3GPP TSG RAN WG1 #113 R1-2305504
Incheon, Korea, May 22nd– May 26th, 2023
Agenda item:	9.2.1
Source:	Samsung
Title:	General aspects of AI/ML framework and evaluation methodology
Document for:	Discussion and Decision
1 Introduction
In RAN#94-e, Rel-18 new study item on “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” is endorsed. The objective of the study item is as follows.
	AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g.,
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation.
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

Furthermore, RAN1 described basic terminologies required for the functional framework of AI/ML in PHY. Moreover, an initial categorization for network-UE collaboration levels is agreed.
	Agreement
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1. Level x: No collaboration
2. Level y: Signaling-based collaboration without model transfer
3. Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary

2 General aspect of AI/ML framework
1.
2.
2.1. AI/ML Model management
2.1.1 Model Transfer
One discussion point for AI/ML framework is how a model can be developed, trained or updated by either the UE-side, network-side or even an external entity and shared to another node. RAN1#102b-e defined “model transfer’ as a delivery of an AI/ML model over the air-interface in a manner not transparent to 3GPP signaling. Moreover, 5 different cases of model transfer are described based on the transfer format, storage location and training location.

	
Working Assumption RAN1#112b-e
The definition of ‘AI/ML model transfer’ is revised (marked in red) as follows:
	AI/ML model transfer
	Delivery of an AI/ML model over the air interface in a manner that is not transparent to 3GPP signaling, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

Working Assumption RAN1#111
Consider “proprietary model” and “open-format model” as two separate model format categories for RAN1 discussion,

	Proprietary-format models
	ML models of vendor-/device-specific proprietary format, from 3GPP perspective
NOTE: An example is a device-specific binary executable format

	Open-format models
	ML models of specified format that are mutually recognizable across vendors and allow interoperability, from 3GPP perspecive

From RAN1 discussion viewpoint, RAN1 may assume that:
· Proprietary-format models are not mutually recognizable across vendors, hide model design information from other vendors when shared.
Open-format models are mutually recognizable between vendors, do not hide model design information from other vendors when shared

Agreement RAN1#112
To facilitate the discussion, consider at least the following Cases for model delivery/transfer to UE, training location, and model delivery/transfer format combinations for UE-side models and UE-part of two-sided models.
	Case
	Model delivery/transfer
	Model storage location
	Training location

	y
	model delivery (if needed) over-the-top
	Outside 3gpp Network
	UE-side / NW-side / neutral site

	z1
	model transfer in proprietary format
	3GPP Network
	UE-side / neutral site

	z2
	model transfer in proprietary format
	3GPP Network
	NW-side

	z3
	model transfer in open format
	3GPP Network
	UE-side / neutral site

	z4
	model transfer in open format of a known model structure at UE
	3GPP Network
	NW-side

	z5
	model transfer in open format of an unknown model structure at UE
	3GPP Network
	NW-side

Note: The Case definition is only for the purpose of facilitating discussion and does not imply applicability, feasibility, entity mapping, architecture, signalling nor any prioritization.
Note: The Case definition is NOT intended to introduce sub-levels of Level z.
Note: Other cases may be included further upon interest from companies.
FFS: Z4 and Z5 boundary

Few of the prominent use cases of model transfer could be the following
1. Enabling site/cell-specific models, which is potentially trained/updated by the network and shared to the UE wherein the latter performs the model inference. Such models can be trained through a dataset collected from the same environment as the environment for its inference.
2. Enabling UE-specific (optimized) model which is trained/updated by the UE and shared to the network. Such training can be performed by a dataset collected by the same UE. Thus, enabling it to capture the hardware/software peculiarities of a particular UE or UE model.
3. Sharing either UE or network parts of the two-sided model which is trained by Type I training, i.e., two-sided model trained by either network side or UE side.

However, model transfer also introduces various challenges. In our view, various issues should be studied on the practicality/feasibility of AI/ML model transfer over the air interface including:
- Interoperability: does a model transferred from one node to another node work in a plug-and-pay manner, i.e., without extensive receiving-node-specific optimization, compiling and testing?
- Proprietary issues: If AI/ML models are considered as proprietary assets, model transfer discloses them.
- Model transfer format (MTF): does 3GPP need to agree on a common MTF so that a model exchanged between two nodes from different vendors compile and run?
- Performance guarantee: If AI/ML model is transferred from one node to the other, which entity guarantees performance, e.g., inference latency?

Proposal #1: Concerning with the feasibility and practicality of AI/ML model transfer, RAN1 should study aspects such as
- Interoperability: does a model transferred from one node to another node work in a plug-and-pay manner, i.e., without extensive receiving-node-specific optimization, compiling and testing?
- Proprietary issues: If AI/ML models are considered proprietary assets, model transfer in an open format discloses them.
- Model transfer format (MTF): does RAN1 need to adopt a common MTF so that a model exchanged between two nodes from different vendors compiles and runs?
- Performance guarantee: If AI/ML model is transferred from one node to the other, which entity guarantees performance, e.g., inference latency?

Based on the above classification of different cases of model deliver/transfer, the followings can be concluded

	Issue. / model transfer/delivery case
	y
	z1.
	z2.
	z3
	z4
	z5

	Can a model be proprietary?
	Yes
	Yes
	Yes
	No
	No
	No

	Spec. support for model transfer, i.e., cell/site specific models at UE?
	No
	Yes
	Yes
	Yes
	Yes
	Yes

	Does it enable model update at the receiving node?
	Yes
	No
	No
	Yes
	Yes
	Yes

	Does it work in a plug-and-play manner (without further optimization at the receiving node)
	Possible
	Possible
	No
[need multi-vendor collaboration]
	No
	No
	No

In one hand, if AI/ML models are transferred in an open model transfer format (MTF), it enables the receiving node to update the model as the receiving node has access to the model parameters. However, the model in z3-z5 cannot be consider proprietary as the receiving node or even anyone involved in handling the transferred model has access to the model’s parameter.

