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1. Introduction
At the RAN#94-e meeting, a new SID [1] on “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” was approved. This SID captures the objective of SI in terms of the evaluation on use cases as following.
For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

In this contribution, we discuss the evaluation on AI/ML for beam management.
2. [bookmark: _Hlk101767974]Discussion on the evaluation on AI/ML for beam management
2.1. Sub use-cases description
At the RAN1#109-e meeting, the agreement supporting spatial domain beam prediction and temporal beam prediction for characterization and baseline performance evaluations was made as following [2]. 
Agreement
For AI/ML-based beam management, support BM-Case1 and BM-Case2 for characterization and baseline performance evaluations
· BM-Case1: Spatial-domain DL beam prediction for Set A of beams based on measurement results of Set B of beams
· BM-Case2: Temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams
· FFS: details of BM-Case1 and BM-Case2
· FFS: other sub use cases
Note: For BM-Case1 and BM-Case2, Beams in Set A and Set B can be in the same Frequency Range

For both spatial domain and temporal-domain beam prediction, the agreement was made regarding the general simulation approach for dataset construction and performance evaluation, as well as the evaluation metric such as the complexity of AI/ML model and the performance comparison between AI-based method and baseline method. The simulation results in this contribution were conducted based on the agreed assumptions. In the subsequent sections, we discuss the evaluation methodology and simulation results of BM-Case 1 and BM-Case 2.
2.2. Evaluation methodology
2.2.1. Spatial domain beam prediction (BM-Case 1)
In this section, we provide our view and the assumption on the evaluation methodology of intermediate performance and generalization performance.
2.2.1.1.	Impact of measurement error and quantization error
At the RAN1#112 and #112bis meetings, the following agreements were made regarding the impact of measurement and quantization error on the beam prediction accuracy [3]. 
	Agreement
· Further study on whether/how to evaluate the performance impact with L1-RSRP measurement accuracy. 

Agreement
· Further study the impact of quantization error of inputed L1-RSRP (for training and inference)  for AI/ML model for beam management. 
· Existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) is the starting point for evaluation at least for network-sided model. 


In this contribution, we provide the simulation results reflecting the impact from both measurement error and quantization error. The uniformly distributed noise is used for modelling the error due to baseband and/or RF impairment. The detailed parameters for modelling the measurement error are captured in Table 1. In addition, the quantization error is also modelled with existing quantization methods with different granularities. The granularity of the best beam is denoted as X dB and the granularity of the difference to the best beam is denoted as Y dB. The selected representative values of X and Y are also given in Table.1. The effect of measurement error and quantization error is checked in both Tx beam prediction (Scenario A) and Tx-Rx beam pair prediction (Scenario B) conducted as shown in Figure 1.
Table 1. The different error levels for simulation
	Measurement error
	0 dB (No meas. error)
	2 dB
	6 dB

	Quantization error
	No quant. error
	X=1
Y=2
	X=1
Y=4
	X=2
Y=4
	No quant. error
	X=1
Y=2
	X=1
Y=4
	X=2
Y=4
	No quant. error
	X=1
Y=2
	X=1
Y=4
	X=2
Y=4
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Figure 1. Scenario A (Tx beam prediction) and Scenario B (Tx-Rx beam pair prediction)
2.2.1.2.	Impact of measurement sensitivity
At the RAN1#112 meeting, the issue of measurement sensitivity is raised [4], which means that the UE may not be able to measure L1-RSRP when the SNR is lower than -3 dB. It was also shown that the performance of AI/ML-based beam prediction degrades due to low SNR caused by the thermal noise [4].
In this contribution, the simulation considering the received SNR is also conducted. We found that the performance degradation is mainly caused by the unavailable L1-RSRP values. To cope with the degradation issues, we apply several techniques to filter out the performance drop from unavailable L1-RSRP. The simulation cases are described in Table 2 and Fig. 2. Case 0 corresponds to the case without the measurement sensitivity issue, while the measurement sensitivity is taken into consideration in Case 1-3. 
In Case 1, although the L1-RSRP values are not obtained correctly or unavailable when the SNR is lower than -3 dB due to the measurement sensitivity, they are replaced with the default low value (-256 dBm) and still taken as the inputs/labels of the AI/ML model in training and inference phase. In other words, the normalization of all input samples including the unavailable L1-RSRP values is conducted during the training and inference phase. Also, the normalization of all the label samples including the unavailable L1-RSRP values is conducted and is taken into account in the loss function during the training phase. 
However, in Case 2, since it may not be good idea to consider the incorrect values in the normalization which would bias the AI/ML model performance, the unavailable L1-RSRP values are filtered out from inputs/labels before being used. Consequently, the normalization of the input samples is conducted only across the Top-4 L1-RSRP values and the position corresponding to others are replaced with dummy value (0) during the training and inference phase. Also, the unavailable L1-RSRP values are ignored in the label samples during the normalization, and they are excluded in the loss function during the training phase.
Furthermore, the fixed pattern of Set C adopted in Case 0-2 may suffer from the fact that even the Top-4 L1-RSRP are in low quality when the fixed pattern of Set C is not aligned with the UE direction. So, in Case 3, variable pattern of Set C instead of fixed pattern is used to relieve this defect. Other situations of Case 3 are the same as Case 2. There are multiple methods to variably choose Set C according to Set D, where Set D is the configured beam set to be potentially measured. In our simulation, the Set C is chosen around the best beam from the most recent beam measurement. 
Table 2. Case 0-Case3 for measurement sensitivity
	Cases
	Training
	Inference

