of noise. Here, we perform multiple sets of experiments to verify whether the network can resist the effect of noise and accurately predict the Top-1 Tx beam (Tx-Rx beam pair). We assume that the measurement noise consists of two parts: one part comes from the baseband, and the other part comes from the RF side. For the measurement error caused by RF impairment, we assume the measurements for different Tx beam from the same Rx beam have the same error.  Both parts of the noise obey the Gaussian truncated distribution, and the specific distribution range is determined by the noise power. In this section, we consider two possible distribution ranges of [-3,3] dB and [-6,6] dB, respectively.
While adding noise to the AI/ML model, we consider multiple options as shown in the following Table. In order to be able to obtain the performance 

Table 29 Different options for adding noise
	Options
	Train data
	Train label
	Test data
	Test label

	Option 1
	N/A
	N/A
	N/A
	N/A

	Option 2
	3dB BB +3dB RF
	N/A
	3dB BB +3dB RF
	N/A

	Option 3
	6dB BB +6dB RF
	N/A
	6dB BB +6dB RF
	N/A

	Option 4
	6dB BB
	N/A
	6dB BB 
	N/A

	Option 5
	6dB BB +6dB RF
	6dB BB +6dB RF
	6dB BB +6dB RF
	N/A



Here, Option 1 is considered as performance baseline, i.e., the AI/ML model is trained and tested using ideal data without noise. In Option 2-3, we only add noise to the model input, while the label is still obtained based on ideal data without noise. In Option 2, the boundary for the BB noise and RF noise are both 3dB. In Option 3, the boundary for the BB noise and RF noise are both 6dB. In Option 4, only 6dB BB noise is added. Option 2 and Option 4 indicate the performances with total 6dB measurement error with different assumptions. Moreover, we also simulate Option 5, in which, we used noisy data for training label as well, while, in testing phase, the beam prediction accuracy represents the gap to the genie-added Top-1 beam without measurement errors. The DL Tx beam performance for Option 3 and Option 5 are similar, and Option 5 slightly outperforms than Option 3. This means, no need to strive for clean label during data collection phase. 
Here, the performance upper boundary can be obtained by selecting the best Tx beam among Set A
[bookmark: _Ref135071095]Observation # 36: With clean label, for both DL Tx beam and Tx-Rx beam pair prediction, the beam prediction accuracy has significant degradation. However, the baseline performance with searching of all beams(pairs) in Set A, i.e., upper boundary, also has degradation due to the measurement error.  
[bookmark: _Ref135071097]Observation # 37: AI/ML can provide comparable performance as the exhaustive search among Set A of beams(pairs):
· For DL Tx beam prediction, about 1% performance difference to exhaustive search among Set A of beams is observed with different measurement errors.
· For DL Tx-Rx beam pair prediction, about 7~8% performance difference to exhaustive search among Set A of beams is observed with different measurement errors.
[bookmark: _Ref135071098][bookmark: _Ref135071099]Observation # 38: With noisy label in training phase, the beam prediction performance is slightly outperformed than with clean label in training phase for DL beam prediction. Observation # 39: Compared with Tx beam prediction, beam pair prediction is more sensitive to measurement errors.
Table 30 Evaluation results for DL Tx beam prediction with different measurement error
	
	Opt 1
No error
	Opt 2
3dB BB+3dB RF
	Opt 3
6dB BB+6dB RF
	Opt 4
6dB BB
	Opt 5
6dB BB+6dB RF with noisy label

	Settings
	Number of beams in Set A
	32

	
	[Pattern of Set B]
	[2, 8, 12, 14, 17, 19, 23, 29]

	
	[Rx beam assumption]
	Opt 1: Best Rx beam
Case 2: the best Rx beam for each Tx beam within Set B

	
	Baseline scheme
	Option 2
Select best Tx among Set B

	AI/ML model
	Model input
	Ideal L1-RSRP, implicit Tx beam ID

	
	Model output
	Probabilities of Top-1 beam for all Tx beam in Set A

	Data Size
	Training
	2100*0.8*625

	
	Testing
	2100*0.2*625

	AI/ML model
	Short model description
	DNN

	
	Model complexity 
	0.65 Mbyte

	
	Computational complexity 
	1.3*10e6 FLOPs

	Evaluation results with [AI/ML/
baseline]
	[Beam prediction accuracy (%)]
Note2
	Top-1(%)
	93.01
	51.25
	44.28
	45.63
	44.6

	
	
	Global search upper boundary (%)
	100
	53.16
	45.28
	46.22
	45.5

	
	
	Top-1(%) with 1dB margin
	
97.95

	
63.95
	
55.38
	
56.93
	55.78

	
	
	Top-2/1(%), Top-3/1(%) ,Top-4/1(%) 
	[97.74, 99.05, 99.50]

	
[75.26, 89.66,  96.07]

	
[69.75, 85.17,  93.39]

	[71.37,  86.53, 94.38]
	[70.22, 85.13,  93.14]

	
	[L1-RSRP Diff]
Note2
	Average L1-RSRP diff (dB)
	0.064

	1.128
	1.711
	1.593
	1.686




Table 31 Evaluation results for beam pair prediction with different measurement error
	
	Opt 1 
No error
	Opt 2
3dB BB+3dB RF
	Opt 3
6dB BB+6dB RF
	Opt 4
6dB BB

	Settings
	Number of beams in Set A
	32

	
	[Pattern of Set B]
	[2, 8, 12, 14, 17, 19, 23, 29]

	
	[Rx beam assumption]
	Opt 1: Best Rx beam
Case 2: the best Rx beam for each Tx beam within Set B

	
	Baseline scheme
	Option 2
Select best Tx among Set B

	AI/ML model
	Model input
	Ideal L1-RSRP, implicit Tx beam ID


	
	Model output
	Probabilities of Top-1 beam pair


	Data Size
	Training
	2100*0.8*625

	
	Testing
	2100*0.2*625

	AI/ML model
	Short model description
	DNN

	
	Model complexity 
	0.65 Mbyte

	
	Computational complexity 
	1.3*10e6 FLOPs

	Evaluation results with [AI/ML/
baseline]
	[Beam prediction accuracy (%)]
Note2
	Top-1(%)
	76.78
	38.50
	31.69
	35.45

	
	
	Global search upper boundary (%)
	100
	46.88
	38.1
	42.62

	
	
	Top-1(%) with 1dB margin
	84.72
	
49.55

	40.34
	44.83

	
	
	Top-2/1(%) , Top-3/1(%) ,Top-4/1(%) 
	[84.24  88.16  90.23]
	
[59.48, 73.73,  81.84]

	[0.5168,  65.44	74.31]
	[56.75, 70.63	79.32]

	
	[L1-RSRP Diff]
Note2
	Average L1-RSRP diff (dB)
	1.161
	
2.161

	3.213
	2.69


. 

0.8.6 Different label

Two types of AI model are widely used for beam prediction, classification model and regression model. For classification model, the Top-1/K beams are used to be labelled and the outputs are usually the probabilities of the Top 1 beam for each candidates beams. For classification model, it only requires the measurements of Set B of beams and the ID of Top-1 beam in Set A. However, regression model can be used to predicted L1-RSRPs of all the candidates beams of Set A, and obtain Top-1/K beams by ranking the predicted L1-RSRPs of all beams in Set A. Regression model requires all the measurements of candidates beams in Set A. For data collection, especially NW side data collection, the overhead is quite different. In order to understand the specification impact, e.g., overhead, AI model type and its labels shall be reported by companies. 
Table 32 provides preliminary results for Tx-Rx beam pair prediction with regression model and classification model respectively. For regression model, the input layer has 8*32=256 neurons, which represents the measurement result at the UE side. Every time UE performs Rx beam sweeping on a single Tx beam in Set B, we can obtain the best Rx beam for the Tx beam. Only the measurement result of the best Rx beam of each Tx beam in Set B will be reported to the AI/ML model, and the index of the best Rx beam is implicitly illustrated in the input vector. The AI/ML model includes three hidden layers (512,256,256 neurons). The output layer of the AI model has 256 neurons, each representing the predicted L1-RSRP of a possible Tx-Rx beam pair. The model is trained based on the MSE loss function. Similar input is used for classification model as well, with DNN model. For classification model, only the best Tx-Rx beam pair was labelled. The prediction performance is given as below. Classification model can provide better performance than regression model for Top 1 with less data for training phase.

[bookmark: _Ref131779320][bookmark: _Ref135071112]Observation # 40: Classification model provides better performance than regression model for beam prediction accuracy. 

