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1 Introduction
In last meeting, various template tables were agreed as working assumption for evaluation results collection. In this contribution, we present our views on evaluation methodology and evaluation results on AI/ML for CSI feedback enhancement, including AI/ML based CSI compression and AI/ML based CSI prediction in time domain. 
2 Discussion on AI/ML based CSI compression
2.1 1 on 1 joint training
We select Rel-16 TypeII codebook as the baseline, and the case of eigenvector from measured channel without compression is also evaluated as the upper bound for comparing the SGCS and throughput results with AI based CSI solutions. The maximum rank value is set to two with rank adaptation and a layer-common and rank-common AI model is used. 
Based on the working assumption in last meeting, three typical feedback overhead for each layer should be evaluated. We set X equals to 62 bits, Y equals to 111 bits and Z equals to 279 bits for eType II evaluation, and X equals to 60 bits, Y equals to 120 bits and Z equals to 280 bits for AI evaluation. A 2-bit scalar quantization method is used in the evaluation. 
SGCS results
As Table 1 shows, the AI based CSI compression can achieve higher SGCS than eTypeII in both layer 1 and layer 2. The SGCS for the 1st layer of AI based CSI compression is around 0.72 when the feedback overhead is 60 bits, and the SGCS increased to 0.88 when the feedback overhead is 280 bit. The SGCS of the 2nd layer is relatively lower compared with the 1st layer, the SGCS for the 2nd layer of AI based CSI compression is around 0.56 when the feedback overhead is 60 bits, however, the performance is improved significantly as 0.81 when the feedback overhead increased to 280 bits. The gain of AI over eTypeII is in range of 9.7% to 18.1% for layer 1 and 9.7% to 22.9% for layer 2. The loss of AI based CSI enhancement compared with ideal CSI is in range of 11.3% to 28.3% for layer 1 and 19.4% to 43.3% for layer 2.
Table 1, Performance simulation results
	Case
	SGCS-Layer1
	SGCS-Layer2

	AI (X/Y/Z)
	0.7167/0.8017/0.8867
	0.5668/0.6830/0.8064

	eType2 (X/Y/Z)
	0.6534/0.7020/0.7507
	0.5168/0.5864/0.6558

	Gain of AI over eTypeII (X/Y/Z)
	9.7%/14.2%/18.1%
	9.7%/16.7%/22.9%

	Gain of AI over ideal CSI
	-28.3%/-19.8%/-11.3%
	-43.3%/-31.7%/-19.4%



Throughput results
As Table 2 shows, the AI based CSI compression outperforms eType2 codebook in average SE and 5% UPT. Setting eType2 codebook as benchmark, the ideal case has around 35% performance gain in average and AI based CSI has around 26% performance gain than the eTypeII case. The average UPT gain of AI over eTypeII is in range of 24.5% to 27.3% and 5% UPT gain is in range of 8.8% to 30.2%. The average UPT loss of AI over ideal CSI is in range of 32.4% to 38.5% and 5% UPT loss is in range of 29.1% to 48.7%.
Table 2, Performance simulation results
	Case
	Average UPT
	5% UPT

	Gain of AI over ideal CSI (X/Y/Z)
	-10.1%/-5.9%/-3.8%
	-12.5%/-12.7%/-15.8%

	Gain of AI over eTypeII (X/Y/Z)
	24.5% /28.2%/27.3%
	30.2%/21%/8.8%

	Gain of eTypeII over ideal CSI (X/Y/Z)
	-38.5%/-35.6%/-32.4%
	-48.7%/-38.6%/-29.1%


Observation 1: The SGCS gain of AI over eTypeII is in range of 9.7% to 18.1% for layer 1 and 9.7% to 22.9% for layer 2. The SGCS loss of AI based CSI enhancement compared with ideal CSI is in range of 11.3% to 28.3% for layer 1 and 19.4% to 43.3% for layer 2.
Observation 2: The average UPT gain of AI over eTypeII is in range of 24.5% to 27.3% and 5% UPT gain is in range of 8.8% to 30.2%. The average UPT loss of AI over ideal CSI is in range of 32.4% to 38.5% and 5% UPT loss is in range of 29.1% to 48.7%.
Proposal 1: The SGCS/UPT loss of AI based CSI enhancement compared to ideal CSI can be optionally provided.
2.2 Scenario generalization for CSI compression
We present our preliminary evaluation results for different scenarios in this section, and the two cases with different training dataset and testing dataset are considered in the evaluation. 
Generalization performance
Three kinds of training dataset as Uma only, Umi only and mixed Uma and Umi are considered, and the AI/ML model is tested by Uma and Umi dataset separately. The evaluation result is obtained based on feedback payload equals to 120 bits for both layer 1 and layer 2. As table 3 shows, for Uma testing dataset, the best performance is achieved when the AI/ML model is trained by Uma dataset only. When the training dataset is mixed, the performance improved when testing in Umi. While for Uma testing dataset, the SGCS performance are very close for different training datasets. It can be observed that the AI/ML model shows good generalization performance in various scenarios.
Table 3, SGCS results of scenarios generalization
	Training dataset
(layer 1+ layer 2)
	Testing dataset