	
	Input
	Label
	Input

	W/O meas. sensitivity issue
	Case 0: Fixed Set B
	All L1-RSRP values are available
	All L1-RSRP values are available
	All L1-RSRP values are available

	W/ meas. sensitivity issue
	Case 1:  Fixed Set B
	Unavailable L1-RSRP values are set to -256 dBm, and normalized together with available L1-RSRP values
	Unavailable L1-RSRP values are set to -256 dBm, normalized together with available L1-RSRP values, and considered in the calculation of loss function
	Unavailable L1-RSRP values are set to -256 dBm, and normalized together with available L1-RSRP values

	
	Case 2: Variable Set B (Top-4)
	Top-4 L1-RSRP values are selected and normalized
	Unavailable L1-RSRP values are NOT considered in the calculation of loss function
	Top-4 L1-RSRP values are selected and normalized

	
	Case 3: Variable Set B (Top-4) from variable Set C
	Top-4 L1-RSRP values are selected and normalized
	Unavailable L1-RSRP values are NOT considered in the calculation of loss function
	Top-4 L1-RSRP values are selected and normalized


Proposal 1: Study the beam prediction with variable Set C considering the measurement sensitivity.
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描述已自动生成]Figure 2. Example of Tx and Rx beam determination in Case 1-Case 3.
2.2.1.3.	Impact of generalization in different UE distribution assumptions
At the RAN1#112bis meeting, the following conclusion was further made for verifying the generalization performance of an AI/ML model over various scenarios/configurations for beam management [5]. 
	Conclusion
· It is optional to evaluate and compare the performance for BM Case-1 with different UE distribution assumptions: 
· Option 1: 80% indoor, 20% outdoor as in TR 38.901
· Option 2: 100% outdoor


In this contribution, we investigate the various configurations on outdoor/indoor UE distributions. Here we define Distribution 1 and Distribution 2 with different outdoor/indoor UE distributions:
 - Distribution 1: UE distribution with 80% indoor and 20% outdoor
 - Distribution 2: UE distribution with 100% outdoor.
In the simulation, the different uniformly distributed random noise values and quantization levels are used as captured in Table 3. The effect of generalization in different UE distribution is checked in both Tx beam prediction (Scenario A) and Tx-Rx beam pair prediction (Scenario B), which have been shown in Figure 1.
Table 3. Generalization cases (GC) for Scenario A/B
	Generalization case (GC)
	Training dataset
	Testing/inference dataset

	
	
	Distribution 1
	Distribution 2

	GC 1/2
	Distribution 1
	GC1
	GC2

	
	Distribution 2
	GC2
	GC1

	GC 3
	Distribution 1: Distribution 2=1:1
	GC3
	GC3


2.2.1.4.	Simulation assumption
In this contribution, the simulation assumption for the dataset generation in BM-Case1 follows the agreed evaluation methodology, and the detailed information is listed in Table 4.
Table 4. Simulation parameters for dataset generation in BM-Case1
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz, SCS: 120 kHz

	Deployment
	200m ISD, 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)

	Channel mode
	Uma with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	3km/h