[bookmark: _Ref131700272]Table 32 Different models performance comparison
	Models
	Top1
	Top1/2
	Top1/3
	Top1/4
	Ave RSRP diff

	Regression model
	43.2%
	66.4%
	81.83%
	87.86%
	1.365

	Classification model
	76.78%
	84.24%
	88.16%
	90.23%
	1.161




AI/ML model Generalization
0.9 Generalization for BM-Case1
Assumption of beam management procedures
For AI-based BM, the AI/ML model is designed and trained for a specific scenario, i.e., all the UE parameters and gNB settings are fixed in the training and testing stages. However, the UEs in the cell can have different trajectories, speeds, number of Rx beams, antenna configs. etc. Since the AI/ML model is scenario specific, one well-trained AI/ML model becomes inapplicable once UE parameters change. It is time-consuming to train an AI/ML model for each possible scenario, so that an AI/ML model shall have the ability to adapt properly to a set of different scenarios with similar configurations. In the simulation, the generalization performance of an AI/ML model is considered over multiple scenarios. Specifically, the multiple scenarios are considered focusing on one or more of the following aspects as a starting point:
· Scenarios
· Various deployments 
· Various ISD
· Various UE distribution
· Various numbers of Set B
· Various gNB antenna settings 
· Various carry frequency

Evaluation methodology
Without loss of generality, in our simulation, the number of the multiple scenarios is fixed to be two. Specifically, while considering the multiple scenarios from a certain perspective (e.g., UE speed), we assume that all the other configurations are the same in the multiple scenarios. The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios as a starting point:
· Case 1-1: The AI/ML model is trained based on a training dataset from Scenario#A, and then the AI/ML model performs inference/test on a dataset from Scenario#A
· Case 1-2: The AI/ML model is trained based on a training dataset from Scenario#B, and then the AI/ML model performs inference/test on a dataset from Scenario#B
· Case 2-1: The AI/ML model is trained based on a training dataset from Scenario#A, and then the AI/ML model performs inference/test on a dataset from Scenario#A
· Case 2-2: The AI/ML model is trained based on a training dataset from Scenario#B, and then the AI/ML model performs inference/test on a dataset from Scenario#B
· Case 2A-1: The AI/ML model is trained based on a training dataset from Scenario#B, and then the AI/ML model is updated based on a fine-tuning dataset from Scenario#A. After that, the AI/ML model is tested on a dataset from Scenario#A
· Case 2A-2: The AI/ML model is trained based on a training dataset from Scenario#A, and then the AI/ML model is updated based on a fine-tuning dataset from Scenario#B. After that, the AI/ML model is tested on a dataset from Scenario#B
· Case 3-1: The AI/ML model is trained based on a training dataset constructed by mixing datasets from Scenario#A and Scenario#B, and then the AI/ML model performs inference/test on datasets from Scenario#A
· Case 3-2: The AI/ML model is trained based on a training dataset constructed by mixing datasets from Scenario#A and Scenario#B, and then the AI/ML model performs inference/test on datasets from Scenario#B
In the simulation, we refer to a timestep as the duration in which the UE finishes one round of RX beam sweeping. Specifically, in each timestep, UE will do RX beam sweeping on the 32 TX beams in Set A with 8 times. We assume that there are 2100 UEs in the cell, each experiencing 2100 timesteps. Therefore, the total dataset has a size of 2100*5000*32, which can be further divided into training and testing datasets with a division ratio of 20%, i.e., 80% data is utilized for training, while the remaining 20% data is utilized for testing. In the evaluation, the L1-RSRP of Set B of beams measured by the best Rx beam are used. To simplify the evaluation, we assume the beam sweeping can be done in a short time (i.e., the L1-RSRPs with the best Rx beam can be obtained in one time). Moreover, there is no additional assistance information to indicate or implicitly indicate the different scenarios. 


0.9.1 Different UE distribution

We have multiple options for indoor UE ratios (e.g., 0, 20%, 40%, 60%, 80%, 100%). However, since the number of the multiple scenarios is fixed to two, we just select two candidate ratios here. The configurations of the multiple UE distribution scenarios are as shown table below.
Table 33 Various UE distribution scenarios configurations
	Scenarios
	Deployment
	UE speed
	Indoor UE distribution
	Codebook

	Scenario#A
	Uma
	3 km/h
	20%
	Codebook 1

	Scenario#B
	Uma
	3 km/h
	80%
	Codebook 1



[bookmark: _Ref135068748]Table 34 Simulation results for various UE distribution scenarios configurations
	Cases
	Top1
	Top1/2
	Top1/3
	Top1/4
	Top1/5
	Ave RSRP diff

	Non-AI #A
	36.51%
	55.77%
	70.77%
	83.42%
	88.72%
	2.501

	Non-AI #B
	36.05%
	54.08%
	68.67%
	80.25%
	86.86%
	2.628

	Case 1-1 #A =>#A
	91.06%
	96.80%
	98.20%
	98.88%
	99.19%
	0.114

	Case 1-2 #B =>#B
	90.41%
	96.57%
	98.10%
	98.84%
	99.17%
	0.124

	Case 2-1 #B =>#A
	62.83%
	83.06%
	87.25%
	89.29%
	92.49%
	1.386

	Case 2-2 #A =>#B
	47.63%
	67.16%
	76.94%
	82.37%
	86.10%
	1.604

	Case 2A-1 #B+#A(10%)=>A
	89.15%
	96.03%
	97.74 %
	98.60%
	99.00%
	0.151

	Case 2A-2  #A+#B(10%)=>B
	72.49%
	85.56%
	91.02%
	93.72%
	95.35%
	0.518

	Case 3-1 #A+#B=>#A
	90.20%
	95.87%
	97.35%
	98.13%
	98.55%
	0.171

	Case 3-2 #A+#B=>#B
	71.74%
	85.00%
	90.58%
	93.32%
	95.10%
	0.551



Table 34 summarizes the generalization performance of an AI/ML model over various UE distribution scenarios. From Table 34, Case 2A-1 can achieve nearly the same performance as Case 1-1. However, on the contrary, there is an obvious performance gap between Case 2A-2 and Case 1-2. That is, finetune from Scenario#B to Scenario#A seems easier, but harder the other way around. One possible reason is that the channels in Scenario#B are more complex, i.e., as compared to Scenario#A, it is more challenging to perform BM in Scenario#B, so that the AI/ML model needs to be fed with more information to achieve good performance in Scenario#B. In Case 2A-2, the sampled dataset from Scenario#B obviously cannot satisfy such request, so that Case 2A-2 experiences a slightly lower performance than Case 1-2. On the contrary, since Scenario#A is much simpler, a sampled dataset from Scenario#A can provide sufficient information for the AI/ML model to perform BM in Scenario#A, and this is the reason why finetune from Scenario#B to Scenario#A is easier. The same conclusion also applies for mix-training (Case 3). As can be seen from Table 34, with mix-training, the AI/ML model can achieve a good performance under Scenario#A (Case 3-1), while its performance under Scenario#B (Case 3-2) is far from satisfactory. And the reason is that, the mixed dataset contains only partial information of Scenario#A and Scenario#B. Similarly, since Scenario#A is much simpler, the mixed dataset provides sufficient information for the AI/ML model to perform BM under Scenario#A, while failing to provide sufficient information for the AI/ML model to perform BM under Scenario#B. 
[bookmark: _Ref135068782]Observation # 41: For various UE distribution scenarios, if data sets for training and inference are from different scenarios (i.e., Case 2), the performance has significate degradation. However, it is still better than non-AI scheme.  
[bookmark: _Ref135068691]Observation # 42: For various UE distribution scenarios, with model finetune (Case 2A) or training with mixed data (Case 3), the performance is slightly lower than training and inference with the same deployment scenario (Case 1).  
[bookmark: _Ref135068692]Observation # 43: Various UE distribution scenarios may have different scene complexity, which should be emphasized in the finetune process. Finetune from a complex model to a simple model is easier (Case 2A-1), but harder on the other way around (Case 2A-2). 
[bookmark: _Ref135068785]Observation # 44: The scene complexity of various UE distribution scenarios also affects the performance of mix-training. With mix-training, the AI/ML model works well under simple scenarios (Case 3-1), but may be slightly inferior under complex scenarios (Case 3-2). 

0.9.2 Different UE Rx assumptions
In this section, we consider the effect of UE Rx assumptions on the prediction accuracy of the AI/ML model. Different UEs may have different Rx configurations, which can in turn affect their Rx beam patterns and measurement performances. In this section, we have three options for UE Rx configurations. In Scenario A, we assume that UEs are equipped with an antenna array with a size of 2*2. In Scenario B, we assume that UEs are equipped with an antenna array with a size of 4*2. That is, in Scenario A, each UE has four Rx antennas and thus can utilize 4 Rx beams to measure the L1-RSRP of the Tx beams in Set B. In Scenario B, each UE has eight Rx antennas and thus can utilize 8 Rx beams to measure the L1-RSRP of the Tx beams in Set B. The yellow and gray curves denote the measurement results of two fixed Rx beams (0,1) in Case 1, and the blue and orange curves denote the measurement result of two fixed Rx beams (0,1) in Case 2. From the figure, we observe that the two cases share something in common, e.g., each curve has four extreme points, corresponding to four different vertical directions, respectively. Except this, there does exist a huge difference between the distributions of the L1-RSRPs in the two cases. The L1-RSRP in case 1 is relatively lower than that in case 2. One possible reason is that, since we consider cross-polarized antennas, in case 2, there is only a single pair of cross-polarized antennas on each panel, so that there does not exist any beam gain, and the L1-RSRP decreases accordingly. Moreover, when the number of Rx antenna elements increases, the width of each Rx beam gets even narrower, and the L1-RSRP becomes more sensitive to spatial directions. That is, once we transform the Tx beam from one to another, the corresponding L1-RSRP changes faster in case 2 as compared to case 1. As reflected in Figure below, the top two curves are sharper than the bottom two ones, especially at the position near extreme points. Actually, the AI/ML model is fed with several sampled points of a single curve and is expected to recover the complete curve. As the number elements of each Rx beam change, the shape of the curve will also change, and it seems challenging for the AI/ML model to always complete the recover process successfully. Therefore, it is necessary to consider the generalization performance of the AI/ML model with different Rx beam assumptions.
Moreover, we also simulated the results with Scenario #C, where 4Rx at UE side is a subset of Scenario #B, where the beam shape and Rx beam forming gain are the same. 

Figure 17
Table 35 UE Rx assumptions
	Scenarios
	UE Rx assumption 

	Scenario#A
	4 Rx beams with (1,2,2,1,2,1,1), 2 panels (left, right)

	Scenario#B
	8 Rx beams with UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)  

	Scenario#C
	4 Rx beams with UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)



[bookmark: _Ref135314278]Observation # 45: For Tx beam prediction, different Rx assumption have about 10% performance degradation on generalization performance for AI/ML in beam prediction without finetune or mix-training.   
[bookmark: _Ref135314279]Observation # 46: Rx beam shape/beam forming gain changes has larger impact than using a subset of Rx (Scenario#C)

[bookmark: _Ref135314546]Proposal # 10: For generalization performance with different UE Rx assumptions, separately analyze the performance with different Rx beam number only and with different beam shape/beamforming gain and different Rx beam.  

