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[bookmark: _Toc118718111][bookmark: _Toc134999915]Introduction and Overview
This contribution concerns Agenda Item 9.1.4.1, Evaluation on AI/ML for positioning accuracy enhancements. A summary of relevant past agreements for the agenda item can be found in the Appendix.
The paper outline is as follows:
· Section 1: An overview of the evaluation results is provided, and key observations are drawn.
· Section 2:  Evaluation results and analysis are provided when the model input is CIR, PDP, and DP (Delay Profile). Three AI/ML methods are studied using supervised learning, with two variants of AI/ML assisted approach and the direct AI/ML approach.
· Section 3: The focus here is model monitoring. 
· Section 4 concludes the paper with a list of observations and proposals. 
[bookmark: _Ref117777763][bookmark: _Toc118718113][bookmark: _Ref126844379]We present evaluation results for a few selected cases in this section. The intention of all evaluated use cases is to improve network-based positioning using AI/ML models for the InF-DH deployment scenario. 
[bookmark: _Toc118718114][bookmark: _Toc134999916]Overview of positioning solutions for the NG-RAN
In a radio environment, such as the InF-DH {40%, 2m, 2m} environment, there exists enough number of LoS links from a UE to the 18 TRPs. ML models can be used to identify LoS links and estimate the observable first path ToA. As illustrated in Figure 1, the observable first path ToA, , is the delay of the first path in the received channel impulse responses (CIRs). These observable first path ToA estimates for the identified LoS links can be used by conventional triangulation-based positioning algorithms to determine UE positions accurately.
[image: ] [image: ]
 (a) LoS example  (taps)	    (b) NLoS example  (taps)
[bookmark: _Ref117777689]Figure 1: Example magnitudes of LoS and NLoS channel impulse responses.
However, in a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment, it is not possible to rely only on LoS links to perform UE localization. As illustrated in Figure 2, in a NLoS environment, the observable first path ToA, , does not correctly reflect the true distance between the UE and TRP. Using these observable first path ToAs in a conventional positioning algorithm will lead to inaccurate UE position estimates.
[image: ]
[bookmark: _Ref117777702]Figure 2: Illustration of observable first path and unobservable direct path between a pair of TX and RX nodes.
Instead, as illustrated in Figure 2, estimates of the unobserved direct path ToAs, , which is defined as the time needed for the radio wave to travel across the 3D distance between the TX and RX ignoring all blockers (if any) in between,

should be supplied to conventional positioning algorithms. An example is provided in Figure 1 (b). The observable first path ToA, , can be estimated accurately from the received CIR using either conventional signal processing algorithms or ML modes, which in this case is at tap 79.4. On the other hand, the unobserved direct path ToAs, , calculated from the relative distance is in fact 30.2 taps.
After describing the datasets in Section 1.12, we investigate three different ML assisted or ML based positioning solutions for the NG-RAN:
· In Section 2.4, we provide updates on distributed ML models at different TRPs to estimate the unobserved direct path ToAs, , at individual TRPs independently for a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. UE positions are obtained with conventional positioning algorithms.
· This is a Case 3a scenario (NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning), with single-TRP construction and different models for N TRPs.
· In Section 2.2, we provide updates on a centralized ML model to jointly estimate all 18 unobserved direct path ToAs, , from the CIRs collected from all TRPs for a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. UE positions are obtained with conventional positioning algorithms.
· This is a Case 3a scenario (NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning), with multi-TRP (specifically, all-TRP) construction. The AI/ML model resides at gNB side, where one gNB is connected to all the TRPs (18 TRP in this example).
· In Section 2.3, we provide updates on a centralized ML model to directly generate UE positions from the CIRs collected from all TRPs for a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. UE positions are generated by the ML models directly.
· This is a Case 3b scenario (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning)
· In Section 2.1, we consider semi-supervised learning for the centralized AI/ML assisted positioning and the AI/ML direct positioning approaches.
An overview of the considered positioning architectures for the NG-RAN is provided in Figure 3 below.