Observation#1:
A model transferred in an open-format (cases: z3, z4, and z5) allows model update at the receiving node. However, model cannot be kept proprietary.

On the other hand, when a model is transferred in proprietary format, e.g., after being complied to executable, a model can be considered a proprietary. In general, it is not possible to derive the model parameter values from the compiled executable format. Moreover, there are mechanisms to encrypt the shared model to reinforce its proprietary nature.

 Observation#2:
A model transferred in a proprietary format (cases: z1 and z2) allows the model to be kept proprietary. However, model update at the receiving node is not possible.

Finally, it is interesting to compare the different cases in which there is no specification support for model delivery (case y) and model transfer format. In cases z3-z5, even if the receiving node is able to access the model parameters, it may not be able to compile and use the model right away. A model received via z3-z5 may still require device specific compilation and optimization steps before model inference. Such steps most probably happen offline in OTT servers rather than on the node performing inference, e.g., UEs.

Observation#3:
When a model is transferred in an open-format (cases: z4-z5), the receiving node may require to perform additional steps before deploying the model for inference. The steps may include performing node-specific compilation and node-specific optimization.

On the other hand, a complied model may run immediately right after reception in the receiving node if only compilation environment of the receiving node is made available to entity that transferred the model. However, case Z2, could only happen via multi-vendor offline collaboration.

Observation#4:
Case z2, a model trained at the network and transferred in a proprietary-format, the network vendors involved in model training and compilation require offline collaboration with the UE or chipset vendor, for UE-specific compilation and UE-specific optimization so that the UE can run the model in a plug-and-play manner.

Moreover, the model transfer can be categorized into two categories based on the level of transfer and requirements as follows:
Z4: Model transfer for a partially known model at the receiving node, e.g., the structure of AI/ML model known.
Z5: Model transfer for an unknown model to the receiving node.

 The above two cases for model transfer may entail different levels of requirements. For example, if the model is partially known at the receiving node, e.g., only the parameters of the neural network are needed to be updated by the network, with relatively less requirements on the node-specific optimization, compiling and testing at the receiving node.

Summarizing our observation, the above 6 cases in terms of enabling the UE to run an AIML model in ‘plug-and-play’ manner,

Observation#5:
Among the model delivery/transfer cases described
· Cases: z2, z3, z4 and z5, do not allow the UE to receive and run AI/ML models in a ‘plug-and-play’ manner, i.e., without additional steps for UE-specific compilation and optimization.
· Case y1 and z1 allow a UE to receive and run AI/ML models in a ‘plug-and-play’ manner, i.e., without additional steps for UE-specific compilation and optimization.

Thus, we propose the following:
Proposal#2: In regards to model delivery/transfer deprioritize cases z1, z2, z3 ,z4, z5 in this study item
· Cases z2, z3, z4 and z5, do not allow the UE to receive and run AI/ML models in a ‘plug-and-play’ manner, i.e., without additional steps for UE-specific compilation and optimization.
· Specification support for case-z1 is not justified as the same UE vendor would train the model. Hence, proprietary solutions, e.g., case-y, can be used.

2.2.3. Life cycle management (LCM)

2.2.3.1. Model Identification for LCM

RAN1#110 agreed the following aspects to be studied under model life cycle management (LCM) .

	Agreement RAN1#111
For UE-part/UE-side models, study the following mechanisms for LCM procedures:
· For functionality-based LCM procedure: indication of activation/deactivation/switching/fallback based on individual AI/ML functionality
· Note: UE may have one AI/ML model for the functionality, or UE may have multiple AI/ML models for the functionality.
· FFS: Whether or how to indicate Funtionality
· For model-ID-based LCM procedure, indication of model selection/activation/deactivation/switching/fallback based on individual model IDs
Agreement RAN1#112
For UE-side models and UE-part of two-sided models:
· For AI/ML functionality identification
· Reuse legacy 3GPP framework of Features as a starting point for discussion.
· UE indicates supported functionalities/functionality for a given sub-use-case.
· UE capability reporting is taken as starting point.
· For AI/ML model identification
· Models are identified by model ID at the Network. UE indicates supported AI/ML models.
· In functionality-based LCM
· Network indicates activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI).
· Models may not be identified at the Network, and UE may perform model-level LCM.
· Study whether and how much awareness/interaction NW should have about model-level LCM
· In model-ID-based LCM, models are identified at the Network, and Network/UE may activate/deactivate/select/switch individual AI/ML models via model ID.
FFS: Relationship between functionality identification and model identification
FFS: Performance monitoring and RAN4 impact
FFS: detailed understanding on model
Agreement RAN1#112
· AI/ML-enabled Feature refers to a Feature where AI/ML may be used.

Agreement RAN1#112
For functionality identification, there may be either one or more than one Functionalities defined within an AI/ML-enabled feature.

Further, RAN1 clarified what functionality refers to for functionality-based LCM as below.

	Agreement RAN1#112b-e
For AI/ML functionality identification and functionality-based LCM of UE-side models and/or UE-part of two-sided models:
· Functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability.
· Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG.
· FFS: Signaling to support functionality-based LCM operations, e.g., to activate/deactivate/fallback/switch AI/ML functionalities
· FFS: Whether/how to address additional conditions (e.g., scenarios, sites, and datasets) to aid UE-side transparent model operations (without model identification) at the Functionality level
· FFS: Other aspects that may constitute Functionality
· FFS: which aspects should be specified as conditions of a Feature/FG available for functionality will be discussed in each sub-use-case agenda.
For AI/ML model identification and model-ID-based LCM of UE-side models and/or UE-part of two-sided models:
· model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.
· FFS: Which aspects should be considered as additional conditions, and how to include them into model description information during model identification will be discussed in each sub-use-case agenda.
· FFS: Relationship between functionality and model, e.g., whether a model may be identified referring to functionality(s).
· FFS: relationship between functionality-based LCM and model-ID-based LCM
· Note: Applicability of functionality-based LCM and model-ID-based LCM is a separate discussion.