[bookmark: _Ref135069616][bookmark: _Ref135071137]Observation # 47: For Tx-Rx beam pair prediction, AI/ML cannot work if the model hasn’t been trained with a certain Rx assumption.
[bookmark: _Ref135069617]Observation # 48: For Tx-Rx beam pair prediction, with mixed data with different UE Rx assumptions, 26 % of degradation is observed for Top 1 beam prediction comparing with trained by single UE Rx assumptions.
[bookmark: _Ref135069620]Observation # 49: For Tx-Rx DL Tx beam prediction, with mixed data, ~25% of degradation is observed for Top 1 beam prediction with different UE Rx assumptions, which may be caused labeling methods to handle different Rx beam number.
Table 36 Evaluation results for DL Tx beam prediction different UE Rx assumptions
	Generalization setting
	Configuration/Scenario #A
	4 Rx beams with (1,2,2,1,2,1,1), 2 panels (left, right)

	
	Configuration/Scenario #B
	8 Rx beams with UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)  

	Generalization cases
	Case 1: trained by #B => tested by #B
Case 2: trained by #A => tested by #B
Case 3: Trained with mixed #A and #B=> tested with #B
	Case1
	Case2
	Case3

	Data Size
	Training
	2100*0.8*625
	2100*0.8*625
	2100*0.8*625

	
	Testing
	2100*0.2*625
	2100*0.2*625
	2100*0.2*625

	Settings
	Number of beam pairs in Set A
	256 (32 Tx and 8 Rx) 
	128 (32 Tx and 4 Rx) 
	256 (32 Tx and 8 Rx) 

	
	Number of beam pairs in Set B
	F8
	F8
	F8

	
	[Pattern of Set B]
	[2, 8, 12, 14, 17, 19, 23, 29 ]Tx with all Rx beams
	[2, 8, 12, 14, 17, 19, 23, 29] Tx with all Rx beams
	[2, 8, 12, 14, 17, 19, 23, 29] Tx with all Rx beams

	AI/ML model
	Model input
	L1-RSRP, implicty Tx beam ID, and Rx beam ID

	
	Model output
	Probablities of Top-1 beam pair ID for all beam pairs in Set A

	
	[Short model description, e.g., CNN, LSTM]
	LSTM
	LSTM
	LSTM

	
	[Model complexity
in a number of model size (e.g. Mbyte)]
	15
	15
	15

	
	Computational complexity [FLOPs]
	8*10e6
	8*10e6
	8*10e6

	Evaluation results with [AI/ML/
baseline]
	[Beam prediction accuracy (%)]
Note2
	Top-1(%)
	93.08/25.90
	82.92/30.95 
	85.56/31.93

	
	
	Top-1(%) with 1dB margin
	98.10/38.22
	88.34/34.75
	90.88/35.65

	
	
	Top-2/1(%) , Top-4/1(%) , other values
	[98.21, 99.33, 99.82]/[25.90, 25.90, 25.90]Top 2/3/5
	[90.71,  93.54,  96.39]/[30.95,  30.95,  30.95]
Top 2/3/5
	 

	
	[L1-RSRP Diff]
Note2
	Average L1-RSRP diff (dB) 
	0.067/3.157
	1.114/6.705
	[91.07, 93.11, 96.24]/[38.00, 41.28,  52.37]Top 2/3/5



Table 37 Evaluation results for DL Tx beam prediction different UE Rx assumptions
	Generalization setting
	Configuration/Scenario #A
	4 Rx beams with UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)

	
	Configuration/Scenario #B
	8 Rx beams with UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)  

	Generalization cases
	Case 1: trained by #B => tested by #B
Case 2: trained by #A => tested by #B

	Case 1
	Case 2

	Data Size
	Training
	2100*0.8*625
	2100*0.8*625

	
	Testing
	2100*0.2*625
	2100*0.2*625

	Settings
	Number of beam pairs in Set A
	32
	32

	
	Number of beam pairs in Set B
	F8
	F8

	
	[Pattern of Set B]
	[2, 6, 10, 14, 18, 22, 26, 30]
	[2, 6, 10, 14, 18, 22, 26, 30]

	AI/ML model
	Model input
	L1-RSRP, implicty Tx beam ID
	L1-RSRP, implicty Tx beam ID

	
	Model output
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	
	[Short model description, e.g., CNN, LSTM]
	LSTM
	LSTM

	
	[Model complexity
in a number of model size (e.g. Mbyte)]
	15
	15

	
	Computational complexity [FLOPs]
	8*10e6
	8*10e6

	Evaluation results with [AI/ML/
baseline]
	[Beam prediction accuracy (%)]
Note2
	Top-1(%)
	81.00/30.34
	76.22/26.87

	
	
	Top-1(%) with 1dB margin
	87.94/35.95
	83.45/30.33

	
	
	Top-2/1(%) , Top-4/1(%) , other values
	[90.79, 94.40, 97.30]/[30.34, 30.34, 30.34]
	 

	
	[L1-RSRP Diff]
Note2
	
Average L1-RSRP diff (dB) 

	1.239/5.983

	1.430/7.331



	

Table 38 Evaluation results for beam pair prediction different UE Rx assumptions
	Generalization setting
	Configuration/Scenario #A
	4 Rx beams with (1,2,2,1,2,1,1), 2 panels (left, right)

	
	Configuration/Scenario #B
	8 Rx beams with UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)  

	Generalization cases
	Case 1: trained by #B => tested by #B
Case 2: trained by #A => tested by #B
Case 3: Trained with mixed #A and #B=> tested with #B
	case1
	case2
	case3

	Data Size
	Training
	2100*0.8*625
	2100*0.8*625
	2100*0.8*625

	
	Testing
	2100*0.2*625
	2100*0.2*625
	2100*0.2*625

	Settings
	Number of beam pairs in Set A
	256 (32 Tx and 8 Rx) 
	128 (32 Tx and 4 Rx) 
	256 (32 Tx and 8 Rx) 

	
	Number of beam pairs in Set B
	F8
	F8
	F8

	
	[Pattern of Set B]
	[2, 8, 12, 14, 17, 19, 23, 29 ]Tx with all Rx beams
	[2, 8, 12, 14, 17, 19, 23, 29] Tx with all Rx beams
	[2, 8, 12, 14, 17, 19, 23, 29] Tx with all Rx beams

	AI/ML model
	Model input
	L1-RSRP, implicty Tx beam ID, and Rx beam ID

	
	Model output
	Probablities of Top-1 beam pair ID for all beam pairs in Set A

	
	[Short model description, e.g., CNN, LSTM]
	DNN
	DNN
	DNN

	
	[Model complexity
in a number of model size (e.g. Mbyte)]
	0.65
	0.65
	0.65

	
	Computational complexity [FLOPs]
	1.3*10e6
	1.3*10e6
	1.3*10e6

	Evaluation results with [AI/ML/
baseline]
	[Beam prediction accuracy (%)]
Note2
	Top-1(%)
	76.78
	13.92
	50.67

	
	
	Top-1(%) with 1dB margin
	84.72
	23.76
	59.5

	
	
	Top-2/1(%) , Top-4/1(%) , other values
	84.24  88.16  90.23
	27.53 37.77 44.07
	60.18 67.66 71.23

	
	[L1-RSRP Diff]
Note2
	Average L1-RSRP diff (dB) 
	1.161
	6.127
	3.812




0.9.3 Various codebook scenarios
We have two candidate codebooks (codebook 1 and codebook 2), and the beam directions with different codebooks are illustrated in the following figure. With codebook 1, there are 4 beams in the vertical direction with 6-degree step, and 8 beams in the horizontal direction within [-60°, +60°] range. Compared with codebook 1, the beams with codebook 2 have a deviation in the Phi direction. 
[image: ] [image: ]
Figure 18 Beam directions with different codebooks

The configurations of the multiple codebook scenarios are as shown in Table 39.
[bookmark: _Ref127308486][bookmark: _Ref127478713]Table 39 Various codebooks scenarios configurations
	Scenarios
	Deployment
	UE speed
	Indoor UE distribution
	Codebook

	Scenario#A
	Uma
	3 km/h
	20%
	Codebook 1

	Scenario#B
	Uma
	3 km/h
	20%
	Codebook 2


[bookmark: _Ref127308530]
[bookmark: _Ref127478733]Table 40  Simulation results for various codebook scenarios configurations
	Cases
	Top1
	Top1/2
	Top1/3
	Top1/4
	Top1/5
	Ave RSRP diff

	Non-AI #A
	28.64%
	32.52%
	38.92%
	42.37%
	54.47%
	6.881

	Non-AI #B
	21.08%
	27.14%
	33.09%
	36.59%
	45.33%
	7.683

	Case 1-1 #A =>#A
	91.57%
	96.59%
	97.89%
	98.61%
	98.99%
	0.165

	Case 1-2 #B =>#B
	81.51%
	88.17%
	90.89%
	92.20%
	93.21%
	1.153

	Case 2-2 #B =>#A
	24.16%
	30.37%
	32.89%
	35.08%
	38.02%
	13.724

	Case 2-1 #A =>#B
	17.1%
	22.84%
	26.69%
	29.39%
	32.82%
	42.434

	Case 2A-1
#B+#A(10%) =>A
	87.17%
	93.43%
	95.44 %
	96.69%
	97.35%
	0.519

	Case 2A-2
#A+#B (10%) =>B
	67.4%
	78.67%
	83.13%
	85.08%
	86.77%
	2.535

	Case 3-1 #A+#B=>#A
	90.84%
	96.43%
	97.97%
	98.56%
	98.89%
	0.171

	Case 3-2 #A+#B=>#B
	78.43%
	89.02%
	91.86%
	93.48%
	94.61%
	0.795



Table 40 summarizes the generalization performance of an AI/ML model over various codebooks scenarios. From Table 40, for various codebook scenarios, Case 2-1 experiences an even worse performance than the non-AI scheme. That is, the AI/ML model becomes totally inapplicable once the codebook changes. As can be seen from Table 11, finetune and mix-training are of great significance in increasing the generalization ability of the AI/ML model over various codebook scenarios. 
[bookmark: _Ref127535412]Observation # 50: For various codebook scenarios, if AI/ML never trained with a given codebook, the performance is worse than non-AI baseline. 
[bookmark: _Ref127535414]Observation # 51: Finetune (10%) can improve the generalization performance for different codebook scenarios, but it still has some degradation comparing with training with single codebook (Case 1).
[bookmark: _Ref127535415]Observation # 52: Training with mixed data (Case 3) can provide better performance than finetune (Case 2A), and the performance is close to the performance training with single codebook (Case 1).