	[image: ]

	(a) Section 2.4: AI/ML assisted positioning, multi-TRP with N different models for N gNBs, where N=18. Model output = one  estimation.
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	(b) Section 2.2: AI/ML assisted positioning, multi-TRP construction for N=18 TRPs. Model output = a vector of 18  estimations.
	(c) Section 2.3: direct UE positioning. Model output = UE horizontal coordinates.



[bookmark: _Ref117778114]Figure 3: Overview of the considered positioning architectures for the NG-RAN.

[bookmark: _Ref134436509][bookmark: _Toc134999917][bookmark: _Toc118718115]Model and computational complexity reporting for 3GPP discussion
During the RAN1 #111 discussion, it was identified that the computational complexity values reported by different companies may not be mutually comparable since some of them are deviating from generally observed trend by two orders of magnitude or more. This is illustrated in Figure 4.
· Since each parameter of a model should be used at least once, we can use the number of parameters as a lower bound for the computational complexity (shown as lower bound 1 in the figure).
· For both dense and convolutional layers, the number of multiplicative parameters dominates the total number of parameters. The number of parameters can be used as an approximate lower bound on the number of MACs (multiply-accumulate). Hence, a second approximate lower bound on the computational complexity FLOPs can be obtained as two times the number of parameters (shown as lower bound 2 in the figure).
· Due to its nature of weight sharing, convolutional neural networks tend to exhibit much higher FLOPs-to-parameters ratios than these lower bounds.
· Two regression lines are fitted to the reported model vs computational complexity values. The first regression excludes one source below the lower bounds. The second regression excludes five sources near or below the lower bounds. 
· It can be observed that most reported model and computational complexity values are near or at least within an order of magnitude of the regression lines. However, there are some outliers that deviate substantially from the general trend of model complexity vs computational complexity.
[image: ]
[bookmark: _Ref126834708]Figure 4: Model complexity vs computational complexity for direct positioning models as reported in RAN1 #111 except for six updated Ericsson’s reported values from RAN1 #112b.
To assist with this discussion, we consider a simple example where the computational complexity can be exactly calculated by hand.
Example:
Given a BHiWiCi =132323 input tensor to a convolutional layer with
· Batch size B = 1 
· Kernel size: HkWk =33
· Stride: 11
· Padding: “VALID”, i.e., without padding 
· Number of input channels Ci=3
· Number of output channels: Co =16
The shape of the output tensor becomes BHoWoCo =1303016. That is, Co =16 output channels each with size HoWo =3030.

The convolutional layer will need
· HkWkCiCo = 33316 = 432 parameters for the kernel
· Co = 16 parameters for the bias
TensorFlow/PyTorch tools report the total number of parameters as 448 as expected, i.e., the same as the calculation above.

In this simple example, one can calculate the nominal computational complexity by hand:
· The number of MACs (multiply-accumulate) using the convolutional kernel can be calculated as (HkWkCi) (HoWoCo) = (333) (303016) = 388,800.
· The number of ADDs (addition) using the bias can be calculated as HoWoCo = 303016 = 14,400.
· The total number of FLOPs is given by 2MACs + ADDs = 792,000.
On a CPU platform, TensorFlow/PyTorch tools report the same number of FLOPs as hand calculated above.
On a GPU or TPU platform, some TensorFlow/PyTorch tools may report a number of FLOPs that can be one, two or even more orders of magnitude lower. It is assumed these lower FLOP numbers are accelerator-optimized computational complexity for the underlying GPU/TPU.