	UE distribution
	80% indoor ,20% outdoor as in TR 38.901

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	(M, N, P, Mg, Ng, Mp, Np), = (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
64 downlink Tx beams(H(16)*V(4)) at NW side

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	(M, N, P, Mg, Ng, Mp, Np), = (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)
4 downlink Rx beams(H(4)) per UE panel at UE side

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	No beam correspondence

	BS Tx Power
	40 dBm

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB


2.2.2. Temporal beam prediction (BM-Case 2)
2.2.2.1. Pattern A and Pattern B
At the RAN1#111meeting, the agreement on the evaluation of the overhead for BM-Case 2 was made as follows. 
	Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.
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Figure 3. T1 and T2 patterns in temporal beam prediction. (a) prediction of beam quality between each measurement/reporting (b) prediction of beam quality instead of measurement/reporting.
In temporal beam prediction, there are two patterns for T1 and T2 as shown in Figure 3: prediction of beam quality between each measurement/reporting (pattern A) and prediction of beam quality instead of measurement/reporting (pattern B). In case of pattern A, the time sequence of inputs for AI/ML model in T1 has different periodicity from one of outputs in T2. Since the beam prediction can be used to interpolate the beam quality between each measurement, the periodicity of beam measurement/reporting can be configured to be large compared to one without the beam prediction. On the other hand, the time sequence of inputs for AI/ML model has the same periodicity from one of outputs in pattern B. In this pattern, beam measurement/reporting can be skipped after certain number of measurements, because the beam prediction can compensate them based on the historical beam measurements. Thus, even though both patterns can reduce the overhead of measurement/reporting, one approach can lead to the large periodicity of measurement/reporting, while the other approach could enable skipping of measurement/reporting for a while. As both approaches bring the practical gain and the desired pattern can be different according to NW operation, it is beneficial to study both patterns for T1 and T2. 
Proposal 2: Consider both Pattern A and Pattern B for temporal beam prediction.
2.2.2.2. Generalization performance
For the generalization performance of BM-Case2, we investigate the various scenarios on UE mobility, i.e., 30km/h, 60km/h and 90km/h. For each Pattern A and Pattern B beam prediction, the generalization cases 1-3 are conducted under different assumptions of UE mobility as shown in Table 5. In this generalization performance, we adopted ‘average L1-RSRP difference of Top-1 predicted beam’ as the KPI for the simplicity.
Table 5. Generalization cases (GC) for Pattern A/B
	Generalization case (GC)
	Training dataset
	Testing/inference dataset

	
	
	30km/h
	30km/h
	30km/h

	GC1/2
	30km/h
	GC1
	GC2
	GC2

	
	60km/h
	GC2
	GC1
	GC2

	
	90km/h
	GC2
	GC2
	GC1

	GC 3
	30km/h:60km/h:90km/h=1:1:1
	GC3
	GC3
	GC3



2.2.2.3. Simulation assumption
On top of the simulation assumption in Section 2.2.1.5, the additional assumption for dataset generation in BM-Case 2 follows the agreed evaluation methodology and the detailed simulation parameters are listed in Table 6-8.
Table 6. Simulation parameters for dataset generation in BM-Case2
	Parameters
	Values

	UE Speed
	30Km/h, 60Km/h, 90Km/h

	UE distribution
	100% outdoor as in TR 38.901

	Spatial consistency
	Procedure A in TR38.901

	UE trajectory
	Random direction straight-line trajectories (Option 4)