	
	Layer 1
	Layer 2

	
	Uma
	Umi
	Uma
	Umi

	Uma
	0.7767
	0.7611
	0.6476
	0.6314

	Uma : Umi=5 : 5
	0.7758
	0.7747
	0.6304
	0.6366


Fine-tuning performance
In the previous meeting, the methodology of model fine-tuning was agreed and performance improvement is expected with model fine-tuning. We conduct the evaluation of model fine-tuning in this section. The AI/ML model is trained based on draining dataset#1 from Uma, then the trained model is updated based on fine-tuning dataset #2 from Umi. After that, the AI/ML model is tested on dataset from Umi. The amount of data in dataset#2 is around fifteenth of dataset#2. As Table 4 shows, the performance improved from 0.7611 to 0.7686 by fine-tuning. 
Table 4: SGCS performance of AI/ML fine-tuning
	Training dataset
	Uma
	Uma + Umi fine-tuning

	Testing dataset
	Umi
	Umi

	SGCS results Layer1
	0.7611
	0.7686

	SGCS results Layer2
	0.6314
	0.6369


Observation 3: AI/ML model shows good generalization performance in different scenarios.
Observation 4: The fine-tuning procedure can improve the performance.
2.3 Scalability for CSI compression
In previous meeting, the following agreements were achieved on the evaluation of scalability for CSI compression:
	Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases
Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases
Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input/output dimensions, companies to report which case(s) in the following are evaluated
· Case 0 (benchmark for comparison): One CSI generation part with fixed input and output dimensions to 1 CSI reconstruction part with fixed input and output dimensions for each of the different input and/or output dimensions.
· Case 1: One CSI generation part with scalable input and/or output dimensions to N>1 separate CSI reconstruction parts each with fixed and different output and/or input dimensions
· Case 2: M>1 separate CSI generation parts each with fixed and different input and/or output dimensions to one CSI reconstruction part with scalable output and/or input dimensions
· Case 3: A pair of CSI generation part with scalable input/output dimensions and CSI reconstruction part with scalable output and/or input dimensions



Scalability over different output dimensions of CSI generation part
The generalization evaluation of different size of CSI feedback payloads is conducted by parallel training of one encoder part and three decoder parts. The basic AI model for feedback payloads generalization is as Fig.1 shows. Setting the maximum feedback bit number as 240 bit, different feedback payloads are obtained by cutting off the tail of the maximum 240 bit. The output of encoder is always equal to the maximum bit number, while the input of the decoder is the truncated bit of the output of encoder. The loss function is the average results of different decoder parts. In this two-sided model, the UE side only need to deploy one encoder part, and the output of encoder can be various based on gNB’s configuration and/or indication.
The evaluation result is shown in Table 5, where the baseline results is achieved by training one encoder part and one decoder part with different feedback payloads separately, the generalization is results of generalized AI model, which is a single AI model with one encoder part and three decoder parts. As Table 5 shows, the performance loss is about 14.2% for payload size equals to 120 bit, around 7.5% for payload size equals to 180 bit and around 2.1% for payload size equals to 240 bit. The generalized AI model has worse performance than the baseline scheme, the less the feedback payloads, the lager the gap. In that sense, it is proposed to study the pre-processing mechanisms for input of decoder to improve the AI model generalization performance on various feedback payloads. 
[image: ]
Figure 1, The basic structure of AI model for feedback payloads generalization
Table 5, SGCS results of feedback payload generalization
	
	120 bit
	180 bit
	240 bit

	Baseline
	0.802
	0.843
	0.869

	Generalization
	0.688 (-14.22%)
	0.779 (-7.53%)
	0.850 (-2.12%)