It can be observed from the above example that
· Nominal computational complexity is a general characterization of a model’s algorithmic complexity that can be compared across different sources. To a first degree, this complexity can even by calculated by hand, as demonstrated by the example above.
· The accelerator-optimized complexity is specific to a particular hardware platform and its computational capability.
· Since it’s unlikely to deploy a full-blown data-center class GPU/TPU in a UE or even a gNB, these GPU/TPU optimized complexity values do not provide useful information to the discussion in 3GPP.
· No explanation on what these accelerator-optimized complexity values mean was given by these software tools, either. Taking one of our large centralized model with 11.2 M parameters as an example. While the nominal complexity is 410 M FLOPs, the reported accelerator-optimized complexity for a GPU is given as 4.3 M FLOPs, which is well below the lower bounds. Since all those MACs cannot just disappear simply because the model is executed on a GPU, these accelerator-optimized complexity values seem more related to clock cycles of the GPU than the algorithmic complexity of the model.
· Furthermore, given different sources will have different ML-optimized implementations, such type of computational complexity numbers is not comparable across sources.
Moreover, the discussion above echoes the Conclusions that RAN1 has made:

	Conclusion (RAN1#110bis)
This RAN1 study considers ML TOP/FLOP/MACs as KPIs for computational complexity for inference. However, there may be a disconnection between actual complexity and the complexity evaluated using these KPIs due to the platform- dependency and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.

Conclusion (RAN1#111)
Companies describe how their computational complexity values are obtained. 
· It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.



[bookmark: _Hlk130291957]Since different companies use different deep learning frameworks, it was identified in RAN1 #112 that a common reference point for computing the nominal computational complexity values is needed. Toward this end, we point to the toolchain envisioned by the OpenXLA project (https://github.com/openxla). According to its documentation,
· The OpenXLA project is co-developed by AI/ML industry leaders including Alibaba, Amazon Web Services, AMD, Apple, Arm, Cerebras, Google, Graphcore, Hugging Face, Intel, Meta, and NVIDIA. 
· It enables developers to compile and optimize models from all leading ML frameworks for efficient training and serving on a wide variety of hardware.
· OpenXLA eliminates barriers for ML developers via a modular toolchain that is supported by all leading frameworks through a common compiler interface, leverages standardized model representations that are portable, and provides a domain-specific compiler with powerful target-independent and hardware-specific optimizations.
As copied in Figure 5, OpenXLA provides a modular toolchain that is supported by all leading frameworks through a common compiler interface, leverages standardized model representations that are portable, and provides a domain-specific compiler with powerful target-independent and hardware-specific optimizations. This toolchain includes XLA, StableHLO, and IREE, all of which leverage MLIR: a compiler infrastructure that enables machine learning models to be consistently represented, optimized and executed on hardware.
For the purpose of the nominal computational complexity reporting, we identify the portable StableHLO layer as the appropriate target of nominal computational complexity computing. As observed in Figure 5, StableHLO is the OpenXLA input, and does not consider any target-independent optimization nor any hardware-dependent optimization. According to its documentation, StableHLO, a portability layer between ML frameworks and ML compilers, is an operation set for high-level operations (HLO) that supports dynamism, quantization, and sparsity. Furthermore, it can be serialized into MLIR bytecode to provide compatibility guarantees. All major ML frameworks (JAX, PyTorch, TensorFlow) can produce StableHLO.

[bookmark: _Hlk131079744][bookmark: _Toc135002576]For 3GPP AI/ML for PHY SI discussion, companies shall report nominal computational complexity values based on HLO representations (and not accelerator-optimized computational complexity values). Otherwise, the reported computation complexity value cannot be included for a fair cross-company comparison.

[image: Flow chart depicting high-level OpenXLA compilation flow and architecture showing depicted optimizations, frameworks and hardware targets]
[bookmark: _Ref130292051]Figure 5: Modular toolchain architecture of OpenXLA is supported by all leading framework (https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html).