	UE orientation
	Randomly per-UE chosen for UE orientation initially and is fixed

	UE rotation speed
	0


Table 7. Time domain parameters for Pattern A
	Parameters
	Values

	
	30km/h
	60km/h
	90km/h

	Periodicity of time instances for each measurement in T1
	960ms
	640ms

	Number of time instances for measurement in T1
	5

	Periodicity of time instances for prediction in T2
	10ms

	Number of time instances for prediction in T2
	95
	63


Table 8. Time domain parameters for Pattern B
	Parameters
	Values

	
	30km/h
	60km/h
	90km/h

	Periodicity of time instances for each measurement in T1
	160ms

	Number of time instances for measurement in T1
	5

	Periodicity of time instances for prediction in T2
	160ms

	Number of time instances for prediction in T2
	5



2.3. Performance evaluation results
2.3.1. Spatial domain beam prediction (BM-Case 1)
The simulation in this section follows the assumption described in Section 2.2.1. 
2.3.1.2. Impact of measurement error and quantization error
In this sub-section, the impact of measurement error and quantization error on AI/ML-based beam prediction is evaluated based on the assumption described in section 2.2.1.1. The evaluation results on Scenario A and Scenario B are reflected in Table 9 and Table 10, respectively. When comparing measurement error without quantization error, it is observed that the performance of both average L1-RSRP difference and beam prediction accuracy degrades as the measurement error increases. The degradation of Scenario A (Tx beam prediction) is more obvious than Scenario B (Tx-Rx beam pair prediction). The possible reason of performance gap between Scenario A and B could be that the measurement error leads to the wrong Rx beam determination in the Tx beam prediction. Although the simulation results are based on the simplified noise model which may not be practical, it could indeed show the tendency. It is worthwhile to figure out more practical modeling method to investigate the impact of measurement error. 
In general, the quantization error does not introduce too much difference in the beam prediction performance under different assumptions of measurement error for both Scenario A and Scenario B. Considering the quantization error without measurement error, there are approximately no performance loss when executing fine granularity quantization (X=1, Y=2) compared to that without quantization error. With the increase of quantization error, Both the performance of average L1-RSRP difference of Top-1 predicted beam and beam prediction accuracy for Top-1 beam has a small decrease. Given that the measurement error is also inevitable in real wireless scenarios, we also observe the performance under the measurement error and the quantization errors.  For small measurement error (e.g., 2 dB), the quantization performance increases a bit when quantization granularity is from fine to coarse in Scenario A. While an opposite result can be observed in Scenario B. For large measurement error (e.g., 6 dB), compared to the case without quantization error, fine granularity quantization error (X=1, Y=2) has better performance. However, the performance of quantization error fluctuates with the granularity from fine to coarse in Scenario A and Scenario B.
Table 9. Impact of measurement error and quantization error in Scenario A
	Metrics
	0 dB (No meas. Error)
	2 dB
	6 dB

	
	No quant. Error
	X=1
Y=2
	X=1
Y=4
	X=2
Y=4
	No quant. Error
	X=1
Y=2
	X=1
Y=4
	X=2
Y=4
	No quant. Error
	X=1
Y=2
	X=1
Y=4
	X=2
Y=4

	Average L1-RSRP difference of Top-1 predicted beam (dB)
	1.39
	1.40
	1.38
	1.45
	1.56
	1.67
	1.59
	1.53
	2.09
	2.04
	2.15
	2.24

	Beam prediction accuracy (%) for Top-1 beam
	48.8
	49.8
	49.8
	48.4
	47.0
	46.9
	46.6
	47.1
	37.3
	38.8
	36.8
	35.3


Table 10. Impact of measurement error and quantization error in Scenario B
	Metrics
	0 dB (No meas. Error)
	2 dB
	6 dB

	
	No quant. Error
	X=1
Y=2
	X=1
Y=4
	X=2
Y=4
	No quant. Error
	X=1
Y=2
	X=1
Y=4
	X=2
Y=4
	No quant. Error
	X=1
Y=2
	X=1
Y=4
	X=2
Y=4

	Average L1-RSRP difference of Top-1 predicted beam (dB)
	5.17
	5.22
	5.23
	5.22
	5.83
	5.93
	5.97
	5.99
	6.37
	6.30
	6.44
	6.25

	Beam prediction accuracy (%) for Top-1 beam
	16.0
	16.0
	15.6
	15.6
	13.6
	13.3
	13.2
	12.8
	10.8
	11.4
	11.2
	12.1