Without model finetune, the generalization performance of the AI/ML model (Case 2-1) is depicted in Figure 19. Without loss of generality, Case 1-1 (blue column) is considered as performance baseline. From Figure 19. we observe that when UE distribution (orange column) or gNB deployment scheme (grey column) changes, the Top-K performance has a significant but acceptable degradation. However, when codebooks (yellow column) change, the Top-K performance decreases sharply and the AI/ML model becomes totally inapplicable. That is, it is not always necessary to update AI/ML models to adapt to the change of certain parameters. Specifically, system parameters can be divided into two categories, depending on whether or not they are beam-related. When one or more beam-related parameters (e.g., codebook, antenna/array configuration) change, we must perform finetune or mix-training to ensure that the AI/ML model can always be applicable. The specific parameters that have significant impact on beam prediction needs further study.
[bookmark: _Ref127535417]Observation # 53: Beam correlation related parameters have significant impact on generalization performance for AI/ML in beam prediction. Without finetune or mix-training, the performance may be even worse than non-AI scheme.   
[bookmark: _Ref127535456]Observation # 54: The settings/parameters that may cause verification of wireless channel will degrade the generalization performance for AI/ML in beam prediction.

[bookmark: _Ref127479913]Figure 19 Generalization performance without finetune



0.10 Generalization for BM-Case2
0.10.1 UE speed 
In this section the generalization performance of AI/ML model is provided for beam-pair prediction and DL TX beam prediction.
Assumption of beam management procedures
In the evaluation, a total 32 beams at BS side are considered for the Set A, with 4 x 8 antenna configuration. At UE, a total of 4 beams are considered.. There are 4 beams in the vertical direction, and 8 beams in the horizontal direction within [-60°, +60°] range.
Fixed 8 beams out of the total 32 beams are chosen as the Set B. In this scenario, narrow beams are SSB based, and UE will do RX beam sweeping on these 8 TX beams in Set B with 4 times, i.e., 20*4=80ms, to obtain the one RSRP report of the beams in Set B. Here, we assume that UE is aware of the beam mapping and indexing of Set-A and Set-B. As there are a total 4 beams at the UE side, the resulting number of beam pairs is 128. 
Description of AI/ML models 
The AI/ML model for our beam prediction is similar to the AI model shown above in Figure 21 except the prediction time window in this AI model is 160ms. Table 4 shows the complexity of the AI model in terms of Flops and the size.
Evaluation results:
Table 41 summarized some evaluation results with different UE speed assumptions of TX-RX beam pair prediction and Table 42 summarized results on DL TX beam prediction with accuracy of Top-1 predicted beam to be in the set of Top-K actual beams in terms of L1-RSRP. We also draw the results for Average L-1 RSRP difference where Average L-1 RSRP difference means the difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam. We also show the results for the Top-1 predicted beam within 1dB RSRP difference of the actual best beam for the beam pair prediction. Note that the total number of beam pairs are 128 and the total number of BS beams are 32. We draw the results for different UE speed such as 30, 40 50 and 60 kmph. Mixed data have the equal number of samples of all the dataset with UE speed varying from 30 to 60 kmph.

[bookmark: _Ref131701349][bookmark: _Ref131673533]Table 41 Generalization performance for beam pair prediction with respect to various UE speeds. 
	Testing dataset
	Training dataset
	Mixed data 
	UE Speed 30kmph
	UE Speed 60kmph
	Legacy scheme (Non-AI)
Set - B

	30kmph
	Top 1
	71.91
	75.853
	51.647
	8.635

	
	Top 1/2
	88.8
	89.384
	67.395
	15.739

	
	Top 1/3
	94.37
	95.158
	75.298
	21.854

	
	Top 1/4
	96.74
	96.967
	78.944
	26.395

	
	Top-1 (in 1dB)
	83.20
	86.585
	60.367
	12.322

	
	Ave RSRP diff
	1.271
	1.18
	4.07
	4.14

	40kmph
	Top 1
	70.63
	65.625
	54.108
	7.721

	
	Top 1/2
	88.20
	79.716
	72.743
	14.565

	
	Top 1/3
	95.38
	87.152
	80.208
	19.865

	
	Top 1/4
	97.81
	91.059
	84.027
	23.906

	
	Top-1 (in 1dB)
	83.405
	75.086
	64.091
	11.41

	
	Ave RSRP diff
	1.241
	2.055
	3.109
	4.287

	50kmph
	Top 1
	71.125
	57.69
	59.181
	8.837

	
	Top 1/2
	88.099
	72.777
	76.988
	15.46

	
	Top 1/3
	94.576
	80.76
	83.333
	21.298

	
	Top 1/4
	97.456
	84.824
	86.988
	25.947

	
	Top-1 (in 1dB)
	82.807
	67.748
	69.415
	12.469

	
	Ave RSRP diff
	1.307
	3.003
	2.583
	4.279

	60kmph
	Top 1
	66.71
	47.331
	67.133
	7.764

	
	Top 1/2
	85.418
	61.65
	86.001
	14.208

	
	Top 1/3
	93.307
	70.516
	92.592
	20.748

	
	Top 1/4
	96.15
	76.436
	95.888
	25.074

	
	Top-1 (in 1dB)
	78.783
	55.905
	78.710
	10.743

	
	Ave RSRP diff
	1.477
	3.792
	1.623
	3.965



[bookmark: _Ref131701420][bookmark: _Ref131673574]Table 42: Generalization performance for DL TX beam prediction with respect to various UE speeds.
	Testing dataset
	Training dataset
	Mixed data 
	UE Speed 30kmph
	UE Speed 60kmph
	Legacy scheme (Non-AI)
Set – B

	30kmph
	Top 1
	81.525
	83.114
	67.249
	21.22

	
	Top 1/2
	94.954
	95.567
	82.706
	36.111

	
	Top 1/3
	97.987
	98.337
	88.538
	51.229

	
	Top 1/4
	99.023
	98.92
	90.784
	67.659

	40kmph
	Top 1
	80.873
	76.649
	66.869
	20.156

	
	Top 1/2
	90.037
	90.596
	84.606
	34.331

	
	Top 1/3
	98.799
	95.601
	89.901
	50.156

	
	Top 1/4
	99.508
	97.164
	92.737
	65.95

	50kmph
	Top 1
	81.856
	68.567
	69.678
	20.28

	
	Top 1/2
	95.029
	86.111
	86.491
	33.57

	
	Top 1/3
	98.289
	90.935
	91.198
	50.75

	
	Top 1/4
	99.488
	93.625
	93.976
	67.337

	60kmph
	Top 1
	77.5
	61.621
	77.019
	17.996

	
	Top 1/2
	92.855
	78.769
	92.971
	31.701

	
	Top 1/3
	97.652
	85.651
	97.171
	51.566

	
	Top 1/4
	99.125
	88.918
	98.629
	67.852



From Table 41 we can see that, AI model outperforms the legacy setup in terms of Top-K accuracy and average RSRP difference. Also, when the training is done using a specific UE speed dataset and testing is done on a dataset with the same UE speed, it outperforms every other training scenario. For example, in Table 41, testing dataset with UE speed 30kmph results in better accuracy than any other scenario when the training is done using the dataset with UE speed of 30kmph. On the other hand, when the testing is done on a dataset with 40kmph, it results in poorer performance with the training dataset 30kmph UE speed. In this case, a model with the training done on the mixed dataset (with various UE speeds ranging from 30 to 60 kmph) performs better. 
[bookmark: _Ref115445421]Observation # 55: For DL TX beam prediction and beam pair prediction, AI/ML model performs the best when the training and testing dataset are drawn from the same UE speed. However, performance degradation is observed when the training dataset and testing datasets are drawn from different UE speed. 

[bookmark: _Ref115445371]Observation # 56: For DL TX beam prediction and beam pair prediction, training a model with a mixture of dataset drawn from a range of UE speeds allows the model to perform well over a range of UE speeds.  