To further 3GPP discussion and preparation of observations/conclusions for the technical report TR38.843, we propose three model size classes based on the reported model and computational complexity values. This is tabulated in Table 1.
[bookmark: _Ref126917195]Table 1 Proposed model size classes.
	Model class
	Model complexity 
[# of parameters]
	Computational complexity [FLOPs]
	Number of sources as reported in RAN1 #111 for direct positioning

	Small models
	< 1 M
	< [60] M
	4

	Medium-size models
	1 – 8 M
	[60 – 300] M
	8

	Large models
	> 8 M
	> [300] M
	5



[bookmark: _Toc135002577]To further 3GPP discussion and preparation of observations/conclusions for the technical report, three model size classes are defined for the positioning use case as follows:
- Small models: < 1 M model parameters
- Medium-size models: 1 – 8 M model parameters
- Large models: > 8 M model parameters

[bookmark: _Ref126851995][bookmark: _Toc134999918]Impact of training dataset sizes – Number of samples
The following was agreed in RAN1 #111:
Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.
Toward this end, we provide extensive investigation on the tradeoff between training dataset size and model performance. As described in Section 1.12, our datasets are compiled based on uniform random sampling of UE locations over the entire 60 m × 120 m = 7,200 m2 InF factor floor as illustrated in Figure 21 in Section 1.12. Hence, the user densities for the four different train dataset sizes we investigated are as follows:
Table 2 Train dataset sizes and user density of our uniformly randomly sampled datasets.
	Train dataset size over 7,200 m2
	User density [UE/m2]
	Average distance between training samples (m)

	10,000
	1.39
	0.85

	20,000
	2.79
	0.60

	40,000
	5.56
	0.42

	80,000
	11.11
	0.30



It is clear that a larger train dataset size helps model training and improves trained model performance. However, it’s also costly to compile large datasets. Data augmentation techniques have been developed and investigated by the deep learning community [5] to make the most use out of a fixed dataset. We found many of these techniques are very helpful in improving the 2D positioning accuracy of trained models. In fact, we found moderate network synchronization errors can be treated as a data augmentation technique to improve model performance. We also found that increasing the number of training epochs to those reported in [2][3] improves model performance.

[bookmark: _Toc135002526]For a given train dataset size, data augmentation techniques and more training epochs can improve trained model performance.

The deep learning community has developed and investigated a variety of solutions to reduce the model size and computational complexity of deep learning models [4]. Compared to the models we investigated for RAN1 #111 [1], we have adopted low-cost convolution solutions to reduce the model size and computational complexity of the models we investigated in the rest of this contribution. We further investigated the tradeoff between model complexity and model performance in the rest of this section.
For an environment with sufficient LoS links such as the {40%, 2m, 2m} InF-DH scenario, very high positioning accuracy (90%tile 2D error < 0.2 m) can be achieved with small models (<1M parameters and < 50 MFLOPs) with around 5,000 training samples as summarized in Table 3.

[bookmark: _Ref127188602]Table 3 90%tile 2D positioning accuracy for different model sizes in the {40%, 2m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m] in {40%, 2m, 2m} InF-DH

	
	
	
	
	Training dataset size = 5,400

	Small models CIR
	Distributed Assisted
	0.071 M
	18 x 405 K = 7.3 M
	0.109

	
	
	0.073 M
	18 x 944 K = 17 M
	0.062



For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results in Table 4. Correspondingly, the positioning accuracy achieved is plotted in Figure 6 as a function of training dataset size.
· The first row of each model classes contains the 90%tile 2D positioning errors of the semi-distributed ML-assisted positioning approach in Section 2.1 of [7]. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small train dataset size of 10,000 CIR samples, sub-meter 90%tile 2D error is achievable with all three model size classes. 
· With a medium-size dataset size of 20,000 CIR samples, 90%tile 2D error < 0.5 m can be achieved with medium-size or large models.
· With a large dataset size of 40,000 CIR samples, all model classes achieve 90%tile 2D error < 0.5 m. Large models also approach 0.25 m 90%tile 2D errors.
· With a very large dataset sizes of 80,000 CIR samples, medium-size and large models can achieve 90%tile 2D error < 0.25 m.