Observation 1: The beam prediction performance degrades when measurement error is considered for both Tx beam prediction and Tx-Rx beam pair prediction.
Observation 2: The quantization error does not introduce too much difference in the beam prediction performance under different assumptions of measurement error for both Tx beam prediction and Tx-Rx beam pair prediction.
Proposal 3: Further study the impact of practical measurement error and the effectiveness of other quantization method to improve the performance.
2.3.1.2. Impact of measurement sensitivity
In this sub-section, the impact of measurement sensitivity and the possible solution for the improvement is evaluated based on the assumption described in section 2.2.1.2. Comparing Case 0 and Case 1 in Table 13, it is observed that the performance degrades obviously due to the unavailable L1-RSRP values caused by low SNR from the case where no measurement sensitivity issue exists. However, the performance of Case 2 is much better than Case 1. This performance improvement could be because only the available L1-RSRP values are taken into account in the calculation of loss function in the training of Case 2. On the other hand, all RSRP values are used in the training for Case 1, the weight update is affected by the default values. Thus, if the Set B and label for training is adjusted according to the availability of L1-RSRP values, the performance could be improved a lot. Comparing Case 2 and Case 3, since variable Set C instead of fixed pattern of Set C is employed, the flexibility of Set C determination in Case 3 provides Top-4 L1-RSRP values for input, which leads to a better performance result on beam prediction accuracy for Top-1 beam than that in Case 2. 
[bookmark: _Hlk131525270]Table 11. Impact of measurement sensitivity for Scenario A
	
	Scenario A

	
	Case 0
	Case 1
	Case 2
	Case 3

	Beam prediction accuracy (%) for Top-1 beam
	49.4
	19.8
	39.8
	40.0


Table 12. Impact of measurement sensitivity for Scenario B
	
	Scenario B

	
	Case 0
	Case 1
	Case 2
	Case 3

	Beam prediction accuracy (%) for Top-1 beam
	43.5
	16.4
	33.7
	42.0


Observation 3: Considering the measurement sensitivity, the performance of AI/ML model deteriorates obviously if there is no additional treatment on the inputs and labels on the AI/ML model.
Observation 4: If variable Set B is used as the input of AI/ML model, and the label for training is pre-processed, the degradation of performance due to measurement sensitivity could be largely alleviated.
Observation 5: If variable Set C is used on top of variable Set B, the beam prediction accuracy could be further improved.
Proposal 4:  Study the candidate methods to alleviate the performance degradation caused by measurement sensitivity.
2.3.1.3. Impact of generalization in different UE distribution assumptions
In this sub-section, the impact of generalization in different UE distribution assumptions is evaluated based on the assumption described in section 2.2.1.3. As shown in Table.13 for Scenario A and Table.14 for Scenario B, the AI/ML model trained with Distribution 1 (80% with indoor and 20% with outdoor) could still perform better than the baseline even when it is applied to make prediction with Distribution 2 (100% outdoor), and vice versa. The AI/ML model trained with mixed dataset (Distribution 1 : Distribution 2 = 1 : 1) further improves the generalization performance. For instance, the performance of testing the data from Distribution 2 on the AI/ML model trained on Distribution 1 is 1.2 dB worse than that trained on Distribution 2. While compared with the AI/ML model trained on mix data from Distribution 1 and Distribution 2, the performance loss decreases to 0.47 dB. There is even   performance improvement when predicting on Distribution 1 using the AI/ML model trained on mixed data. The possible reason is that the features extracted by the AI/ML model trained on Distribution 2 (100% outdoor) is more generalized than that extracted by Distribution 1. 
Table 13. Evaluation results of GC1, GC2 and GC3 for Scenario A
	Testing/inference dataset
Training dataset
	Distribution 1
	Distribution 2

	L1-RSRP Diff.
	Baseline (Option 2)
	6.83
	7.22

	
	GC1  GC2
	Distribution 1
	1.39 (Case1)
	3.03

	
	
	Distribution 2
	1.48
	1.79 (Case1)

	
	GC3
	Distribution 1: Distribution 2=1:1
	1.23
	2.26


Table 14. Evaluation results of GC1, GC2 and GC3 for Scenario B
	Testing/inference dataset
Training dataset
	Distribution 1
	Distribution 2

	L1-RSRP Diff.
	Baseline (Option 2)
	10.9
	15.03

	
	GC1  GC2
	Distribution 1
	5.17(Case1)
	8.56

	
	
	Distribution 2
	6.15
	6.14 (Case1)

	
	GC3
	Distribution 1: Distribution 2=1:1
	5.49
	7.37


Observation 6: For spatial beam prediction Scenario A and Scenario B:
· The AI/ML model trained with mixed data from different UE distribution could provide acceptable generalization performance.
· The AI/ML model trained by data with 100% outdoor UE distribution could always provide good beam prediction performance even if it is applied for the data with 20% indoor and 80% outdoor UE distribution.
2.3.2. Temporal beam prediction (BM-Case 2)
The simulation in this section follows the assumption described in Section 2.2.2. ‘Average L1-RSRP difference of Top-1 predicted beam’ is adopted as the KPI for the simplicity.
2.3.2.1. Generalization performance
In this sub-section, for the time domain prediction Pattern A and Pattern B, the performance of GC1, GC2 and GC3 are provided respectively.
	Table 15. Evaluation results of GC1, GC2 and GC3 for Pattern A
	Testing/inference dataset
Training dataset
	30km/h
	60km/h
	90km/h