0.10.2 Different gNB antenna setting/different number or pattern of Set A
Assumption of beam management procedures
In the evaluation, a total 32 beams at BS side are considered for the Set A, with fixed beam peak gain direction. Fixed 8 beams out of the total 32 BS beams are chosen as the Set B. The beam directions and selected Set-B beams (8 beams) for measurement are highlighted with blue color are illustrated in Figure 8. There are 4 beams in the vertical direction with 6-degree step, and 8 beams in the horizontal direction within [-60°, +60°] range. At UE side, 1 panel with 4 beams are considered.
The 8 TX beams are measured in 20ms period. In this scenario, a UE will do RX beam sweeping on these 8 TX beams in Set B with each of the 4 UE beams, i.e., it takes 20*4=80ms for UE to obtain the one RSRP report of the beams in Set B. Here, we assume that UE is aware of the beam mapping and indexing of Set-A and Set-B. As there are a total 4 beams at the UE side, the resulting number of beam pairs is 128 corresponds to Set-A and 32 beam pairs correspond to Set-B. In this evaluation, 30km/h is assumed. 
In the evaluation, we consider various antenna configuration in order to generalize the performance for various BS beam patterns. The BS antenna configurations, which are considered for this evaluation, are shown below:
· BS antenna configuration A : One panel: (M, N, P, Mg, Ng) = (4, 4, 2, 1, 1)
· BS antenna configuration B : One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1)
· BS antenna configuration C : One panel: (M, N, P, Mg, Ng) = (8, 4, 2, 1, 1)
· BS antenna configuration D : One panel: (M, N, P, Mg, Ng) = (8, 8, 2, 1, 1)
With different BS antenna configuration, BS beam pattern changes. For this evaluation, we also consider changing the beam pattern by changing the half power beam-width (HPBW) of single antenna element [Table 7.3-1 of [2]], which is being used in the antenna array. Changing HPBW of single antenna element scale the beam pattern and the configuration are described as below: 
· Single antenna HPBW Configuration A: ) = ()
· Single antenna HPBW Configuration B: ) = ()
· Single antenna HPBW Configuration C: ) = ()
· Single antenna HPBW Configuration D: ) = ()
[bookmark: _Ref127560125][bookmark: _Ref127560115]In the Figure 21, we show the antenna array gain pattern for these configurations. As we can see from the figure 20, the beam pattern changes with BS antenna configuration change and get scaled with single antenna HPBW configuration change.
	
	BS antenna configuration A
	BS antenna configuration D

	Single antenna HPBW Configuration A
	[image: ]
	[image: ]

	Single antenna HPBW Configuration B
	[image: ]
	[image: ]


[bookmark: _Ref131631605]Figure 21 Beam pattern for BS antenna configuration A and D where the left figures corresponds to the BS antenna configuration A and the right figure correspond to the configuration D. Upper figures corresponds to single antenna HPBW Configuration A and lower figures corresponds to single antenna HPBW Configuration B.

Description of AI/ML models 
The AI/ML model for Tx-Rx beam prediction is shown below in Figure 22 layer with 64 cells, followed by a LSTM layer with 128 cells and then, at last a FC layer predict the output with 128 cells. 
Input to the AI model is RSRP of set-B beams corresponding to the 4 UE beams, i.e., 8 x 4 beams, and output is the RSRP of set-A beams corresponding to the 4 UE beams., i.e. 128 beam pairs (32 x 4 beams).
The data corresponding to the 80ms cycle is considered as one timestep for the ML model. In the ML model, we feed data of 6 such timesteps to the FC layer and LSTM network and predict the RSRP of all the beam pairs. For ML model training, we have excluded those UEs whose RSRP does not exceed -90dB even for one beam pair during the entire measurement cycle. Thus the observation window is 80ms x 6 i.e. 480ms and the prediction is done for t+320 ms where ‘t’ is current time.
Baseline (Non-AI):
For this evaluation, we compare the AI model result with two methods: 
1. Legacy-Set A measurements: Set-A beams of BS are measured with UE beams with a periodicity of 20ms. UE does beam sweep measuring all the BS beams with all of its beams. As there are 32 beams in Set-A and 4 UE beams, So these 128 beam pairs are measured in 20ms*4=80ms. Measurement till current time ‘t’ are used for evaluation. Note that, AI model uses only set-B beams. 
2. Legacy-Set B measurements: Set-B beams of BS are measured with UE beams with a periodicity of 20ms. UE does beam sweep measuring set-B beams of BS with all of its beams. As there are 8 beams in Set-B and 4 UE beams, So these 32 beam pairs are measured in 20ms*4=80ms. Measurement till current time ‘t’ are used for evaluation. This measurement of the set-B beams is also the input for the AI model.


		
Figure 23: AI model for BM for various gNB setting generalization

Complexity of the ML model:
Table 43shows the number of parameters and FLOPs for the AI model. The formulae of the Table 1 for counting the number of FLOPs and parameters is used here. Model size for this AI model is 410 KB.
[bookmark: _Ref131701152]Table 43: Params and FLOPs for the ML model
	Layer Index
	Model Type
	Params
	FLOPs

	1
	FC
	(32+1)*64=2112
	(2*32-1)*64=4032

	2
	LSTM
	[(64+128)*128+128]*4=98816
	(64+128)*128*6=147456

	3
	FC
	(128+1)*128=16512
	(2*128-1)*128=32640

	Total
	N/A
	1
	2



Results:
We show generalization results for BS antenna configurations and also, for single antenna HPBW configurations. We also compare the AI model results with the Legacy Non-AI schemes. Here. We show the results of Non-AI scheme where set-B beams of BS are measured. We also show the results of Non-AI scheme where set-A beams of BS are measured to obtain the best beam pair. 
1. Generalization for BS antenna configurations:
Table 46 shows the generalization performance for beam pair prediction for various BS antenna configurations when the training has been done using mixed dataset. Note that, Tx beams in set-A are 32, Rx beams are 4 and total number of Tx-Rx beam pairs are 128. Top-1 predicted beam is compared with genie-added Top-K beams 320 ms ahead in time. Table 44 shows the generalization performance for beam pair prediction for various BS antenna configurations when the training has been done using BS antenna configurations-A data. We observe that Except for BS antenna configuration-A, ML model trained on mixed dataset, outperforms the ML model trained with configuration-A. 
Similarly, Table 45 shows the generalization performance for beam pair prediction for various BS antenna configurations when the training has been done using BS antenna configurations-D data. We observe that Except for BS antenna configuration-D, ML model trained on mixed dataset, outperforms the ML model trained with configuration-A. 

[bookmark: _Ref127387292]Table 44: Generalization performance for beam pair prediction for BS antenna configuration-A
	Training using Antenna Configuration-A data

	Top - K/N
Accuracy% 
 
	BS antenna configuration A
	BS antenna configuration B
	BS antenna configuration C
	BS antenna configuration D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	68.02
	69.91
	94.38
	45.94
	48.83
	86.6
	38.54
	43.07
	83.12
	34.82
	38.76
	80.3

	Top 1/2
	87.02
	89.39
	99.68
	65.01
	71.01
	98.47
	59.82
	66.74
	97.63
	51.1
	58.45
	96.47

	Top 1/3
	93.03
	94.92
	100
	74.67
	81.89
	99.63
	71.49
	78.34
	99.71
	63.52
	72.03
	99.14

	Top 1/4
	95.27
	97.16
	100
	80.62
	88.01
	100
	78.17
	83.81
	100
	71.12
	79.69
	100

	Top 1~1dB
	88.93
	
	61.01
	
	54.31
	
	43.16
	




[bookmark: _Ref127387301]Table 45: Generalization performance for beam pair prediction for BS antenna configuration-D
	Training using Antenna Configuration-D data

	Top - K/N
Accuracy% 
 
	BS antenna configuration A
	BS antenna configuration B
	BS antenna configuration C
	BS antenna configuration D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	44.26
	48.76
	84.35
	51.21
	57.7
	83.45
	55.39
	59.82
	85.8
	77.6
	81.51
	91.18

	Top 1/2
	60.08
	66.41
	97.9
	69.63
	76.91
	98.21
	74.22
	79.26
	98.86
	91.73
	94.18
	99.75

	Top 1/3
	70.17
	76.56
	99.65
	78.69
	85.89
	99.94
	83.27
	87.39
	99.82
	97.07
	98.26
	100

	Top 1/4
	77.02
	83.78
	100
	85.24
	91.04
	100
	88.2
	91.49
	100
	98.73
	99.28
	100

	Top 1~1dB
	60.74
	
	65.32
	
	71.57
	
	88.92
	



[bookmark: _Ref127483781]Table 46: Generalization performance for beam pair prediction for mixed dataset from various BS antenna configurations
	Training on Mixed data (All BS antenna configurations)

	Top - K/N
Accuracy% 
 
	BS antenna configuration A
	BS antenna configuration B
	BS antenna configuration C
	BS antenna configuration D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	59.08
	61.17
	92.6
	66.34
	69.09
	92.54
	64.03
	67.73
	91.46
	73.03
	76.88
	90.24

	Top 1/2
	83.61
	87.33
	99.68
	88.24
	91.33
	99.4
	85.86
	90.24
	99.85
	88.51
	92.31
	99.2

	Top 1/3
	90.54
	93.61
	99.94
	93.56
	95.94
	99.83
	93.42
	95.44
	100
	95.61
	97.63
	100

	Top 1/4
	95.04
	97.36
	100
	95.72
	98.18
	100
	96.81
	97.98
	100
	97.87
	99
	100

	Top 1~1dB
	86.67
	
	86.31
	
	84.35
	
	84.21
	



Results for legacy Non-AI scheme are shown in Table 47 and Table 48, where Table 47 shows the generalization performance for legacy scheme where measurements of Set-B of BS beams are used to obtain the best beam. Note that, there are 8 beams in Set-B of BS beams, which are measured with 4 UE beams and thus 32 beam pairs are measured to obtain the best beam.  
Table 48 shows the generalization performance using Legacy scheme based on measurements of set-A beams of BS. Legacy scheme in this evaluation is based on measurement of beam pairs (total 128) and the Top-1 beam is compared with genie-added Top-K beams 320 ms ahead in time.
[bookmark: _Ref127387325]Table 47 Generalization performance for Legacy scheme where set-B of BS beams are measured. Note that, there are 32 Tx-Rx beam pairs corresponds to set-B and 128 beam pairs corresponds to set-A. The best beam out of 32 Tx-Rx beam pairs is compared with the genie added Top beams 320 ms ahead in time.
	Legacy Scheme based on Set-B measurements (Non-AI)