[bookmark: _Ref126851896]Table 4 90%tile 2D positioning accuracy using CIR inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models CIR
	Dist. Assist.
	0.86 M
	36 M
	0.366
	0.453
	0.665
	0.954

	
	Cent. Assist.
	0.73 M
	32 M
	0.306
	0.371
	0.512
	0.720

	
	Cent. Direct
	0.73 M
	32 M
	0.300
	0.373
	0.498
	0.718

	Medium-size models CIR
	Dist. Assist.
	3.37 M
	132 M
	0.215
	0.310
	0.483
	0.795

	
	Cent. Assist.
	2.85 M
	110 M
	0.194
	0.260
	0.378
	0.583

	
	Cent. Direct
	2.85 M
	110 M
	0.199
	0.268
	0.385
	0.597

	Large models CIR
	Dist. Assist.
	11.2 M
	425 M
	0.171
	0.258
	0.417
	0.762

	
	Cent. Assist.
	11.26 M
	410 M
	0.156
	0.223
	0.330
	0.539

	
	Cent. Direct
	11.26 M
	410 M
	0.155
	0.233
	0.354
	0.556



The evaluation results in Table 4 are also plotted in Figure 5, where the positioning accuracy achieved is plotted as a function of training dataset size. Comparing the achieved positioning accuracy with the average distance between training dataset samples, it is clear that the small models can achieve accuracy comparable to the average sample distance, while larger models can achieve substantially better accuracy. This is a proof that all the designed models are efficient for the positioning use cases. They present a range of good AI/ML design options for engineers to choose from, each with their own set of advantages and disadvantages. 
[image: ]
[bookmark: _Ref131578614]Figure 6: Positioning accuracy vs training data size according to Table 4. Model input is CIR.

[bookmark: _Toc135002527]Using semi-distributed or centralized ML assisted positioning or centralized ML direct positioning approaches with CIR inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario,
- sub-meter 90%tile 2D error is achievable with a small train dataset;
- 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large enough ML models;
- 90%tile 2D error approaching or below 0.25 m requires large train datasets as well as large enough ML models.
[bookmark: _Toc135002528]Positioning accuracy significantly better than the average training sample distance can be achieved using distributed or centralized ML assisted positioning or centralized ML direct positioning approaches with CIR inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario.

To further 3GPP discussion and preparation of observations/conclusions for the technical report, we propose to define four train dataset size classes. We further note that some sources do not simulate for the baseline assumption (i.e., distribute UEs in the whole hall area), rather simulate the optional case of distributing the UEs only over “the convex hull of horizontal BS deployment,” which translates into sampling only over an area of 40 m × 100 m = 4,000 m2. The area UEs are distributed significantly affect the training dataset size. For example, a 20,000-sample dataset over 60 m × 120 m has almost the same user density as a 11,000-sample dataset over 40 m × 100 m. To reflect such large sampling size differences, we propose to categorize the dataset size in terms of the more easily comparable metric of user density in Table 5.
[bookmark: _Ref127263182]Table 5 Proposed dataset size classes.
	Train dataset size class
	User density [UE/m2]
	Number of samples over
60 m × 120 m
	Number of samples over
40 m × 100 m
	Number of sources reported in RAN1 #111 for direct positioning

	Small datasets
	~1.39
	~10,000
	~5,556
	[~3]

	Medium-size datasets
	~2.79
	~20,000
	~11,111
	[~5]

	Large datasets
	~5.56
	~40,000
	~22,222
	[~3]

	Very large datasets
	>6.94
	>50,000
	>27,778
	[~7]