Agreement RAN1#112b-e
· Study necessity, mechanisms, after functionality identification, for UE to report updates on applicable functionality(es) among [configured/identified] functionality(es), where the applicable functionalities may be a subset of all [configured/identified] functionalities.
· Study necessity, mechanisms, after model identification, for UE to report updates on applicable UE part/UE-side model(s), where the applicable models may be a subset of all identified models.

According to the agreement in RAN1#112b-e, in functionality-based LCM, the UE may report updates on the applicable functionalities. Whether this report happens before or after the configuration of functionalities will be discussed in RAN1#113. In our view, it is efficient if the UE reports this update on the applicable condition once it receives configurations, i.e., network’s interest.

Overall, the procedure in Fig. 1 can be taken as a procedure for functionality-based LCM. Before activation of AI/ML functionalities, it may be necessary to discover the relevant scenarios from the UE and/or network’s perspective. This scenario discovery could be performed by UE and indicated to network or performed by network transparently. As an example, for CSI/beam prediction the channel

[image:]
Fig. 1: Procedure for functionality based LCM

Observation#5
In functionality-based LCM, applicable functionalities can be identified by the network or the UE through scenario discovery.

As shown in the above agreement, two approaches are identified for LCM, i.e., model-ID based and functionality-based LCM. In the below, we elaborate our understanding of the two approaches.

[image:]

 Fig. 2. Structure of functionalities and logical models

How functionality-based LCM works?
First, AIML features and feature groups can be specified in the subsequent normative works. In a similar manner as in the legacy capability report, a UE may report the list of AI/ML functionalities it supports, implicitly by reporting the features/feature groups and candidate values of the associated components of feature group.

One example, for such framework is given below based on CSI prediction sub-use case. Let us assume, RAN1’s model generalization evaluation for CSI prediction suggests that model switching is required to support CSI prediction in different UE mobility ranges. Thus, support for CSI prediction in different mobility ranges can be defined as different AI/ML sub-(feature groups). Then, when UE reports its capability report, the capability report can be designed in such a way that a UE could indicate the supported feature groups and candidate values for the supported components (configurations). One can consider this capability reporting indicates the set of configurable AI/ML functionalities a UE’s supports.

[image:]

 Fig. 3 Example on AIML features hierarchy for AI/ML-based CSI prediction

Observation#6
In functionality based LCM, functionalities a UE supports can be reported in a same manner as the legacy capability reporting in NR framework.

In some cases, it may be advantageous, if the UE maps between AI/ML functionalities and AI/ML models it supports. One benefit of such mapping could be AI/ML operations timeline management. For example, AI/ML model/functionality activation may require longer delay than inference from activated AIML model/functionality. Moreover, if the network is aware that UE supports multiple functionalities by a single model, e.g., for functionality#1, e.g., mobility range#1 and X number CSI ports, and functionality#2, e.g., mobility range#2 and Y number CSI ports, once that model/functionality is activated for functionality#1 it can readily be used for functionality#2 without additional activation delay.

Observation#7
In some cases, it is beneficial if UE reports its supported AI/ML functionalities by mapping them (grouping them) to AI/ML [logical] models. For example, AI/ML model/functionality activation may require longer delay than inference from activated AIML model/functionality. Thus, such functionality to model mapping allows the network to manage the operational timeline and delay requirement of AIML operations.

Proposal #3: Study functionality-based LCM for UE-side model where
Alt 1: UE reports the supported AI/ML functionalities
Alt2: UE reports the supported AI/ML functionalities by mapping them to logical models. i.e., by indicating the group of functionalities supported by a single model.
Note: Logical model implies a reported AI/ML model. UE may transparently have multiple implementations of a logical model.

[image:]
Fig. 4: Example on AIML features hierarchy for AI/ML-based CSI prediction

When AIML model is activated, the UE may take actions to make it ready for inference. This includes fetching the model from its memory storage to AIML processing unit, CPU, GPU, NPU, etc., and configuring its AIML processing unit. Based on UE’s capability, the number of concurrently activated AIML models could be limited. A mechanism that manages the expectation from the network on the concurrently activating AIML models could help not to overload the UE.

Proposal #4: For UE side and UE part of two-sided models, study mechanisms to manage
1. Timeline and delay requirements for AI/ML operations, e.g., AI/ML model/functionality activation, switching,
2. Processing capability for concurrently activated AI/ML models/functionalities

One-sided models, including both UE-sided and network-side models, can work in quasi-transparent manner. In particular, the other node, i.e., network node for UE-side model and UE for network-side model, does not need to know the exact model running/supported in the other side in order to provide assistance information for model LCM. For example, a UE may provide training data assistance to a network-side model without explicit knowledge on the network-side model. Likewise, the network can provide LCM assistance to a UE-side model without explicit identification of UE-side model. For example, the network may select, switch, activate, and deactivate a UE-side model without explicit knowledge on model or model identifier. In this case, the network can switch through the UE-side models based on the functionalities supported by the UE, e.g., if a high UE speed (mobility) is detected and if UE reported support for AI/ML functionality applicable to high mobility range in its capability report, the network may simply activate the associated functionality.

Observation #8: For one-sided models, including both UE-side model and network-side model, model LCM assistance can be supported without explicit identification of a model.
· For a model in one node, LCM assistance can be provided by another node based on implicit model ID pointing to the associated [logical model] or functionalities, e.g., scenarios, configurations of the model.

[image:]
Fig. 5 (a) Model-ID based LCM (b) functionality-based LCM for UE-sided model

The above figure illustrates one possible realization of LCM for UE-side model. In Fig. 5(a), model-ID based LCM, a UE-side model could be trained at a training server. In most cases, the training server is owned by the UE vendor or perhaps it partners implying that the training server would have access to the compiling environment of the UE. Thus, a compiled model in its executive format can be delivered to the UE in proprietary manner, e.g., via firmware update over-the-air (FOTA).