Scalability over different input dimensions of CSI generation part
For evaluating the scalability over different input dimensions of CSI generation part, we conducted simulation by using different size of subband. Keeping totally 48 RB unchanged, two options are considered in the simulation. Both the dataset of Option 1 and Option 2 are used for training, and 0 is padding to the end of vector for option 2.
· Option 1: 2 RB per subband
· Option 2: 4 RB per subband
The evaluation result is obtained based on the feedback payload equals to 120 bits and is shown in Table 6, where the baseline results is achieved by training AI model with fixed subband number and testing AI model with the same subband number. And the generalization results is achieved by training AI model with mixed subband number and testing AI model with different subband number separately. As Table 6 shows, the generalization model can achieve similar SGCS performance with the baseline. It can be observed that the AI/ML model shows good generalization performance in various subband number.
Table 6, SGCS results of subband number generalization
	
	2RB per subband
	4RB per subband

	Baseline (case 1)
	0.65
	0.70

	Generalization (case 3)
	0.63
	0.69


Observation 5: The generalized AI model does not work well on various CSI feedback payloads, especially for a small number of feedback payloads.
Observation 6: AI/ML model shows good generalization performance in different sizes of subband and subband number.
Proposal 2: RAN1 study pre-processing mechanisms for the input of decoder to improve the AI model generalization performance on various feedback payloads.
2.4 Separate training
In last meeting[1], the following agreements were achieved on Type 3 (Separate training at NW side and UE side):
	Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models
· FFS: whether/how to report overhead of dataset


We present our preliminary evaluation results on Type 3 separate training in this section. Based on the example of Type 3, the following procedure is considered in our evaluation for the sequential training starting with NW side training:
Step 1: NW trains a two-sided AI model with both encoder part and decoder part based on dataset#1 of original CSI, Vin.
Step 2: NW shares a dataset#2 to UE for UE training encoder part, dataset#2 includes Vin and Vq, where Vq is the output of encoder at NW side. Note that Vin is not the output during the NW training, but the output results after NW side training is finished. 
Step 3: UE trains encoder based on dataset#2 with the input as Vin and the label as Vq.
Step 4: Joint inference is performed by the decoder at NW side and encoder at UE side trained separately. 
Three cases for Type 3 training was evaluated:
· Case 1: Aligned AI/ML model structure between NW side and UE side by using joint training
· Case 2: Aligned AI/ML model structure between NW side and UE side by using separate training
· Step 1: NW first training by using TF structure in both CSI generation and CSI reconstruction part.
· Step 2: NW shares dataset (Vin, Vq) to UE
· Step 3: UE reuses the TF structure in step 1 to perform CSI generation part training
· Case 3: Not aligned AI/ML model structures between NW side and UE side by using separate training
· Step 1: NW first training by using TF structure in both CSI generation and CSI reconstruction part
· Step 2: NW shares dataset (Vin, Vq) to UE
· Step 3: UE use the CNN structure to perform CSI generation part training
We firstly evaluated the baseline scheme of Type 1 joint training by using TF structure in both CSI generation and CSI reconstruction part. The backbone and structure of CSI generation part in case 2 is same with case 1, only the parameters of the model is retrained. By comparing the SGCS results of case 1 and case 2 in Table 7, it can be observed that there is small degradation of Type 3 separate training compared with Type 1 joint training on SGCS. Then we further evaluated case 3 by using CNN structure for CSI generation part training. As Table 7 shows, there is large degradation between case 2 and case 3. By comparing the SGCS results of case 1, case 2 and case 3, it can be observed that when AI model structure is known, separate training can achieve similar performance with joint training, and when different AI backbone is used for CSI generation part and CSI reconstruction part, performance of separate training decreased compared with joint training. 
Table 7：Evaluation results comparison of different training types
	Case 
	SGCS

	Case 1
	0.692

	Case 2 
	0.690

	Case 3
	0.493


Observation 7: When AI model structure is known, separate training can achieve similar performance with joint training. 
Observation 8: When different AI backbone is used for CSI generation part and CSI reconstruction part, performance of separate training decreased compared with joint training.
2.5 Quantization of compressed CSI  
In last meeting, the following agreements were achieved for quantization of compressed CSI
	Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded.


We consider the following cases to study the impact of quantization in AI/ML model based CSI compression. 
· Case 1: Training without quantization, inference without quantization
· Case 2: Training with quantization, inference with quantization
· Case 2-1: Scalar quantization
· Case 2-2: Vector quantization. 
Wherein, case 1 is the ideal case without any impact of quantization, which can be assumed to the upper band of AI/ML with quantization. Case 2-1 and case 2-2 is more in line with the real system where the testing phase is with quantization. Note that 2-bit scale quantization is used in case 2-1. In case 2-2, the quantization parameters are updated in together with the AI/ML models during the training phase, after training is finished, the final quantization codebook is applied for the inference phase The SGCS results is shown in Table 8. It can be observed that there is around 7% loss caused by quantization operation by comparing the SGCS results of case 1 and case 2/3, more suitable quantization method can be considered to improve the performance. There is minor performance gap between case 2 and case 3, which implies that vector quantization and scalar quantization can achieve similar performance. 
Table 8: SGCS performance of different quantization cases
	Case
	SGCS