[bookmark: _Toc127104402][bookmark: _Toc127122457][bookmark: _Toc135002578]To further 3GPP discussion and preparation of observations/conclusions for the technical report, four train dataset size classes are defined as follows:
- Small datasets: density ~1.39 UE/m2
- Medium-size datasets: density ~2.79 UE/m2
- Large datasets: density ~5.56 UE/m2 
- Very large datasets: >6.94 UE/m2

[bookmark: _Toc134999919][bookmark: _Ref131414866]Investigation of mode input size 
The following subsections presents the investigation on the best tradeoff between model input size, model complexity, and positioning accuracy. This can be considered the feature engineering study for the AI/ML models for positioning.
In the following subsections, 
· Training dataset size refers to the number of samples in the training dataset (Nsample).
· Training dataset storage size has unit bytes or megabytes (MB). It is number of samples (Nsample) multiplied by the size (bytes) of mode input of one sample.
[bookmark: _Toc134999920]Model input size – CIR and PDP
Most sources have used time domain channel impulse responses (CIR) or power delay profiles (PDP) as input to the AI/ML models. As in the following agreement, the CIRs and PDPs are typically truncated after a certain number of taps suitable for the specific sampling rates used and the intended uses cases. If the TRPs are equipped with multiple RX antenna ports, the CIR and PDP may take on additional dimensions.
Agreement
For the model input used in evaluations of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
· Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.
In addition to the above agreement, we note that
· For a TRP equipped with multiple RX antenna ports, there is in fact no need to keep the port dimension for the PDP. This is because the actual power delay profile of the channel is identical for all RX ports. Instead, the PDP should be averaged over all RX ports as an additional averaging over fast fading. This average over RX ports results in a more correct dimension of NTRP * 1 * Nt. It is also noted that in the existing specification, only single port PDP is supported.
· The time domain CIRs are represented by complex values since both the I and Q branches are needed. Hence, a CIR sample requires NTRP * Nport * Nt * 2 * Breal bits, where Breal is the number bits for a real value.
· On the other hand, PDP is represented by real values. Hence, a PDP sample requires NTRP * 1 * Nt * Breal bits.

An example to compare the CIR and PDP type inputs is provided in Figure 7 and Figure 8. We can observe that, in the conversion from CIR to PDP: 
· Phase information is lost
· Multi-port resolution is lost
And only the magnitude information averaged across ports is retained.
[image: ][image: ]
[bookmark: _Ref131409359][bookmark: _Ref131397188]Figure 7: Example of a complex dual polarization port channel impulse response sample.
[image: ]
[bookmark: _Ref131409381][bookmark: _Ref131509827]Figure 8: Example of a power delay profile sample derived from the CIR in Figure 7.
To make a rough comparison amongst the two types of model inputs, the following specific values are used as an example for high resolution training datasets:
· N'TRP = NTRP = 18
· Nport = 2
· Nt = 256
· Breal,CIR = 32, Breal,PDP =32
· Nsamples = 40,000
The dataset storage sizes are:
· 2.949 GB for full 256-tap CIR inputs, 
· where the size of one sample of model input is calculated by: (N'TRP * Nport * Nt * 2 * Breal,CIR ) (bits)
· 737.3 MB for full 256-tap PDP inputs, 
· where the size of one sample of model input is calculated by: (N'TRP * 1 * Nt * Breal,PDP ) (bits)
Taking the above in consideration, we can make the following observation.

[bookmark: _Toc135002529]For a given number of TRPs and number of time domain taps, a PDP sample requires 1/(2*Nport) the number of bits for a CIR sample.

Another consequence of reducing the input dimensions is the reduction of ML model complexity. We kept the same model architectures but swapped out components designed for complex values with those for real values. The resulting model and computational complexity values for the CIR and PDP input types are compared in Table 6. It can be observed that:
· The model complexity in terms of number of (real-equivalent) parameters is reduced by half when switching from CIR to PDP inputs while keeping the same model architectures.
· The nominal computational complexity in terms of FLOPs is reduced by around two thirds.