In model-ID based LCM, a model ID and its associated information has to be registered to the network. At the same time, the same information has to be provided to the UE. The network can then provide LCM assistance including activation and deactivation AI/ML models via the corresponding model ID. Moreover, if multiple models are transferred to related functionalities, e.g., different scenarios or configurations of a use case, then the gNB may switch through the models via the model IDs.

On the other hand, in functionality based LCM, it is sufficient to inform the UE to which specified functionalities the AI/ML model belongs to while the model is deployed to the UE. A purely functionality-based LCM relies on UE’s report on its supported functionalities. The network can then simply provide LCM assistance including activation and deactivation of a model by simply activating or deactivating an AI/ML functionality. As illustrated in Figure 1 and Figure 5, to provide one step deeper awareness to the network, a UE may report the association between functionalities and its supported [logical] models. A notational model ID could then be assigned to denote the [logical models] the UE supports. This notational model ID do not require to be ‘globally unique’ and assigned during RRC configuration. Its mere use is to identify [logical] models among the models UE reported in its capability report.

Moreover, if a change on UE or gNB-side scenario is detected or if the gNB wants to change a configuration and if the new scenario or configuration falls under a different functionality or model supported by the UE, then the network can switch through functionalities/models.

[image:]

Fig. 5 Different levels of Network’s awareness about UE’s AIML features and implementation

For two-sided models, whether model-ID based model or functionality based LCM is required depends on the framework to match the two parts of the two-sided models. There could be two cases of such framework.

Case1 Two-sided models that work in a vendor-specific manner: In this case a UE part of the two-sided model can work well to the corresponding network part of a two-sided model from any network vendor and the vice versa. What necessitates model switching in this case is rather a functionality change vis-à-vis a scenario or configuration change.

Case2 Two-sided models that work in a vendor-agnostic manner: In this case, a UE part of the two-sided model can only work well to the corresponding network part of two-sided models, if the UE and network vendors matched their parts of the model. In this case, both the UE and the network shall be aware of the model running in the other side.

Thus, it is clear that Case2 requires model-ID based LCM while Case1 above can be supported by both functionality based and model-ID based LCM.

Observation#9: For two-sided AI/ML models, the following two cases can be considered while determining the model-ID based and functionality based LCM for two-sided models.
· Case1: Two-sided models that work in a vendor-specific manner.
· Case2: Two-sided models that work in a vendor-agnostic manner.

In light of the above, whether to adopt model-ID-based or functionality-based LCM after evaluating the feasibility of the above two cases. As model functionality-based LCM is the simplest one and is aligned with legacy NR framework, it should be prioritized if Case2 is feasible.

Proposal#5: For UE-sided AI/ML models functionality-based LCM is adopted.
· Network provides LCM assistance on the basis of specified AI/ML functionalities.
· Capability reporting relies on the specified list of functionalities.
FFS: whether UE reports the supported AI/ML functionalities or the supported AIML functionalities by mapping them to logical models. i.e., by indicating the group of functionalities supported by a single model.

Proposal#6: For two-sided AI/ML models, differ the conclusion on whether to adopt model-ID or functionality based LCM after evaluating the feasibility of
· Case1: Two-sided models that work in a vendor-specific manner.
· Case2: Two-sided models that work in a vendor-agnostic manner.

2.2.4. Two-sided Models Development
RAN1#110 under the agenda item 9.2.2.2 agreed on the following three types of AI/ML model training collaborations for two-sided model based CSI compression.

	Agreement RAN1#110 under AI 9.2.2.2
In CSI compression using two-sided model use :case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
· Other collaboration types are not excluded.

In general, two-sided models can be developed either by a single vendor (Type 1) or by two or more vendors through collaboration (Type 2 and 3). In all the three types, the two-sided models can be either developed in an offline setup or online setup wherein in the latter the collection of training inputs (data, gradient values etc.) is via the air-interface. However, online model development and update requires sharing extensive training dataset and other quantities such as backpropagation gradient values for training.

Proposal #10: Deprioritize two-sided model training collaboration that requires extensive sharing over the air interface of training, validation and testing dataset.
Moreover, the model delivery in the above three types can be via model transfer over the air-interface or based on transparent methods to the physical layer, e.g., preinstalled models. In RAN1#109-e, some companies raised concerns on the proprietary aspects of AI/ML models. This imposes further constraints on model sharing between UE and network vendors.

 Table 6: Various two-sided model training collaborations
	No.
	Two-sided model training collaborations
	 Model development
	Model delivery

	1.
	Developed by UE shared to the network
	 Offline or online
	Transparent or model transfer

	2.
	Developed by network shared to the UE
	 Offline or online
	Transparent or model transfer

	3.
	Developed via multi-vendor collaboration
	 Offline or online
	Transparent or model transfer

Among the agreed three types for two-sided model training collaborations, Type 2 and Type 3 can protect the model to be proprietary. Additionally, Type 2 and 3 allow the model to be developed while considering optimization for the target node’s hardware and implementations. However, Type 2 and Type 3 also pose a concern in terms of scalability in model development. It is not practical for each vendor to setup a training session or exchange training dataset or reference models with each potential collaborating vendor.

 Table 7: Three types of training collaborations agreed to be studied for two-sided model development for CSI compression

	
	Can model be proprietary?
	Optimization for UE/gNB hardware/implementation
	Model development/training scalability
	Model management scalability (storing, monitoring, updating, etc.)
	Possible overhead

	Type-1:
Joint training at one side
	No
	Not supported
	Scalable
	· No issues for over-the air-transfer (use and discard).
· Otherwise, UE/gNB has to manage multiple models.
	· Model transfer overhead, if it is over-the-air-interface

	Type-2:
Joint training at the two sides
	Yes
	Supported
	Not scalable
· Two vendors train the network in one session.
· A vendor has to contact each collaborating vendors for offline engineering.
	· Has to be verified whether a single a UE-side model works with multiple gNB-side models, and vice versa.