	Top - K/N
Accuracy% 
 
	BS antenna configuration A
	BS antenna configuration B
	BS antenna configuration C
	BS antenna configuration D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	20.08
	21.8
	87.9
	20.11
	21.95
	85.09
	19.17
	20.65
	83.38
	18.34
	19.94
	81.81

	Top 1/2
	53.32
	58.28
	97.5
	49.77
	55.72
	96.99
	47.45
	51.63
	97.04
	42.78
	50.79
	95.86

	Top 1/3
	69.91
	74.84
	99.42
	67.5
	75.21
	99.32
	62.84
	71.77
	99.48
	57.6
	67.35
	99.53

	Top 1/4
	80.14
	86.64
	100
	74.84
	83.51
	100
	72.14
	84.18
	100
	69.33
	81.84
	100

	Top 1~1dB
	46.93
	
	37.93
	
	34.79
	
	26.94
	



[bookmark: _Ref127387332]Table 48: Generalization performance for Legacy scheme where set-A of BS beams are measured. Note that, there are 128 beam pairs corresponds to set-A and the best beam is compared with the genie added Top beams 320 ms ahead in time.
	Legacy Scheme based on Set-A measurements (Non-AI)

	Top - K/N
Accuracy% 
 
	BS antenna configuration A
	BS antenna configuration B
	BS antenna configuration C
	BS antenna configuration D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	76.24
	80.08
	88.85
	74.33
	77.84
	87.73
	72.66
	77.21
	88.25
	71.79
	76.61
	86.5

	Top 1/2
	85.78
	90.97
	97.62
	83.93
	88.64
	97.5
	84.86
	90.52
	98.32
	85.42
	90.66
	97.9

	Top 1/3
	89.71
	95.18
	99.65
	89.12
	94.1
	99.57
	90.89
	95.44
	99.88
	92.28
	95.92
	99.66

	Top 1/4
	91.31
	96.7
	100
	92.01
	96.62
	100
	93.68
	97.21
	100
	95.42
	98.2
	100

	Top 1~1dB
	88.65
	
	84.05
	
	85.88
	
	81.79
	



2. Generalization for single antenna HPBW configurations:
Table 52 shows the generalization performance for beam pair prediction for various BS antenna configurations when the training has been done using mixed dataset. Note that, Tx beams in set-A are 32, Rx beams are 4 and total number of Tx-Rx beam pairs are 128. Top-1 predicted beam is compared with genie-added Top-K beams 320 ms ahead in time. Table 53 and Table 54 show the generalization performance for beam pair prediction for various single antenna HPBW configurations when the training has been done using single antenna HPBW configurations-A and B data respectively. We observe that there is not any significant degradation in the performance of other dataset. Note that, the beam pattern only get scaled when compared among different single antenna HPBW configurations, while beam pattern changes when compared among different BS antenna configurations.
Table 49: Generalization performance for beam pair prediction for Single Antenna HPBW Configuration-A
	Training using Single Antenna HPBW Configuration-A data

	Top - K/N
Accuracy% 
 
	Single Antenna HPBW Configuration-A
	Single Antenna HPBW Configuration-B
	Single Antenna HPBW Configuration-C
	Single Antenna HPBW Configuration-D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	60.61
	63.86
	89.66
	58.63
	61.62
	88.16
	59.57
	62.6
	89.22
	60
	63.18
	89.13

	Top 1/2
	82.5
	86.07
	99.49
	81.39
	84.77
	98.54
	82.28
	85.85
	98.94
	81.87
	85.36
	99.41

	Top 1/3
	89.83
	93.08
	100
	88.27
	91.4
	99.91
	89.31
	92.51
	99.91
	89.21
	92.45
	100

	Top 1/4
	93.89
	96.49
	100
	92.46
	95.19
	100
	93.54
	96.22
	100
	93.29
	95.89
	100

	Top 1~1dB
	80.02
	
	77.63
	
	78.48
	
	79.38
	



Table 50: Generalization performance for beam pair prediction for Single Antenna HPBW Configuration-B
	Training using Single Antenna HPBW Configuration-B data

	Top - K/N
Accuracy% 
 
	Single Antenna HPBW Configuration-A
	Single Antenna HPBW Configuration-B
	Single Antenna HPBW Configuration-C
	Single Antenna HPBW Configuration-D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	57.28
	61.9
	88.51
	63.04
	67.25
	89.38
	61.74
	65.97
	89.34
	57.82
	62.29
	88.26

	Top 1/2
	78.15
	83.64
	98.87
	83.41
	88.25
	99
	82.11
	87.14
	98.94
	78.68
	83.93
	99.02

	Top 1/3
	87.45
	91.96
	99.94
	90.75
	94.31
	99.91
	90.2
	93.82
	99.91
	87.56
	92.23
	99.94

	Top 1/4
	91.79
	95.51
	100
	94.28
	97.15
	100
	94
	96.97
	100
	92.09
	95.67
	100

	Top 1~1dB
	75.29
	
	81.08
	
	79.82
	
	76.22
	 



[bookmark: _Ref127484034]Table 51: Generalization performance for beam pair prediction for mixed dataset various Single Antenna HPBW Configurations
	Training on Mixed data (All Single Antenna HPBW Configurations)

	Top - K/N
Accuracy% 
 
	Single Antenna HPBW Configuration-A
	Single Antenna HPBW Configuration-B
	Single Antenna HPBW Configuration-C
	Single Antenna HPBW Configuration-D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	65.43
	68.62
	91.7
	66.05
	69.04
	91.74
	66.05
	69.08
	91.8
	65.25
	68.46
	91.56

	Top 1/2
	86.21
	89.85
	99.52
	86.97
	90.78
	99.48
	86.74
	90.51
	99.54
	86.39
	90.16
	99.58

	Top 1/3
	93.16
	95.29
	99.97
	93.42
	96.04
	99.91
	93.28
	95.82
	99.91
	93.37
	95.55
	99.97

	Top 1/4
	96.33
	97.98
	100
	96.35
	98.37
	100
	96.37
	98.34
	100
	96.45
	97.87
	100

	Top 1~1dB
	85.04
	
	85.68
	
	85.57
	
	85.22
	



Results for legacy Non-AI scheme are shown in Table 52 and Table 53, where Table 54 shows the generalization performance for legacy scheme where measurements of Set-B of BS beams are used to obtain the best beam. Note that, there are 8 beams in Set-B of BS beams, which are measured with 4 UE beams and thus 32 beam pairs are measured to obtain the best beam.  
Table 54 shows the generalization performance using Legacy scheme based on measurements of set-A beams of BS. Legacy scheme in this evaluation is based on measurement of beam pairs (total 128) and the Top-1 beam is compared with genie-added Top-K beams 320 ms ahead in time.
[bookmark: _Ref127387385]Table 52: Generalization performance for Legacy scheme where 32 beam pairs are measured and compared with the genie added Top beams 320 ms ahead in time.
	Legacy Scheme based on Set-B measurements (Non-AI)

	Top - K/N
Accuracy% 
 
	Single Antenna HPBW Configuration-A
	Single Antenna HPBW Configuration-B
	Single Antenna HPBW Configuration-C
	Single Antenna HPBW Configuration-D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	19.52
	21
	84.9
	19.43
	21.2
	84.12
	19.22
	21.02
	84.6
	19.49
	21
	84.46

	Top 1/2
	48.12
	53.86
	96.83
	48.36
	54.22
	96.55
	48.74
	54.42
	97.08
	47.9
	53.79
	96.89

	Top 1/3
	64.59
	72.54
	99.52
	64.21
	72.03
	99.34
	64.2
	71.74
	99.4
	64.6
	72.68
	99.49

	Top 1/4
	74.25
	83.83
	100
	73.91
	84.21
	100
	73.77
	84.11
	100
	74.32
	83.93
	100

	Top 1~1dB
	36.3
	
	36.67
	
	36.54
	
	36.7
	



[bookmark: _Ref127387400]Table 53: Generalization performance for Legacy scheme where 128 beam pairs are measured and compared with the genie added Top beams 320 ms ahead in time.
	Legacy Scheme based on Set-A measurements (Non-AI)

	Top - K/N
Accuracy% 
 
	Single Antenna HPBW Configuration-A
	Single Antenna HPBW Configuration-B
	Single Antenna HPBW Configuration-C
	Single Antenna HPBW Configuration-D

	
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx
	Tx-Rx
	Tx
	Rx

	Top 1/1
	74.14
	78.37
	87.89
	73.31
	77.49
	87.53
	73.48
	77.62
	88.05
	73.99
	78.18
	87.79

	Top 1/2
	84.64
	89.83
	97.95
	85.17
	90.38
	97.66
	85.4
	90.54
	97.68
	84.8
	90.05
	98.04

	Top 1/3
	90.44
	94.87
	99.74
	90.35
	95.33
	99.68
	90.6
	95.34
	99.65
	90.67
	95.13
	99.69

	Top 1/4
	93.16
	97.05
	100
	92.91
	97.24
	100
	93.08
	97.35
	100
	93.35
	97.23
	100

