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[bookmark: _Hlk521259925]In RAN1#112bis meeting [1], the following agreements and conclusions were made for evaluation on AI/ML for positioning accuracy enhancement.
	Agreement
For evaluation of both the direct AI/ML positioning and AI/ML assisted positioning, company optionally adopt delay profile (DP) as a type of information for model input.
· DP is a degenerated version of PDP, where the path power is not provided.

Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· For Approach 2: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.

Agreement
In the evaluation of AI/ML based positioning, if N’TRP<18, the set of N’TRP TRPs that provide measurements to model input of an AI/ML model are reported using the TRP indices shown below.
[image: ]

Agreement
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to TOA accuracy and/or positioning accuracy.
· The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources.
· Other models of labelling error are not precluded
· Other timing information, e.g., RSTD, as model output is not precluded.

Agreement
[bookmark: _Hlk132894047]For AI/ML assisted positioning with LOS/NLOS indicator as model output, study the impact of labelling error to LOS/NLOS indicator accuracy and/or positioning accuracy.
· The ground truth label error of LOS/NLOS indicator can be modelled as m% LOS label error and n% NLOS label error.
· Value m and n are up to sources.
· Companies consider at least hard-value LOS/NLOS indicator as model output.


Agreement
For the evaluation of AI/ML based positioning method, the measurement size and signalling overhead for the model input is reported. 

Observation
For AI/ML based positioning method, companies have submitted evaluation results to show that for their evaluated cases, for a given company’s model design, a lower complexity (model complexity and computational complexity) model can still achieve acceptable positioning accuracy (e.g., <1m), albeit degraded, when compared to a higher complexity model. 
Note: For easy reference, sources include CMCC (R1-2303228), InterDigital (R1-2303450), Ericsson (R1-2302335), Huawei/HiSilicon (R1-2302362), CATT (R1-2302699), Nokia (R1-2302632).

Observation
For direct AI/ML positioning, for L in the range of 0.25m to 5m, the positioning error increases approximately in proportion to L, where L (in meters) is the standard deviation of truncated Gaussian Distribution of the ground truth label error.  

Observation 
For AI/ML assisted positioning, evaluation results have been provided by sources for label-based model monitoring methods. With TOA and/or LOS/NLOS indicator as model output, the estimated ground truth label (i.e., TOA and/or LOS/NLOS indicator) is provided by the location estimation from the associated conventional positioning method. The associated conventional positioning method refers to the method which utilizes the AI/ML model output to determine target UE location. 
Note: Sources include vivo (R1-2302481), MediaTek (R1-2303340), Ericsson (R1-2302335)

Observation
For both direct AI/ML and AI/ML assisted positioning, evaluation results have been provided by sources to demonstrate the feasibility of label-free model monitoring methods.
Note: Sources include vivo (R1-2302481), CATT (R1-2302699), MediaTek (R1-2303340), Ericsson (R1-2302335), Nokia (R1-2302632).

Observation
For both direct AI/ML and AI/ML assisted positioning, evaluation results submitted to RAN1#112bis show that with CIR model input for a trained model,
· For two SNR/SINR values S1 (dB) and S2 (dB), S1>=S2 + 15 dB,  positioning error of a model trained with data of S1 (dB) and tested with data of S2 (dB) is more than 5.75 times that of the model trained and tested with data of S1 (dB).
· For two SNR/SINR values S1 (dB) and S2 (dB), S1<=S2 – 10 dB, the generalization performance of a model trained with data of S1 (dB) and tested with data of S2 (dB) is better than the performance of a model trained with data of S2 (dB) and tested with data of S1 (dB). Positioning error of a model trained with data of S2 (dB) and tested with data of S1 (dB) is more than 2.97 times that of the model trained with data of S1 (dB) and tested with data of S2 (dB).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation
For direct AI/ML positioning, based on evaluation results of timing error in the range of 0-50 ns, when the model is trained by a dataset with UE/gNB RX and TX timing error t1 (ns) and tested in a deployment scenario with UE/gNB RX and TX timing error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 30ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 30ns) is 0.82~0.86 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 0ns) is 0.80~0.82 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(0ns, 10ns) is 1.25~18.7 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(0ns, 50ns) is 3.5~18.3 times that of (t1, t2)=(0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation
For direct AI/ML positioning, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 10ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 10ns) is 0.74~0.83 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 0ns) is 0.73~0.82 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#112bis show the positioning error of (0ns, 10ns) is 1.17~9.5 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#112bis show the positioning error of (0ns, 50ns) is 10~40 times that of (0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.