	· Dataset, forward and backward propagation values delivery overhead, if over the air interface.

	Type-3:
Separate training at the two sides
	Yes
	Supported
	Not scalable
· Independent training sessions.
· Vendors has to receive training data or reference model from collaborating vendors.
	· Has to be verified whether a single UE-side model works with multiple gNB-side models, and vice versa.

	· Dataset delivery overhead, if over-the-air-interface.
· Reference model delivery overhead, if over the air interface.

The above types can be utilized for both offline and online model development, update or fine-tuning. As an example, in Type 2, two-vendors can collaborate for offline engineering outside the 3GPP’s framework (possibly on a private server). These vendors may share training dataset and backpropagation gradient values without disclosing their respective models. However, this method may still require two-vendors to have the same structure of the model, and the input
(the batch) of the training dataset also needs to be aligned. That is, the models from both sides need to be paired and based on the same baseline architecture, e.g., ResNet, DenseNet, etc., at the minimum to achieve expected performance. In this case, the model proprietary issue cannot be fully resolved. On the other hand, for online model development, update or fine-tuning, the backpropagation gradient values and the training dataset has to be shared online via either air-interface or in a transparent manner to the physical layer. However, such online update will be inefficient due to sharing large size training dataset and backpropagation values.

[image:]

Fig. 6 Different approaches for two-side model development without disclosing models from each side

[image:]
Fig. 7 Different examples for Type 3

Type 3, i.e., separate training of the two sides at the UE and network side, can assume multiple flavours. As illustrated in Fig. 5, Type 3-1 Sequential training, can start at the network side or UE side. When the network side starts the training, the network trains the ENC* and DEC as an example, and generate the labelled dataset, {V, c}, for the input space and latent-space based on the trained model. This labelled dataset can then be shared with the UE-side for the training of its model, e.g., ENC., based on a supervised learning. Then, the UE and network would deploy ENC. and DEC., respectively. As shown in Fig. 6, a similar procedure can be followed to train the two-sides sequential starting from UE-side.

[image:]
Fig. 8 One realization of Type 3-3 [Parallel training]

Similarly in Type 3-2, collaborating vendors may share reference models. As an example, for an auto-encoder based CSI compression, a UE and network vendors provide their reference decoder and encoder models, respectively. The reference models may not be considered as proprietary to the vendors, thus, can be shared with other vendors without concerns. Finally, the two vendors train their respective proprietary models with respect to the shared reference models (e.g., a UE vendor trains its proprietary encoder with respect to the shared reference decoder). The performance might be impacted by the reference models, which requires further investigation. In order for the two proprietary models from UE and network vendors to match, they might needs to be trained with the same dataset or, at least, a dataset with the same distribution. Moreover, if two proprietary models are well generalized across several different datasets (e.g., in case that the distributions of datasets are quite similar), they might be trained with the datasets with similar but not exactly identical distribution. For this purpose, the collaborating vendors have to share information (metadata) on the dataset or the training dataset between themselves. Otherwise, if different training datasets are used by different vendors, it might lead to performance degradation.

Finally, a third approach, Type 3-3, can be considered in which vendors independently train their respective models by keeping some structure in the latent space. As an example, vendors may agree on reference dataset to guide (align among proprietary implementations) the mapping of the input space, V, to the latent space, c. Then, they may agree on a general mapping principle, as an example conserving distance in the input and latent space. This may require an agreement on how to measure distance in the two spaces. Finally, each side can train their respective model separately based on the agreed reference datasets and agreed upon mapping philosophy. However, the feasibility and performance of such model development is yet to be studied.

 In order to mitigate the aforementioned scalability issue in the model development for Type 3, training inputs/aspects that are shared by the collaborating vendors can be standardized. As an example, reference datasets, reference models, mapping principles can be standardized.

For the above three approaches, the models are assumed to be pre-stored in the hardware. Without model transfer, it cannot be updated or fine-tuned for different scenarios. Therefore, the generalization performance needs to be carefully evaluated.

Table 8: Challenges for the three types of training collaboration
	No.
	Two-sided model development approach
	 Model development
	Exchanged quantities
	Challenges

	1.
	Type 2 via gradient values sharing.
	 Offline or online
	· Training dataset
· Inference output
· Backpropagation gradient values
	· Scalability
· Overhead for online development (dataset sharing and gradient values sharing)
· Not aligned with 3GPP’s philosophy of open development

	3
	Type 3-1 via labeled-data sharing [Sequential]
	 Offline or online
	· Labeled training dataset
·
	· Scalability
· Overhead for online development (dataset sharing and reference model sharing)
· Not aligned with 3GPP’s philosophy of open development

	2.
	Type 3-2 via reference model sharing [Parallel]
	 Offline or online
	· Information on training dataset or metadata
· Reference models
	· Scalability
· Overhead for online development (dataset sharing and reference model sharing)
· Not aligned with 3GPP’s philosophy of open development

	3.
	Type 3-3 via separate training based on structured latent space [Parallel]
	 Offline or online
	· Reference dataset and distance measurement metric, if not standardized
	· Performance has not yet been verified.
· Overhead to align dataset

Proposal #7: Consider the following and study their impacts for the two-side model development approaches,
· Requirements on privacy-sensitive dataset sharing
· Scalability, i.e., whether the number of models one vendor should develop increases with the collaborating vendors
· Whether the model development approaches adhere to 3GPP’s open and fair framework

2.2.5. Other LCM Aspects: Model Monitoring, Dataset Collection

In RAN1#110b, the following are agreed in regards to model monitoring

	Agreement
Study AI/ML model monitoring for at least the following purposes: model activation, deactivation, selection, switching, fallback, and update (including re-training).
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
0. Monitoring based on inference accuracy, including metrics related to intermediate KPIs
0. Monitoring based on system performance, including metrics related to system peformance KPIs
0. Other monitoring solutions, at least following 2 options.
2. Monitoring based on data distribution
0. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
0. Output-based: e.g., drift detection of output data
2. Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE

Agreement
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures

The agreed monitoring methods could be classified as direct, i.e., monitoring based inference accuracy, or indirect, e.g., monitoring based on system performance, input/output distribution, monitoring based on application condition. Based on the agreed model monitoring KPIs, it is obvious that direct monitoring methods may provide accurate and low-latency monitoring at the expense of higher monitoring overhead and in some cases complexity.