	Top 1~1dB
	85.01
	
	84.86
	
	85.25
	
	85.11
	




[bookmark: _Ref127535549]Observation # 57: For DL TX beam prediction and Tx-Rx beam pair prediction, AI/ML model performs the best when the training and testing dataset are drawn from the same BS antenna configuration. However, performance degradation is observed when the training dataset and testing datasets are drawn from different BS antenna configuration. 
[bookmark: _Ref127535550]Observation # 58: For DL TX beam prediction and Tx-Rx beam pair prediction, training a model with a mixture of dataset drawn from various BS antenna configurations allows the model to perform well for generalization.
[bookmark: _Ref127535551]Observation # 59: For DL TX beam prediction and Tx-Rx beam pair prediction, performance degradation is not significant when the training dataset and testing datasets are drawn from different single antenna HPBW configurations. Training a model with a mixture of dataset is not required when there is a scaling change in the Tx beam pattern.
Conclusion
In a summary, we have the following observations: 
Observation # 1: Alt 1: beam prediction accuracy related KPIs is feasible for model monitoring. However, in order to obtain a stable result, a certain amount of data needs to be collected.
Observation # 2: Alt 2: Link quality related KPIs, is not feasible since it is hard to identify whether the poor link quality is due to wrong prediction or due to channel status.
Observation # 3: Alt 3: Probabilities of Top-1 beam is feasible for model monitoring. However, it can only applicable to the classification model.
Observation # 4: Alt 4: The L1-RSRP difference is not feasible for model monitoring.
Observation # 5:
· For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering generalization aspects with the measurements from the best Rx beam without UE rotation.
· (A)With measurements of fixed Set B of beams that of 1/4 of Set A of beams
· evaluation results indicate that, AI/ML can achieve more than 90% beam prediction accuracy of Top-1 DL Tx beam
· evaluation results indicate that, AI/ML can achieve more than 95% beam prediction accuracy for Top-1 DL Tx beam with 1dB margin
· evaluation results indicate that, AI/ML can achieve more than 97% beam prediction accuracy for Top-2 DL Tx beam. The beam prediction accuracy increases with K.  
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be about 0.1dB.
 
· (B) With measurements of fixed Set B of beams that of 1/8 of Set A of beams
· evaluation results indicate that, AI/ML can provide about 85% beam prediction accuracy of Top-1 DL Tx beam.
· evaluation results indicate that, AI/ML can achieve more than 90% beam prediction accuracy for Top-1 DL Tx beam prediction with 1dB margin
· evaluation results indicate that, AI/ML can achieve more than 90% beam prediction accuracy for Top-2 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be about 0.13dB.
Observation # 6:
· For BM-Case1 Tx-Rx beam pair prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering generalization aspects with the measurements from all Rx beams without UE rotation.
· (A)With measurements of fixed Set B of beams that of 1/4 of Set A of beams
· evaluation results indicate that, AI/ML can achieve more than 75% beam prediction accuracy of Top-1 DL Tx beam
· evaluation results indicate that, AI/ML can achieve about 85% beam prediction accuracy for Top-1 DL Tx beam with 1dB margin
· evaluation results indicate that, AI/ML can achieve about 85% beam prediction accuracy for Top-2 DL Tx beam. The beam prediction accuracy increases with K.  
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be about 1dB.
 
· (B) With measurements of fixed Set B of beams that of 1/8 of Set A of beams
· evaluation results indicate that, AI/ML can more than 70% beam prediction accuracy of Top-1 DL Tx beam.
· evaluation results indicate that, AI/ML can achieve about 80% beam prediction accuracy for Top-1 DL Tx beam prediction with 1dB margin
· evaluation results indicate that, AI/ML can achieve about 80% beam prediction accuracy for Top-2 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be about 1.3dB.
· indicate that, the average L1-RSRP difference of Top-1 predicted beam can be about 1.3dB.

Observation # 7 : For spatial domain prediction, AI can provide better performance in terms of beam prediction accuracy than non-AI based scheme with the measurements of a set of wide beams and a subset of narrow beams to select a best beam among a full set of narrow beams.
Observation # 8: For spatial domain prediction, AI can predict the best narrow beam based on the measurements of wide beams only with decent performance.
Observation # 9: For BM-Case1, AI/ML may have different performance in different scenarios. For example, based on the evaluation results AI/ML can achieve better beam prediction performance with 20% outdoor UE distribution than with UE distribution: 20% indoor and 80% outdoor.
Observation # 10: In BM-Case2, the Params of the AI/ML model used in the simulation are about Params.
Observation # 11: In BM-Case2, FLOPs of the AI/ML model is about .
Observation # 12: In the case of non-AI, there is almost no performance degradation due to the increase in target predict time. Since the coverage of beams in Set B is wide, Top-1 prediction accuracy of the selected beam in Set B slightly decreases as the target predict time increases.
Observation # 13: In the case of AI, the performance is superior to non-AI, but it can be observed that it decreases as the target predict time increases. Due to the narrow coverage of beams in Set A, it would be hard for AI to learn the Top-1 beam after longer time later based on the latest measurement.
Observation # 14: Even if UE reports only half of Set C, we can observe gain in top K/1 prediction accuracy compared to non-AI, but about 10% loss in Top 1 prediction accuracy compared to all beams reporting in Set C. As the number of reporting beams increases more than half of Set C, there is a benefit, but it does not increase significantly.
Observation # 15: Top-K/1(%) differences across different T2 (y = 1, 2, 3, 4) are less than ~2% when a different model predicts different T2 under the linear trajectory and T2640ms assumptions.
Observation # 16: Compared with BM-Case1 (y = 0) and BM-Case2 (y = 1, 2, 3, 4), there is less than ~3% performance degradation for Top-1 in BM-Case2 than BM-Case1. The number of measurements for BM-Case2 can be reduced by X/(X+Y) lower than the number of measurements for BM-Case1.
Observation # 17: With decent number of beams in Set B, e.g., ¼ beams of Set A, fixed Set B or pre-known different patterns in each time step has similar performance.
Observation # 18: Select from pre-known patterns with or without knowing the order has similar performance.
Observation # 19: Random Set B (option 2C) has the worst performance comparing with fixed or pre-known Set B patterns.
Observation # 20: Opt 2D has some performance degradation comparing with all measurements in fixed Set B, however, it can save reporting overhead for NW side AI/ML.
Observation # 21: At least for Tx beam prediction, well designed Set B of beams can slightly improve the performance.
Observation # 22: If the number of Set B is not the same in training and inference phase, huge generalization performance degradation is observed.
Observation # 23: For different size of Set B, training a model with a mixture of dataset obtained from the dataset consists of the maximum size of Set B allows the model to perform than non-AI scheme. However, about 5% and 10% of performance degradations are respectively observed with |Set B| = 4 and |Set B| = 5 for Top-1(%) comparing with the case |Set B| = |Set C|.
Observation # 24: Using the L1-RSRP of the “best” Rx beam with exhaustive beam sweep as inputs can provide the best performance for the accuracy of Top-1/N beam prediction than fixed or randomly selected one or two Rx beams with fixed or random Tx beams for BM-Case 1.
Observation # 25: With L1-RSRPs of fixed Rx beam(s) as AI inputs can provide better performance than L1-RSRP of random Rx beam(s) for DL Tx beam prediction for BM-Case 1.
Observation # 26: With the L1-RSRP results from the best Rx beam of each Tx beam, AI/ML can provide better performance.
Observation # 27: With the Rx beams obtained from previous sweeping, the prediction accuracy of Top1/K beam and average RSRP difference has some degradation. ~13% accuracy loss in terms of Top 1 beam prediction accuracy is observed with “quasi-optimal” Rx beam based on SSB burst in the past 160ms with 3km/h without UE rotation. However, the RS/measurement overhead can be reduced from 1/4 to 1/32 without counting measurements of SSB.
Observation # 28: Quantization error has a minor negative effect on the prediction accuracy with classification model.
Observation # 29: With higher quantization range of differential RSRP (e.g., more than 4 bits for differential RSRP) than legacy one, there is no performance gain regarding Top-K/1 prediction accuracy.
Observation # 30: With lower quantization range of differential RSRP (e.g., 3 bits) than legacy one, there is minor negative effect on Top-K/1 accuracy with 12 or 16 beams in Set B, while there is 8% loss in Top 1 accuracy with 8 beams in Set B.
Observation # 31: With lower quantization range of differential RSRP (= 3 bits) than legacy one (= 4 bits), reporting overhead reduction is about 11% based on the baseline UCI format for inference.
Observation # 32: With single UCI report, the UCI payload overhead is larger than the baseline when all CRIs or SSBRIs and all RSRPs of the beams in Set B are reported.
Observation # 33: With single UCI report with CRI/SSBRI omission, the UCI payload overhead is smaller than the baseline when all RSRPs of the beams in Set B are reported.
Observation # 34: With same quantization range of differential RSRP as legacy one (= 4 bits), reporting a subset of beams within the quantization range has negative reporting overhead reduction.
Observation # 35: With lower quantization range of differential RSRP (= 3 bits) than legacy one (= 4 bits), reporting a subset of beams within the quantization range can reduce the reporting overhead reduction by 43.52% ~ 47.78% in average, 70.37% ~ 76.85% at 5%-tile CDF, and 3.7% ~ 12.04% at 95%-tile CDF.
Observation # 36: With clean label, for both DL Tx beam and Tx-Rx beam pair prediction, the beam prediction accuracy has significant degradation. However, the baseline performance with searching of all beams(pairs) in Set A, i.e., upper boundary, also has degradation due to the measurement error.  
Observation # 37: AI/ML can provide comparable performance as the exhaustive search among Set A of beams(pairs):
· For DL Tx beam prediction, about 1% performance difference to exhaustive search among Set A of beams is observed with different measurement errors.
· For DL Tx-Rx beam pair prediction, about 7~8% performance difference to exhaustive search among Set A of beams is observed with different measurement errors.
Observation # 38: With noisy label in training phase, the beam prediction performance is slightly outperformed than with clean label in training phase for DL beam prediction. 
Observation # 39: Compared with Tx beam prediction, beam pair prediction is more sensitive to measurement errors.
Observation # 40: Classification model provides better performance than regression model for beam prediction accuracy. 
Observation # 41: For various UE distribution scenarios, if data sets for training and inference are from different scenarios (i.e., Case 2), the performance has significate degradation. However, it is still better than non-AI scheme.
Observation # 42: For various UE distribution scenarios, with model finetune (Case 2A) or training with mixed data (Case 3), the performance is slightly lower than training and inference with the same deployment scenario (Case 1).
Observation # 43: Various UE distribution scenarios may have different scene complexity, which should be emphasized in the finetune process. Finetune from a complex model to a simple model is easier (Case 2A-1), but harder on the other way around (Case 2A-2).
Observation # 44: The scene complexity of various UE distribution scenarios also affects the performance of mix-training. With mix-training, the AI/ML model works well under simple scenarios (Case 3-1), but may be slightly inferior under complex scenarios (Case 3-2).
Observation # 45: For Tx beam prediction, different Rx assumption have about 10% performance degradation on generalization performance for AI/ML in beam prediction without finetune or mix-training.
Observation # 46: Rx beam shape/beam forming gain changes has larger impact than using a subset of Rx (Scenario#C)