	L1-RSRP Diff.
	Baseline (Option 2)
	3.1
	8.0
	8.0

	
	GC1  GC2
	30km/h
	3.52 (Case1)
	5.71
	6.04

	
	
	60km/h
	11.45 
	2.93 (Case1)
	3.09

	
	
	90km/h
	12.26
	3.34
	3.04 (Case1)

	
	GC3
	30:60:90km/h=1:1:1:1:1:1
	3.79
	3.05
	3.07


As shown in Table.15 for Pattern A, the AI/ML model trained with data from low UE speed could still perform better than baseline even when it is applied to make prediction with data from high UE speed under the same time parameters. For example, the AI/ML model trained with data generated with UE speed 30km/h achieves the average L1-RSRP difference 5.71 dB when it is applied to data generated with UE speed 60km/h, which is still 8.0 dB smaller than baseline. However, it is not the applied vice versa; model inference of low-speed UE via the model trained with high speed UE. The reason is the data generated with high UE speed may have some information loss, which makes it difficult for AI/ML model to predict beams with low UE speed. However, if the AI/ML is trained with mixed data from different UE speed, the performance is still acceptable.
Table 16. Evaluation results of GC1, GC2 and GC3 for Pattern B
	Testing/inference dataset
Training dataset
	30km/h
	60km/h
	90km/h

	L1-RSRP Diff.
	Baseline (Option 2)
	1.1
	3.8
	7.0

	
	GC1  GC2
	30km/h
	3.63 (Case1)
	4.95
	6.96

	
	
	60km/h
	4.05
	3.77 (Case1)
	5.01

	
	
	90km/h
	5.82
	4.06
	3.10 (Case1)