Proposal #8: Study direct model monitoring, e.g., monitoring based on inference latency, and indirect monitoring, e.g., monitoring based on system performance, input/output data distribution, application condition, per use case.
· Prioritize methods that do not require specifying monitoring metrics unless justified.
The discussion for data collection may involve the following fundament questions
· Who initiates data collection or provision of assistance information for data collection.
· Who consumes the collected data., i.e., where the collected data terminates?
· Whether and how much specification support needed for data collection?

Fig. 8 illustrates one exemplary case wherein data is collected for a UE-side model. In the example, the data collected by the UE is consumed by a training server. For a UE-side model, the training server is most likely owned by a UE vendor. Thus, the data collection request likely comes from the UE side rather than gNB side. Up on such reception of data collection request assistance from the UE, the gNB may provide some assistance. This assistance may include RS configuration for measurement and metadata provision such as site ID, scenario or configuration descriptions etc. Then the UE can collect the data and report it. The reporting could be in a specified or proprietary format.

Moreover, the following conclusion was made regarding assistance for data collection.

	Conclusion
Data collection may be performed for different purposes in LCM, e.g., model training, model inference, model monitoring, model selection, model update, etc. each may be done with different requirements and potential specification impact.
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

[image:]
Fig. 8 . Data collection for UE-side model

In our view, both network-side and UE-side data collection and assistance information sharing can be studied. However, while attempting to answer the above questions, one would notice the different requirements and the corresponding different possible solutions for the various purposes of data collection, e.g., e.g., model training, model inference, model monitoring, model selection, model update, etc. For example, purposes with stricter latency requirement, such as model inference, model monitoring, model selection, etc., would require real-time (near-real-time) measurement and reporting. On the other hand, purposes with less stringent latency requirement, such as model training and model update may require non-real time and batched reporting for efficiency. Thus, we propose to study data collection for these two classes of purposes separately.

Proposal#9: Study the necessity, requirement and specification of data collection for two cases of purposes
· Case1: : Real-time purposes, e.g., model monitoring, inference, selection, switching, etc.
· Case2: Non-real-time purposes, e.g., model training, update

In this regards, the following table summarizes the different aspects of data collection for the above two cases.
	
	Real-time purposes, e.g., monitoring
	Non-real-time purposes, e.g., training

	Who initiates the data-collection?
	- gNB (primarily)
	· gNB for network-side model
· UE for UE-side model
· UE or gNB for two-sided models

	Destination (termination)
	- gNB
	- Training entity (3GPP or non-3GPP)

	Possible specification support/impact
(not all are necessary)
	· Signaling for collection procedure, e.g., request, capability signaling, etc.
· RS design?
· Assistance information provision
· Report configuration, e.g., quantity/format
	· Signaling for collection procedure, e.g., request, capability signaling, etc.
· Assistance information provision
- Whether spec. support for the collected data reporting can be studied per use case (in some cases proprietary way is possible).

Proposal#10: Study the following two directions of data collection where applicable, assess their pros and cons and specification impact:
· Network-side data collection and assistance information from UE
· UE-side data collection and assistance information from network

Some discussions were made on the use case, necessity, benefit, and potential spec. impact of dataset exchange based on 3GPP signalling for the purpose of model training. Moreover, it was suggested to consider the mechanism transparent to 3GPP signalling as reference, if applicable. However, companies first should discuss per (sub) use case the feasibility/frequency/overhead of dataset collection before designing the sharing framework. Moreover, it is not easy to compare against something out of 3GPP’s scope. The study may focus on if the 3GPP specified way is necessary or not.

Proposal#11: Study per each use case the feasibility/frequency/overhead of dataset collection before designing the dataset sharing framework

Evaluation methodology

3.
4.
3.1. General discussion on KPIs
In RAN1#110, the following initial list common KPIs are agreed for evaluating performance benefits of AI/ML.

	Agreement
The following is an initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
1. Performance
· Intermediate KPIs
· Link and system level performance
· Generalization performance
1. Over-the-air Overhead
· Overhead of assistance information
· Overhead of data collection
· Overhead of model delivery/transfer
· Overhead of other AI/ML-related signaling
1. Inference complexity
· Computational complexity of model inference: FLOPs
· Computational complexity for pre- and post-processing
· Model complexity: e.g., the number of parameters and/or size (e.g. Mbyte)
· Training complexity
· LCM related complexity and storage overhead
· FFS: specific aspects
· FFS: Latency, e.g., Inference latency
Note: Other aspects may be added in the future, e.g. training related KPIsNote: Use-case specific KPIs may be additionally considered for the given use-case.

A starting point would be identifying the KPIs relevant for AI/ML based operations. To simplify the discussion on the determination of KPIs and their use in evaluating AI/ML based solutions, we propose to categorize KPIs into two categories
· Performance-related KPIs: These are KPIs that are directly related to the performance of an AI/ML based solutions for the considered use case. Taking the CSI feedback enhancement use case as example, this category may include direct performance indicators such as UPT, inference latency, and feedback overhead.
· Capability/complexity-related KPIs: This is a category of KPIs that are related to AI/ML operation but does not directly relate to the performance of AI/ML algorithm. The KPIs in this category may rather indicate the required capability for UE to operate a given AI/ML model. An example of KPIs that may fall under this category includes computational complexity, overhead associated with AI/ML model life-cycle management, power consumption, memory storage and other associated hardware requirements (including for given processing delays).