In this contribution, we provide the evaluation methodology and performance results of positioning accuracy enhancement.
 Evaluation methodology and performance results 
Dataset generation
For model training and performance evaluation, we totally generated 10 different drops of data. For data generated by the same drop, uniform distribution is assumed as the distribution of UE location. The evaluation parameters are set according to the agreed parameters of InF-DH scenario, as illustrated in Appendix. Network synchronization error is not considered.
AI/ML model
In our simulation, one sided model with CNN-based architecture is assumed to be applied at the UE side for AI/ML based positioning. For example, if CIR is taken as the model input, each sample size of the model input is 18×1×256, which corresponds to 18 BSs, single antenna port, and CIR of 256 length. Since the CIR value consists of the real part and the imaginary part, the model input can be further formulated as 18×256×2. The architecture of the AI model is shown in Fg.1


Fig. 1 Architecture of AI/ML model for positioning
The related parameters for training phase are given in Table I.
Table I. Parameters for model training
	Loss function
	MSE

	Optimizer
	Adam

	Initial learning rate
	0.0001

	Batch size
	256



Simulation results on direct AI/ML positioning
In this section, we focus on direct AI/ML positioning. We respectively use CIR and CIR+RSRP as the model input, and the impact of the size of training dataset is also considered. The simulation results are illustrated in this section. 
Impact of training dataset size and model input type
Table II shows the evaluation results when CIR and CIR+RSRP are used as model input, and three different sizes of training dataset (i.e.,25000,5000,2500) are respectively used. All the training data and test data are taken from the same drop with spatial consistency.
Table II. Evaluation results for AI/ML model deployed on UE side, CNN
	[bookmark: _Hlk119318593]Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop 1

	{60%, 6m, 2m}, Drop 1 

	25000
	2500
	3.71M
	7.42M
	0.38

	
	
	
	{60%, 6m, 2m}, Drop 1

	{60%, 6m, 2m}, Drop 1 

	5000
	2500
	
	
	1.32

	
	
	
	{60%, 6m, 2m}, Drop 1

	{60%, 6m, 2m}, Drop 1 

	2500
	2500
	
	
	2.36

	CIR
(size:18*1*256)+
RSRP
(size:18*1)

	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop 1

	{60%, 6m, 2m}, Drop 1 

	25000
	2500
	3.71M
	7.42M
	0.33

	
	
	
	{60%, 6m, 2m}, Drop 1

	{60%, 6m, 2m}, Drop 1 

	5000
	2500
	
	
	0.90

	
	
	
	{60%, 6m, 2m}, Drop 1

	{60%, 6m, 2m}, Drop 1 

	2500
	2500
	
	
	1.27



[bookmark: _Hlk126850826]From the results, we can see that for the two kinds of model input, the positioning accuracy is smaller than 1 meter if the dataset size is large than a value, and taking RSRP as an additional model input to CIR can improve the positioning accuracy. When the training dataset size decreases from 25000 to 2500, the positioning accuracy decreases accordingly, and the performance of taking CIR as model input is more sensitive to the training dataset size. For example, the positioning accuracy of taking CIR as model input is decreased from 0.38m to 2.36m, while the positioning accuracy of taking CIR and RSRP as model input is decreased from 0.33m to 1.27m.
Observation 1: If RSRP is taken as an additional model input to CIR, the positioning accuracy can be improved.
Observation 2: The positioning accuracy is sensitive to the training dataset size, when the dataset size is large than a value, the positioning accuracy is smaller than 1 meter.
Generalization capability
To verify the generalization capability of different drops, we evaluate the AI/ML model trained with the dataset of Drop 1 and tested with the dataset of Drop 2. We also evaluate the AI/ML model trained with mixed dataset consists of samples from different drops. The simulation results are shown in Table III. 
Table III. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop1
	{60%, 6m, 2m}, Drop 2
	25000
	2500
	3.71M
	7.42M
	18.45

	
	
	
	{60%, 6m, 2m}, Drop1&Drop2 mixed
	{60%, 6m, 2m}, Drop 2
	25000(12500/Drop
)
	2500
	
	
	0.49

	
	