Observation # 47: For Tx-Rx beam pair prediction, AI/ML cannot work if the model hasn’t been trained with a certain Rx assumption.
Observation # 48: For Tx-Rx beam pair prediction, with mixed data with different UE Rx assumptions, 26 % of degradation is observed for Top 1 beam prediction comparing with trained by single UE Rx assumptions.
错误!未找到引用源。
Observation # 49: For Tx-Rx DL Tx beam prediction, with mixed data, ~25% of degradation is observed for Top 1 beam prediction with different UE Rx assumptions, which may be caused labeling methods to handle different Rx beam number.

Observation # 50: For various codebook scenarios, if AI/ML never trained with a given codebook, the performance is worse than non-AI baseline.
Observation # 51: Finetune (10%) can improve the generalization performance for different codebook scenarios, but it still has some degradation comparing with training with single codebook (Case 1).
Observation # 52: Training with mixed data (Case 3) can provide better performance than finetune (Case 2A), and the performance is close to the performance training with single codebook (Case 1).
Observation # 53: Beam correlation related parameters have significant impact on generalization performance for AI/ML in beam prediction. Without finetune or mix-training, the performance may be even worse than non-AI scheme.
Observation # 54: The settings/parameters that may cause verification of wireless channel will degrade the generalization performance for AI/ML in beam prediction.

Observation # 55: For DL TX beam prediction and beam pair prediction, AI/ML model performs the best when the training and testing dataset are drawn from the same UE speed. However, performance degradation is observed when the training dataset and testing datasets are drawn from different UE speed.
Observation # 56: For DL TX beam prediction and beam pair prediction, training a model with a mixture of dataset drawn from a range of UE speeds allows the model to perform well over a range of UE speeds.
Observation # 57: For DL TX beam prediction and Tx-Rx beam pair prediction, AI/ML model performs the best when the training and testing dataset are drawn from the same BS antenna configuration. However, performance degradation is observed when the training dataset and testing datasets are drawn from different BS antenna configuration.
Observation # 58: For DL TX beam prediction and Tx-Rx beam pair prediction, training a model with a mixture of dataset drawn from various BS antenna configurations allows the model to perform well for generalization.
Observation # 59: For DL TX beam prediction and Tx-Rx beam pair prediction, performance degradation is not significant when the training dataset and testing datasets are drawn from different single antenna HPBW configurations. Training a model with a mixture of dataset is not required when there is a scaling change in the Tx beam pattern.

As well as the following proposals: 
Proposal # 1: Clarify that the L1-RSRP of Top-1 predicted beam is the L1-RSRP from the best Rx beam of the Top-1 predicted beam.
Proposal # 2: The measurement error can be modeled as truncated Gaussian and whether to separately model RF impairment and baseband error is reported by companies.
Proposal # 3: The performance difference to the baseline option 1, i.e., with all beams(pairs) in Set A is used to verify performance with AI in BM with measurement error.
Proposal # 4: For both BMCase-1 and BM-Case-2, considering the following assumption for UE rotation
· Rotation speed, e.g., RPM = 60 R/M
· Rotation direction
· Alt1: elevation direction only
· Alt2: horizontal direction only
· Alt3: both elevation direction and horizontal direction
· Note: this may need companies to report their Rx beam direction. 
· Change of rotation direction 
· Case 0: same rotation direction in all trajectories
· Case 1: same rotation direction of each trajectory/drop, different trajectories/drops may have different rotation directions
· Case 2: rotation direction changed (random/predefined patterns) after a certain time 
· Note: mixed data from the above cases can be considered 
Proposal # 5: For the evaluation of Tx-Rx beam pair prediction, NW side model is deprioritized.
Proposal # 6: For the evaluation of DL Tx beam prediction, the RS overhead in P3 needs to be considered.
Proposal # 7: For both: For Top-K beam (pair) prediction, the RS overhead in P2 procedure needs to be considered.
Proposal # 8: For both BM Case1 and BM Case, deprioritize the study of Opt C: Set B is randomly changed among Set A beams (pairs).
Proposal # 9: As one of evaluation for the impact of quantization error of inputted L1-RSRP (for training and inference) for AI/ML model for beam management, study the quantization range of differential L1-RSRP.
Proposal # 10: For generalization performance with different UE Rx assumptions, separately analyze the performance with different Rx beam number only and with different beam shape/beamforming gain and different Rx beam.
Appendix
Appendix A.1 Simulation assumptions for beam management (SLS) 
The following system level simulation assumptions to evaluate beam management are provided in Table 54. 
[bookmark: _Ref115388554][bookmark: _Ref110628370]Table 54 Evaluation assumptions for beam management
	Parameter
	Value

	Frequency Range
	FR2 @ 30 GHz with SCS 120 kHz

	Deployment
	Dense Urban (Macro only), Hex. Grid
200m ISD

	Channel model
	UMa with distance-dependent LoS probability function

	UE Speed
	3km/h, 30km/h

	UE rotation speed
	0 deg/s

	BS Antenna Configuration
	One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ
32 beams (refer to right figure)

	UE Antenna Configuration
	Panel structure: (M,N,P) = (1,4,2), 
2 panels (left, right)
Total 8 beams 
UE Beam Elevation Angle: {0, 0, 0, 0}
UE Beam Azimuth Angle: {-50, -15, 15, 50}
2nd Panel Azimuth Angle + 180°

	Spatial consistency procedure
	Procedure A

	UE trajectory model
	Option #2



Appendix A.2 Simulation assumptions for beam management (LLS) 
The following link level simulation assumptions to evaluate beam management are provided in Table 55. 
[bookmark: _Ref118731043]Table 55 Evaluation assumptions for beam management
	Parameter
	Value

	Frequency Range
	FR2 @ 30 GHz with SCS 120 kHz

	Channel model
	CDL-D extension

	UE Speed
	30km/h

	UE rotation speed
	0 deg/s

	BS Antenna Configuration
	Same as SLS

	UE Antenna Configuration
	Same as SLS

	Spatial consistency procedure
	Reusing the evaluation methodologies in the Rel-17 HST-SFN

	UE trajectory model
	Option #4



Rx beam 1 (total 4 beams)	-112.28	-114.04	-114.79	-129.46	-136.54	-137.82	-134.63	-121.19	-115.75	-116.36	-111.88	-114.7	-121.89	-124.3	-124.12	-122.94	-118.21	-113.34	-110.05	-122.61	-129.31	-130.44	-132.22	-125	-120.38	-114.28	-111.85	-112.18	-124.08	-127.69	-128.16999999999999	-125.07	Rx beam 2 (total 4 beams)	-115.26	-117.03	-114.31	-128.24	-135.1	-136.44	-135.66999999999999	-126.97	-121.86	-117.76	-117.15	-117.09	-126	-129.35	-129.63	-128.78	-120.27	-120.94	-112.38	-121.42	-129.9	-131.69	-132.13999999999999	-129.16	-119.08	-118.36	-113.79	-112.96	-128.19999999999999	-131.34	-131.63999999999999	-129.08000000000001	Rx beam 1 (total 8 beams)	-95.56	-91.93	-85.53	-77.41	-84.89	-94.49	-94.41	-94.07	-93.28	-97.29	-98.51	-86.74	-75.84	-89.8	-93.56	-98.33	-95.97	-91.97	-84.01	-78.510000000000005	-86.17	-95.34	-95.06	-94.32	-95.57	-96.97	-96.18	-85.42	-79.5	-92.61	-97.2	-79.92	Rx beam 2 (total 8 beams)	-90.88	-87.64	-83.13	-72.42	-79.81	-89.52	-89.62	-89.75	-89.42	-94.58	-98.75	-90.22	-70.97	-85.79	-89.62	-95.01	-91.97	-88.61	-83.47	-73.73	-81.09	-90.72	-90.75	-90.73	-92.55	-95.21	-96.96	-91.7	-74.84	-90.03	-94.46	-75.25	



Generalization performance without finetune (Case 2)

Baseline	Top 1	Top 1~2	Top 1~3	Top 1~5	0.91569999999999996	0.96589999999999998	0.97889999999999999	0.9899	Various deployment scenarios	Top 1	Top 1~2	Top 1~3	Top 1~5	0.49430000000000002	0.69340000000000002	0.79979999999999996	0.86719999999999997	Various UE distribution scenarios	Top 1	Top 1~2	Top 1~3	Top 1~5	0.4763	0.67159999999999997	0.76939999999999997	0.86099999999999999	Various codebook scenarios	Top 1	Top 1~2	Top 1~3	Top 1~5	0.17100000000000001	0.22839999999999999	0.26690000000000003	0.32819999999999999	
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