	Case 1, Training without quantization, inference without quantization
	0.807

	Case 2-1, Training with scalar quantization, inference with scalar quantization
	0.753

	Case 2-2, Training with vector quantization, inference with vector quantization
	0.759


Observation 9: There is around 7% performance loss caused by quantization. 
Observation 10: Vector quantization and scalar quantization can achieve similar performance.
Proposal 3: The case of training without quantization and inference without quantization should be evaluated as the upper bound. 
2.6 AI model structure and complexity 
A Transformer-based AI model is used in the evaluation for the baseline scheme of AI based CSI compression. As Figure 2 shows, the AI model including two parts as encoder part and decoder part. The input data is eigenvector  based on SVD of channel matrix, after linear embedding and positional embedding, the input data are encoded in the encoder. The encoded data then input to the decoder to get recovered eigenvector . In general, the encoding procedure is performed at UE side and UE feedback quantized data to gNB, then the decoding procedure is performed at gNB side.   
The simulation assumption for intermediate results calculation is as Table 9 shows, and the AI model training parameters are as Table 10 shows. The FLOPs and number of AI/ML parameters for the CSI generation part and the CSI reconstruction part are provided separately in Table 11. As a rank-common and layer-common AI model is used, the FLOPs is captured as 258*K M, wherein K is the maximum rank number and 258M is the FLPOs for one layer calculation.

[image: ]
Figure 2, The basic structure of Transformer model
Table 9, Simulation assumption for intermediate result calculation
	Parameter
	Value

	Scenario
	Uma and/or Umi

	Frequency Range
	2GHz

	Bandwidth
	10MHz

	Subcarrier spacing
	15KHz

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	AI content
	Eigenvector

	Channel estimation
	Ideal


Table 10, Parameter of AI model training
	AI training parameter 
	Value

	Quantization 
	 Scalar quantization

	Loss function
	SGCS

	Learning rate
	0.001

	Optimizer
	Adam

	Epoch
	100

	Batchsize
	128

	Dataset construction
	210,000
200 drop*21 cell*50 UE*1 samples per UE

	Sample of training set
	199,500

	Sample of validation set
	10000

	Sample of test set
	10500


Table 11, Complexity and memory storage of AI model
	
	CSI generation part
	CSI reconstruction part

	FLOPs
	258*K*
	258*K*

	Number of AI/ML model parameters
	10.79*
	10.79*



3 Discussion on AI/ML based CSI prediction
3.1 CSI prediction without generalization  
To study the performance of AI based CSI prediction and the impact of input sample number on prediction accuracy, we conducted the following evaluation cases as listed in Table 12 and the evaluation results is shown in Table 13. The nearest historical CSI without prediction is selected as the benchmark solution. Different dataset with different UE speeds were evaluated. For case 1 to case 3, the observation window is 5 samples with CSI distance equals to 5ms. For case 4 to case 6, the observation window is extended to 8. The prediction number is 1and the distance between prediction instance is 5 ms, the distance from the last observation instance to the 1st prediction instance is 5 ms for all the cases.
As Table 13 shows, the performance gain of AI based CSI prediction is around 1% when UE speed is 10 km/h, 20% when UE speed is 30 km/h, 66% when UE speed is 60 km/h. The performance gain over benchmark increased with larger UE speed. To check the impact of input sample number on prediction accuracy, the observation window is extended to 8. Minor performance gain observed comparing with observation window equals to 5.
Observation 11: AI based CSI prediction outperforms the benchmark scheme.
Observation 12: The performance increased slightly when the example number of observation window extended from 5 to 8.
Table 12: Evaluation cases of AI based CSI prediction
	Case
	UE Speed
	Observation window
	Prediction window

	
	
	Number
	Distance
	Number
	Distance between prediction instances
	Distance from the last observation instance to the 1st prediction instance

	1 
	10 km/h
	5
	5
	1
	5
	5

	2 
	30 km/h
	5
	5
	1
	5
	5

	3
	60 km/h
	5
	5
	1
	5
	5

	4
	10 km/h
	8
	5
	1
	5
	5

	5
	30 km/h
	8
	5
	1
	5
	5

	6
	60 km/h
	8
	5
	1
	5
	5



Table 13: Evaluation results of AI based raw channel matrix prediction
	Case
	Benchmark [nearest historical CSI]
	AI