	
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed

	25000（2500/Drop）
	2500 (250/Drop
)
	
	
	0.88

	CIR
(size:18*1*256) +RSRP
(size:18*1)

	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop1
	{60%, 6m, 2m}, Drop 2
	25000
	2500
	3.71M
	7.42M
	14.58

	
	
	
	{60%, 6m, 2m}, Drop1&Drop2 mixed
	{60%, 6m, 2m}, Drop 2
	25000(12500/Drop
)
	2500
	
	
	0.37

	
	
	
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed

	25000（2500/Drop）
	2500 (250/Drop
)
	
	
	0.58



[bookmark: _Hlk111125470]From the simulation results in Table III, it can be noted that the positioning accuracy of the AI/ML model trained with dataset of Drop 1 and tested with dataset of Drop 2 is larger than 10 meters, for both types of model input we evaluated. If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.
Observation 3: If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.
Model fine-tuning
One possible way to improve the generalization capability is fine-tuning. The evaluation results of generalization of different drops under different sizes of fine-tuning data is shown in Table IV. In our simulations, the model trained with 25000 samples in Drop 1 are fine-tuned with 500, 1000, 2000, 3000 samples in Drop 2, respectively. And the fine-tuned model is tested in the test dataset in Drop 2.
Table IV. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size:18*1*256

	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop1

	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000

	500

	2500

	3.71M
	7.42M
	4.14

	
	
	
	
	
	
	
	1000

	
	
	
	3.35

	
	
	
	
	
	
	
	2000
	
	
	
	2.74

	
	
	
	
	
	
	
	3000
	
	
	
	1.95


From the results shown in Table IV, it can be observed that model fine-tuning with a small amount of data can obviously improve the generalization performance of different drops. When the fine-tuning dataset is increasing, the positioning accuracy will be improved accordingly.
Observation 4: Model updating with a small amount of fine-tuning data can obviously improve the generalization performance of different drops.
Model complexity
To study the trade off among model performance, model complexity and computational complexity, we change the model structure in Fig1. by adding more Block2 after the Block3, which increase the model complexity. The simulation results are shown in Table V. 
Table V. Evaluation results for direct AI/ML positioning with different complexity
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	CIR
	POS
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed

	78400
	1600
	3.7M
	7.4M
	0.537

	
	
	
	
	
	
	
	6.4M
	12.8M
	0.386


From the results shown in Table V, it can be observed that with the increased model complexity and computation complexity, better position accuracy is archived.
Observation 5: As the complexity of the model increases, the positioning accuracy improves.

Label error
In real world, it is hard to collect accuracy location data for constructing the training data set. Some label error would be introduced during the data collection procedure. To evaluate the performance degradation causing by the label error, we tried to add random label error in the ideal training data set. In the last meeting, the evaluation result for label error was provided by some companies, and the following agreements were made.
	Agreement
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to TOA accuracy and/or positioning accuracy.
· The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources.
· Other models of labelling error are not precluded
· Other timing information, e.g., RSTD, as model output is not precluded.

Observation
For direct AI/ML positioning, for L in the range of 0.25m to 5m, the positioning error increases approximately in proportion to L, where L (in meters) is the standard deviation of truncated Gaussian Distribution of the ground truth label error.  


[bookmark: _GoBack]In this meeting, we provide our results with different model of labeling error generation. Although this model is a wrong version causing by some misunderstanding, some observation could still be proposed. We firstly generate parameter r based on the truncated Gaussian distribution, then we use a random number  and  to calculate the location error of x-axis. The location error of y-axis is calculate by  . The result of this method is showed as below.

[image: ]
Figure I. Evaluation results for label error
Table VI. Evaluation results for direct AI/ML positioning with different label error
	Model input
	Model output
	Label
	Label error
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	L(m)
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	CIR
	POS
	0
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed

	78400
	1600
	3.7M
	7.4M
	0.537

	
	
	
	0.5
	
	
	
	
	
	
	0.591

	
	
	
	0.75
	
	
	
	
	
	
	1.164


Based on the result, it is showed that the relationship between the label error and the accuracy of direct AI positioning model changes when the model of the label error generation changed.
Observation 6: The positioning error may not increase approximately in proportion to L, if the model of the label error generation changed
We also provide our results with the ground truth label error generated by truncated Gaussian Distribution. The result shows that the positioning error increases approximately in proportion to L.
Table VII. Evaluation results for direct AI/ML positioning with different label error
	Model input
	Model output
	Label
	Label error
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	L(m)
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	CIR
	POS
	0
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed

	78400
	1600
	3.7M
	7.4M
	0.537

	
	
	
	0.25
	
	
	
	
	
	
	0.767

	
	
	
	0.5
	
	
	
	
	
	
	0.943

	
	
	
	0.75
	
	
	
	
	
	
	1.704



Simulation results on AI/ML assisted positioning
In this section, we focus on AI/ML assisted positioning. We use CIR as the model input, and the impact of the label is also considered. The simulation results are illustrated in this section. 
Baseline performance of traditional positioning algorithms
We firstly bring out some traditional positioning algorithms and test them with the dataset, to check the validity of our realization and the performance. Newton's method and the CHAN are used. TOA, TDOA and the ideal-TOA(based on the assumption that each gNB-UE link has a LOS path) are the input data. The simulation results are shown in Table VI. 
Table VIII. Evaluation results for traditional positioning algorithms
	Label
	Newton's method/m
	CHAN/m

	
	CDF=90%
	RMSE
	CDF=90%
	RMSE

	TOA
	28.62
	19.52
	43.81
	18.21

	TDOA
	\Unable to converge
	\
	43.81
	18.21

	ideal-TOA
	9.28 e-08
	3.62 e-08
	2.80 e-12
	1.98 e-12


From the results shown in Table VI, it can be observed that ideal-TOA input to both algorithms can get a high accuracy, which prove that the realization of algorithm is correct. Both algorithms can not work properly when input TOA and TDOA, shows the limitations of traditional localization algorithms.
Observation 7: Traditional positioning algorithms can not work properly in inF scenario.

Performance of AI/ML assisted positioning
To evaluate the Performance of AI/ML assisted positioning, we take CIR as the model input, and TOA,TDOA as the model output. Then traditional positioning algorithms introduced in the previous section are used to generate the final result. The simulation results are shown in Table VII and Table VIII. 
Table IX. Evaluation results for AI/ML assisted positioning with Newton's method
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	TOA
	TOA
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed

	78400
	1600
	3.71M
	7.42M
	28.94

	
	TDOA
	TDOA
	
	
	
	
	
	
	Unable to converge

	
	TOA
	Ideal-TOA
	
	
	
	
	
	
	0.279


Table X. Evaluation results for AI/ML assisted positioning with CHAN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	TOA
	TOA
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed

	78400
	1600
	3.71M
	7.42M
	45.36

	
	TDOA
	TDOA
	
	
	
	
	
	
	39.58

	
	TOA
	Ideal-TOA
	
	
	
	
	
	
	0.307


From the results shown in Table VII and Table VIII, it can be observed that with the ideal-TOA lable, AI/ML assisted positioning can also get a accurate result, but same problem is suffered when the label is TOA and TDOA.
Observation 8: AI/ML assisted positioning can not work properly in inF scenario due to the lack of LOS path.

Conclusion
In this contribution, we share our views on the evaluation methodology for AI/ML based positioning accuracy enhancement, and some evaluation results are also provided. The observations and proposals are summarised as follows:
Observation 1: If RSRP is taken as an additional model input to CIR, the positioning accuracy can be improved.
Observation 2: The positioning accuracy is sensitive to the training dataset size, when the dataset size is large than a value, the positioning accuracy is smaller than 1 meter.
Observation 3: If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.
Observation 4: Model updating with a small amount of fine-tuning data can obviously improve the generalization performance of different drops.
Observation 5: As the complexity of the model increases, the positioning accuracy improves.
Observation 6: The positioning error may not increase approximately in proportion to L, if the model of the label error generation changed
Observation 7: Traditional positioning algorithms can not work properly in inF scenario.
Observation 8: AI/ML assisted positioning can not work properly in inF scenario due to the lack of LOS path.
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Appendix
Parameters common to InF scenario (Modified from TR 38.857 Table 6.1-1)
	
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m


	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m

[image: ]

	
	Room height
	10m

	
	
	

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.

	UE antenna height
	Baseline: 1.5m

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	High clutter density:
- {40%, 2m, 2m} 
- {60%, 6m, 2m}
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.

	Note 1:	According to Table A.2.1-7 in TR 38.802
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