	
	GC3
	30:60:90km/h=1:1:1:1:1:1
	3.62
	3.79
	4.11


As shown in Table.16 for Pattern B, the similar tendency could be observed. For example, the AI/ML model trained with data generated with UE speed 60km/h achieves the average L1-RSRP difference 6.96dB when it is applied to data generated with UE speed 90km/h, which is still 7.0dB smaller than baseline. Also, the AI/ML trained with the mixed data from different UE speed provides the acceptable performance.
[bookmark: _Hlk131526579]Observation 7: For temporal beam prediction Pattern A and Pattern B:
· The AI/ML model trained with mixed data from different UE speed could provide acceptable generalization performance.
· The AI/ML model trained with data from low-speed UE could still provide better performance than baseline method, when it is applied to the data from high speed UE with the same time parameters.
3. Conclusion
In this contribution, we discussed evaluation on AI/ML for beam management. Based on the discussion we made the following observations and proposals.
Observation 1: The beam prediction performance degrades when measurement error is considered for both Tx beam prediction and Tx-Rx beam pair prediction.
Observation 2: The quantization error does not introduce too much difference in the beam prediction performance under different assumptions of measurement error for both Tx beam prediction and Tx-Rx beam pair prediction.
Observation 3: Considering the measurement sensitivity, the performance of AI/ML model deteriorates obviously if there is no additional treatment on the inputs and labels on the AI/ML model.
Observation 4: If variable Set B is used as the input of AI/ML model, and the label for training is pre-processed, the degradation of performance due to measurement sensitivity could be largely alleviated.
Observation 5: If variable Set C is used on top of variable Set B, the beam prediction accuracy could be further improved.
Observation 6: For spatial beam prediction Scenario A and Scenario B:
· The AI/ML model trained with mixed data from different UE distribution could provide acceptable generalization performance.
· The AI/ML model trained by data with 100% outdoor UE distribution could always provide good beam prediction performance even if it is applied for the data with 20% indoor and 80% outdoor UE distribution.
Observation 7: For temporal beam prediction Pattern A and Pattern B:
· The AI/ML model trained with mixed data from different UE speed could provide acceptable generalization performance.
· The AI/ML model trained with data from low-speed UE could still provide better performance than baseline method, when it is applied to the data from high speed UE with the same time parameters.
Proposal 1: Study the beam prediction with variable Set C considering the measurement sensitivity.
Proposal 2: Consider both Pattern A and Pattern B for temporal beam prediction.
Proposal 3: Further study the impact of practical measurement error and the effectiveness of other quantization method to improve the performance.
Proposal 4:  Study the candidate methods to alleviate the performance degradation caused by measurement sensitivity.
Annex. Previous Observation
For the convenience of organizing the observations provided by NTT DOCOMO, we reclaim our previous observations in 3GPP TSG RAN WG1 #110-#112bis. 
A.1 KPIs on AI/ML in beam management
Observation A.1: Additional beam measurements might be necessary for PDSCH/PDCCH reception with top1/K predicted beams, when the top-1/K predicted beams are not included in beams measured for the beam prediction.
[bookmark: _Hlk131526460]Observation A.2: The large correlation between predicted L1-RSRP difference and other intermediate KPI (e.g., L1-RSRP difference and beam accuracy) is not observed.
Observation A.3: The predicted L1-RSRP difference cannot be used solely for performance monitoring.
A.2 Spatial domain beam prediction (BM-Case 1)
Observation A.4: AI/ML model used in spatial-domain beam management could improve the beam selection accuracy and UE throughput performance.
Observation A.5: Spatial domain DL beam prediction could notably improve the beam prediction accuracy.
Observation A.6: The performance of AI/ML based beam prediction BM Case-1 is acceptable even when different Rx beams are assumed for training and inference.
Observation A.7: AI/ML based beam prediction BM Case-1 could barely provide the gain if different Tx beams are assumed for training and inference.
Observation A.8: AI/ML based beam prediction BM Case-1 could provide the fairly good performance when the model is trained with mixed pre-configured patterns.
Observation A.9: With mixed Set B configuration in training and inference, the AI/ML model could still provide good performance compared to legacy method.
Observation A.10: For Tx beam prediction with Rx beams assumption Option 1:
· The beam prediction accuracy as well as average L1-RSRP are obviously better than baseline.
· The “best” Rx beam for the best Tx-Rx beam pair in Set C provides better performance than the “best” Rx beam for each Tx beam in Set C.
Observation A.11: For Tx beam prediction with Rx beams assumption Option 1 and Option 2a:
· When the Rx beams in Set C is specific beams instead of all Rx beams, (Option 2a), the prediction performance deteriorates a bit from the exhaustive Rx sweeping (Option 1) under the same Rx beam determination method.
Observation A.12: For Tx beam prediction with Rx beam assumptions Option 1 and Option 2a:
· The AI/ML trained with mixed Rx beam assumptions at UE side could provide acceptable generalization performance.
Observation A.13: For Tx-Rx beam prediction, the AI/ML trained with mixed Set B Tx beam configurations could provide acceptable generalization performance.
A.3 Temporal beam prediction (BM-Case 2)
Observation A.14: AI/ML model used in time-domain beam management could improve the beam selection accuracy and UE throughput performance even with less reporting overhead and a longer periodicity of CSI reports.
Observation A.15: For the UE speed 30km/h, baseline performance is nice enough even if 960ms reporting periodicity is assumed.
Observation A.16: For the UE speed 60km/h and higher, the AI/ML model could provide notable improvement in prediction accuracy.
Observation A.17: AI/ML could improve the beam prediction accuracy in time-domain, and the performance gain is higher in the high UE speed scenario.
Observation A.18: The performance of AI/ML-based beam prediction is good even if Rx-sweeping periodicity (P) is large (>>20ms).
Observation A.19: Similar tendency to pattern 1 could be observed for pattern 2 while the absolute performance gain of AI/ML is lower.
Observation A.20: For both Pattern 1 and Pattern 2, AI/ML has obvious performance gain at high UE speed, i.e. 90km/h. 
Observation A.21: The RS overhead reduction of Pattern 1 is much higher than that of Pattern 2 since the historical inputs of AI/ML, which are used in the previous beam prediction, could still be used in the future prediction.
Observation A.22: For temporal beam prediction Pattern A and Pattern B:
· The AI/ML model trained with mixed data from different UE speed could provide acceptable generalization performance.
· The AI/ML model trained with data from low speed UE could still provide better performance than baseline method, when it is applied to the data from high speed UE with the same time parameters.
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