For capability-related KPIs, the following aspects needs to be studied.
· Size of model (storage requirement)
Since UE or gNB need to store the AI model for inference and the required storage size for AI/ML models can vary significantly, the size of AI models need to be considered as one of the capability-related KPIs, at least for AI/ML at the UE side. Moreover, this may be one of KPIs if AI/ML models need to be exchanged between UE and gNB, depending on how to transfer the AI/ML models.
· Inference/training complexity and latency
Inference complexity and training complexity when applicable. Both AI model training and inference require computation. If online training is a part of the study, the training complexity needs to be considered. The number of FLOPs is widely used to evaluate the computational complexity of AI/ML inferencing. Besides, latency is another key metric for AI model evaluation since this has an impact to the system performance. Latency is related to the computational complexity of the UE. Moreover, different AI models may allow different levels of parallel operation resulting in different latency even if two models have the same size. Latency can be studied together with the inference / training complexity.
· Generalization
Generalization is one of the main aspects to evaluate an AI model. The generalization performance of a model is a particularly useful metric if a single model is employed across multiple deployment scenarios, e.g., UMa, UMi, etc., or other varying scenarios such as UE speed, or even configuration, e.g., various antenna configurations. As an example, a degree of the performance degradation over the co-scenario performance (i.e., the performance when the distributions of training and inference datasets are the same) can be used. If the degree of the performance degradation is marginal, this implies that the trained AI model generalize well across different scenarios.
· Model management complexity
For some use cases, the model needs to be updated frequently, or multiple models are needed for different scenarios or for different UEs. The model management complexity needs to be considered in the evaluation together with specification impact or collaboration levels.
Another issue regarding evaluation is whether models are needed to be disclosed for fair evaluation (fair comparison and reproducibility of results. If so what aspect of the model should be disclosed, e.g., only model architecture, or entire model parameters, etc. It our view, it is not efficient to disclose the entire model and its parameters. However, if companies disclose some higher level description of their models such as the type of model, number of layers etc., it would help to compare results and assist on drawing some conclusions. One important observation is that the inference latency is related type of neural network due to different level of parallelization they allow. As an example, CNN and LSTM networks with a comparable number of parameters do not incur the same inference latency.
Proposal #12: For evaluation purpose, companies should report their results with, at least, a higher level description of their AI/ML model. higher level description includes
· Types of neural network for AI/ML model, e.g., CNN, LSTM, transformer, etc.
· Number of layers

3.2.1 Generalization Performance
In RAN1#110, the following agreements were taken about verification of the generalization performance of AI/ML models under agenda items 9.2.x.1.

	Agreement RAN1#110 under AI. 9.2.2.1
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g., Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Working Assumption RAN1#110b-e
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g., Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Agreement RAN1#110 under AI 9.2.4.1
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
(a) Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
(b) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
(c) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.

In our view, it is better if a general framework for verification of the generalization performance of AI/ML model is agreed. In this respect, we believe the agreement taken under 9.2.2.1 is general enough and can be adopted as a general guideline for the use-cases considered in this SI and future endeavours. As an example, UE drops, clutter parameters and network synchronization error fall under evaluation scenarios.

Proposal #13: The following cases for verifying the generalization performance of an AI/ML model over various scenarios/configurations:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g., Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.

In RAN1#109-e to RAN1#110b, the following approaches were highlighted as potential approaches towards generalization performance of AI/ML models. The following list up the respective potential issues for the approaches.

Table 9: Various approaches to achieve good performance across different scenarios/configurations/sites
	No.
	Approach
	Potential issues

	1.
	Training with mixed dataset
	· Mixing scenarios/configs for training dataset generation is combinatorial and complex

	2.
	Switch through a family of AI/ML models for a single task
	· Requires scenario discovery or assistance information from gNB
· Overhead (storage, LCM) of keeping multiple models
· Scalability with respect to a new scenario/config

	3.
	Model update
(transfer learning)
	· Partial (subset of layers) and full model update with site (scenario/config) related training data
· Updating overhead
· How to update a two-sided model without model sharing?

In RAN1#110b the following is agreed regarding the various methods
	Agreement RAN1#110b-e
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
· [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

RAN1 can further study the various the requirements of the agreed approaches to achieve good performance across multiple scenarios, configurations and sites. For example, it is not practical for a UE to be equipped with a model for each of the possible combination of configurations a gNB may have, e.g., antenna ports configuration. Similarly, a gNB is not expected to be equipped with a model for each possible UE side configurations. Moreover, gNB may want (be only able) to do inference based on a single model to all UEs served by it. In such cases, model input/output pre/post processing may help in to achieving configuration-agnostic models. Thus we propose the following:

Proposal #14: For approaches to achieve good performance across different scenarios/configurations/sites, e.g., model generalization, model switching, model update, etc., study
· Approaches to discover and/or report scenarios/configurations/sites
· Model input/output pre/post-processing and the additional side-information required to achieve model generalization

3 Conclusion
In this contribution the following observations and proposals are made:

Proposal #1: Concerning with the feasibility and practicality of AI/ML model transfer, RAN1 should study aspects such as
- Interoperability: does a model transferred from one node to another node work in a plug-and-pay manner, i.e., without extensive receiving-node-specific optimization, compiling and testing?
- Proprietary issues: If AI/ML models are considered proprietary assets, model transfer in an open format discloses them.
- Model transfer format (MTF): does RAN1 need to adopt a common MTF so that a model exchanged between two nodes from different vendors compiles and runs?
- Performance guarantee: If AI/ML model is transferred from one node to the other, which entity guarantees performance, e.g., inference latency?

Proposal#2: In regards to model delivery/transfer deprioritize cases z1, z2, z3 ,z4, z5 in this study item
· Cases z2, z3, z4 and z5, do not allow the UE to receive and run AI/ML models in a ‘plug-and-play’ manner, i.e., without additional steps for UE-specific compilation and optimization.
· Specification support for case-z1 is not justified as the same UE vendor would train the model. Hence, proprietary solutions, e.g., case-y, can be used.