[bookmark: _Toc135002530]For a given model architecture, model complexity can be reduced by half and computational complexity can be reduced by two thirds when switching the inputs from complex dual-port CIR to PDP.

[bookmark: _Ref131410859]Table 6 Model and computational complexity comparison between CIR and PDP input types.
	Model class
	Positioning approach
	CIR inputs
	PDP inputs

	
	
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]

	Small models
	Dist. Assist.
	0.86 M
	36 M
	0.43 M
	11.5 M

	
	Cent. Assist.
	0.73 M
	32 M
	0.36 M
	9 M

	
	Cent. Direct
	0.73 M
	32 M
	0.36 M
	9 M

	Medium-size models
	Dist. Assist.
	3.37 M
	132 M
	1.69 M
	43 M

	
	Cent. Assist.
	2.85 M
	110 M
	1.4 M
	34 M

	
	Cent. Direct
	2.85 M
	110 M
	1.4 M
	34 M

	Large models
	Dist. Assist.
	11.2 M
	425 M
	5.6 M
	140 M

	
	Cent. Assist.
	11.26 M
	410 M
	5.6 M
	132 M

	
	Cent. Direct
	11.26 M
	410 M
	5.6 M
	132 M



For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results in Table 7. The results are also shown in Figure 9. 
· The first row of each model classes contains the 90%tile 2D positioning errors of the semi-distributed ML-assisted positioning approach in Section 2.1 of [7]. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small train dataset size of 10,000 PDP samples, sub-meter 90%tile 2D error is achievable with centralized or large models. 
· With a medium-size dataset size of 20,000 PDP samples, 90%tile 2D error < 0.5 m can be achieved with medium-size or large centralized models.
· With a large dataset size of 40,000 PDP samples, centralized model classes achieve 90%tile 2D error < 0.5 m. Large models also approach 0.25 m 90%tile 2D errors.
· With a very large dataset sizes of 80,000 PDP samples, large models can achieve 90%tile 2D error < 0.25 m.

[bookmark: _Toc135002531]Using centralized ML assisted positioning or centralized ML direct positioning approaches with PDP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario,
- sub-meter 90%tile 2D error is achievable with a small train dataset;
- 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large enough ML models;
- 90%tile 2D error approaching or below 0.25 m requires large train datasets as well as large enough ML models.
For the semi-distributed ML assisted positioning approach with PDP inputs, one class large datasets are generally needed than those for centralized ML positioning approaches.
[bookmark: _Toc135002532]Positioning accuracy significantly better than the average training sample distance can be achieved using centralized ML assisted positioning or centralized ML direct positioning approaches with PDP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario. For the semi-distributed ML assisted positioning approach with PDP inputs, large models are needed to achieve positioning accuracy significantly better than the average training sample distance.

[bookmark: _Ref131409560]Table 7 90%tile 2D positioning accuracy using PDP inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario. Nt=Nt'=256.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models PDP
	Dist. Assist.
	0.43 M
	11.5 M
	0.531
	0.680
	0.902
	1.249

	
	Cent. Assist.
	0.36 M
	9 M
	0.426
	0.524
	0.658
	0.873

	
	Cent. Direct
	0.36 M
	9 M
	0.426
	0.510
	0.656
	0.863

	Medium-size models PDP
	Dist. Assist.
	1.69 M
	43 M
	0.351
	0.476
	0.675
	1.004

	
	Cent. Assist.
	1.4 M
	34 M
	0.282
	0.360
	0.474
	0.707

	
	Cent. Direct
	1.4 M
	34 M
	0.269
	0.349
	0.496
	0.735

	Large models PDP
	Dist. Assist.
	5.6 M
	140 M
	0.273
	0.403
	0.596
	0.933

	
	Cent. Assist.
	5.6 M
	132 M
	0.202
	0.271
	0.397
	0.629

	
	Cent. Direct
	5.6 M
	132 M
	0.214
	0.288
	0.425
	0.653



[image: ]
[bookmark: _Ref131776327]Figure 9: Positioning accuracy vs training data size according to Table 7. Model input is PDP.