	1
	0.974
	0.984(1.03%)

	2
	0.807
	0.972(20.25%)

	3
	0.568
	0.943(66.02%)

	4
	0.974
	0.984(1.03%)

	5
	0.807
	0.973(20.57%)

	6
	0.568
	0.946(66.55%)


3.2 CSI prediction with generalization  
As discussed ins section 3.1, different dataset with different UE speeds were evaluated and the AI based CSI prediction shows more obvious performance gain with larger UE speed. We further evaluated the generalization performance of AI based CSI prediction by using different dataset with different UE speeds in this section.
The evaluation cases and results are listed in Table 14. As Table 14 shows, the SGCS is relatively lower when the training dataset is using lower UE speed and the testing dataset is using higher UE speed. For example, the SGCS is around 0.45 when the model training by dataset with UE speed equals to 10 km/h tested by dataset with UE speed equals to 60 km/h. However, the model training by dataset with higher UE speed performs well when testing by dataset with lower UE speed. For example, the SGCS is around 0.96 when the model training by dataset with UE speed equals to 60 km/h tested by dataset with UE speed equals to 10 km/h. The SGCS performance can be further improved.
Table 14: Evaluation cases of generalization of AI based CSI prediction
	Case 
	Train
	Test 
	SGCS

	1a
	10 km/h
	10 km/h
	0.984

	1b
	
	30 km/h
	0.852

	1c
	
	60 km/h
	0.451

	2a
	30 km/h
	10 km/h
	0.980

	2b
	
	30 km/h
	0.972

	2c
	
	60 km/h
	0.536

	3a 
	60 km/h
	10 km/h
	0.957

	3b
	
	30 km/h
	0.943

	3c
	
	60 km/h
	0.943

	4a 
	10km/h+30km/h+60 km/h
	10 km/h
	0.978

	4b
	
	30 km/h
	0.964

	4c
	
	60 km/h
	0.932


Observation 13: The model training by dataset with low UE speed doesn’t work well for testing dataset with high UE speed.
Observation 14: The model training by dataset with high UE speed work well for testing dataset with low UE speed.
Observation 15: The model training by mixed dataset with different UE speeds can further improve the performance of testing dataset with low UE speed.
4 Conclusions
In this contribution, we present views on evaluation methodology, evaluation metrics and initial evaluation results on AI/ML for CSI feedback enhancement, we have the following observations and proposals:
Observation 1: The SGCS gain of AI over eTypeII is in range of 9.7% to 18.1% for layer 1 and 9.7% to 22.9% for layer 2. The SGCS loss of AI based CSI enhancement compared with ideal CSI is in range of 11.3% to 28.3% for layer 1 and 19.4% to 43.3% for layer 2.
Observation 2: The average UPT gain of AI over eTypeII is in range of 24.5% to 27.3% and 5% UPT gain is in range of 8.8% to 30.2%. The average UPT loss of AI over ideal CSI is in range of 32.4% to 38.5% and 5% UPT loss is in range of 29.1% to 48.7%.
Observation 3: AI/ML model shows good generalization performance in different scenarios.
Observation 4: The fine-tuning procedure can improve the performance.
Observation 5: The generalized AI model does not work well on various CSI feedback payloads, especially for a small number of feedback payloads.
Observation 6: AI/ML model shows good generalization performance in different sizes of subband and subband number.
Observation 7: When AI model structure is known, separate training can achieve similar performance with joint training. 
Observation 8: When different AI backbone is used for CSI generation part and CSI reconstruction part, performance of separate training decreased compared with joint training.
Observation 9: There is around 7% performance loss caused by quantization. 
Observation 10: Vector quantization and scalar quantization can achieve similar performance.
Observation 11: AI based CSI prediction outperforms the benchmark scheme.
Observation 12: The performance increased slightly when the example number of observation window extended from 5 to 8.
Observation 13: The model training by dataset with low UE speed doesn’t work well for testing dataset with high UE speed.
Observation 14: The model training by dataset with high UE speed work well for testing dataset with low UE speed.
Observation 15: The model training by mixed dataset with different UE speeds can further improve the performance of testing dataset with low UE speed.

Proposal 1: The SGCS/UPT loss of AI based CSI enhancement compared to ideal CSI can be optionally provided.
Proposal 2: RAN1 study pre-processing mechanisms for the input of decoder to improve the AI model generalization performance on various feedback payloads.
[bookmark: _GoBack]Proposal 3: The case of training without quantization and inference without quantization should be evaluated as the upper bound. 
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