Proposal #3: Study functionality-based LCM for UE-side model where
Alt 1: UE reports the supported AI/ML functionalities
Alt2: UE reports the supported AIML functionalities by mapping them to logical models. i.e., by indicating the group of functionalities supported by a single model.
Note: Logical model implies a reported AI/ML model. UE may transparently have multiple implementations of a logical model.

Proposal #4: For UE side and UE part of two-sided models, study mechanisms to manage
1. Timeline and delay requirements for AIML operations, e.g., AIML model/functionality activation, switching,
2. Processing capability for concurrently activated AIML models/functionalities

Proposal#5: For UE-sided AI/ML models, functionality-based LCM is adopted.
· Network provides LCM assistance on the basis of specified AI/ML functionalities.
· Capability reporting relies on the specified list of functionalities.
FFS: whether UE reports the supported AI/ML functionalities or the supported AIML functionalities by mapping them to logical models. i.e., by indicating the group of functionalities supported by a single model.

Proposal#6: For two-sided AI/ML models, differ the conclusion on whether to adopt model-ID or functionality based LCM after evaluating the feasibility of
· Case1: Two-sided models that work in a vendor-specific manner.
· Case2: Two-sided models that work in a vendor-agnostic manner.

Proposal#6: For two-sided AI/ML models, differ the conclusion on whether to adopt model-ID or functionality based LCM after evaluating the feasibility of
· Case1: Two-sided models that work in a vendor-specific manner.
· Case2: Two-sided models that work in a vendor-agnostic manner.

Proposal #7: Consider the following and study their impacts for the two-side model development approaches,
· Requirements on privacy-sensitive dataset sharing
· Scalability, i.e., whether the number of models one vendor should develop increases with the collaborating vendors
· Whether the model development approaches adhere to 3GPP’s open and fair framework

Proposal #8: Study direct model monitoring, e.g., monitoring based on inference latency, and indirect monitoring, e.g., monitoring based on system performance, input/output data distribution, application condition, per use case.
· Prioritize methods that do not require specifying monitoring metrics unless justified.

Proposal#9: Study the necessity, requirement and specification of data collection for two cases of purposes
· Case1: : Real-time purposes, e.g., model monitoring, inference, selection, switching, etc.
· Case2: Non-real-time purposes, e.g., model training, update

Proposal#10: Study the following two directions of data collection where applicable, assess their pros and cons and specification impact:
· Network-side data collection and assistance information from UE
· UE-side data collection and assistance information from network

Proposal#11: Study per each use case the feasibility/frequency/overhead of dataset collection before designing the dataset sharing framework

Proposal#12: Study per each use case the feasibility/frequency/overhead of dataset collection before designing the dataset sharing framework

Proposal #13: The following cases for verifying the generalization performance of an AI/ML model over various scenarios/configurations:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g., Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Proposal #14: For approaches to achieve good performance across different scenarios/configurations/sites, e.g., model generalization, model switching, model update, etc., study
· Approaches to discover and/or report scenarios/configurations/sites
· Model input/output pre/post-processing and the additional side-information required to achieve model generalization
And the following observations were made

Observation#1:
A model transferred in an open-format (cases: z3, z4, and z5) allows model update at the receiving node. However, model cannot be kept proprietary.

Observation#2:
A model transferred in a proprietary format (cases: z1 and z2) allows the model to be kept proprietary. However, model update at the receiving node is not possible.

Observation#3:
When a model is transferred in an open-format (cases: z4-z5), the receiving node may require to perform additional steps before deploying the model for inference. The steps may include performing node-specific compilation and node-specific optimization.

Observation#4:
Case z2, a model trained at the network and transferred in a proprietary-format, the network vendors involved in model training and compilation require offline collaboration with the UE or chipset vendor, for UE-specific compilation and UE-specific optimization so that the UE can run the model in a plug-and-play manner.

Observation#5:
Among the model delivery/transfer cases described
· Cases: z2, z3, z4 and z5, do not allow the UE to receive and run AI/ML models in a ‘plug-and-play’ manner, i.e., without additional steps for UE-specific compilation and optimization.
· Case y1 and z1 allow a UE to receive and run AI/ML models in a ‘plug-and-play’ manner, i.e., without additional steps for UE-specific compilation and optimization.

Observation#6
In functionality based LCM, functionalities a UE supports can be reported in a same manner as the legacy capability reporting in NR framework.

Observation#7
In some cases, it is beneficial if UE reports its supported AI/ML functionalities by mapping them (grouping them) to AI/ML [logical] models. For example, AI/ML model/functionality activation may require longer delay than inference from activated AIML model/functionality. Thus, such functionality to model mapping allows the network to manage the operational timeline and delay requirement of AIML operations.

Observation #8: For one-sided models, including both UE-side model and network-side model, model LCM assistance can be supported without explicit identification of a model.
· For a model in one node, LCM assistance can be provided by another node based on implicit model ID pointing to the associated [logical model] or functionalities, e.g., scenarios, configurations of the model

Observation#9: For two-sided AI/ML models, the following two cases can be considered while determining the model-ID based and functionality based LCM for two-sided models.
· Case1: Two-sided models that work in a vendor-specific manner.
· Case2: Two-sided models that work in a vendor-agnostic manner.

4 Reference
[1] RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, Qualcomm (Moderator)
[2] R1-2209721, “General aspects of AIML and evaluation methodology”, Samsung

[3] Chair's notes RAN1#109-e

[4] Chair's notes RAN1#110

[5] Chair's notes RAN1#110b-e

[5] Chair's notes RAN1#111

[5] Chair's notes RAN1#112

[bookmark: _GoBack]
image6.png

image7.png

image8.png

image9.png

image10.png

image1.emf
Capability reportScenario discoveryActivation of AI/ML-based functionality(may include selection/switching) AI/ML functionality monitoring(may include measurement and inference)Deactivation of AI/MLfunctionalityAI/ML-based inference(may include measurement and reporting)Configuration of AI/ML-based features/functionalites

image2.png

image3.png

image4.png

image5.png