Comparing Table 4 and Table 7, we can observe that:
· For the same number of training samples, models using CIR inputs achieve better positioning accuracy than those using PDP inputs.
· However, models using PDP inputs achieve better positioning accuracy than those using CIR inputs if the number of training samples is doubled for the PDP models.
· That is, it can be observed that PDP models with 20,000 training samples perform better than CIR models with 10,000 samples. Similarly, for 40,000 PDP vs 20,000 CIR and so forth.
· Furthermore, for the same storage sizes of the training datasets, models using PDP inputs may achieve substantially better positioning accuracy than those using CIR inputs.
· Assuming of a 4-to-1 ratio between the storage size of a CIR sample to that of a PDP sample, it can be observed that PDP models with 40,000 training samples perform substantially better than CIR models with 10,000 samples.
· It should, however, be noted that the most complicated / time consuming part of training data collection is the obtaining of highly accurate true UE positions. Quadrupling collection of such ground truths may not be a favourable trade-off against recording the rich CIR information with fewer UE position drops.
Further comparison is presented in the next section.

[bookmark: _Toc135002533]For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario and assuming the same time domain resolution (i.e., the same sampling rate and the same number of taps),
- For the same number of training samples, models using CIR inputs achieve better positioning accuracy than those using PDP inputs.
- For the same storage sizes of the training datasets, models using PDP inputs can achieve better positioning accuracy than those using CIR inputs. It is, however, noted that doubling or quadrupling collection of ground truth UE positions may not be a favourable trade-off against recording the rich CIR information with fewer UE position drops. 
Further comparison is made in Observation 17.

Comparison of average PDP vs multi-port PDP as model input
In RAN1 #112b, several sources considered multi-port PDP, instead of the averaged PDP we consider in the above. In this section, we investigate the performance, model complexity and dataset sizes of these two different PDP options.
In terms of dataset size, it is clear that the number of ports will scale proportionally in the case of the multi-port PDP. To make a rough comparison amongst the two types of model inputs, the following specific values are used as an example for high resolution training datasets:
· N'TRP = NTRP = 18
· Nport = 2
· Nt = 256
· Breal,CIR = 32, Breal,PDP =32
· Nsamples = 40,000
The dataset storage sizes are:
· 2.949 GB for full 256-tap CIR inputs
· where the size of one sample of model input is calculated by: (N'TRP * Nport * Nt * 2 * Breal,CIR ) (bits)
· 0.737 GB for full 256-tap averaged PDP inputs
· where the size of one sample of model input is calculated by: (N'TRP * 1 * Nt * Breal,PDP ) (bits)
· 1.475 GB for full 256-tap 2-port PDP inputs
· where the size of one sample of model input is calculated by: (N'TRP * 2 * Nt * Breal,PDP ) (bits)
That is, 2-port PDP input type causes the dataset size to double when compared to the average PDP input type. For our small model architecture, the increased input size for the 2-port PDP input type also causes our model computational complexity to increase by 16% as shown in Table 8.
We further evaluated the positioning performance of the 2-port PDP inputs with different training dataset sizes and listed the results in Table 8. It can be observed that 2-port PDP inputs achieve very marginal performance improvements over the averaged PDP inputs at the same training dataset sizes. For very large training dataset, the improvement is up to 6%. The improvements become smaller for smaller datasets.
We further listed the performance of the CIR inputs for comparison. It can be seen that, if multiple port resolution is desired, much more gains can be obtained by using the CIR input type.

[bookmark: _Toc135002534]When compared to the averaged PDP input type, the 2-port PDP input type (1) doubles the dataset sizes; (2) requires higher computational complexity; and (3) achieves marginal performance improvements.

It is also noted that in the existing specification (i.e., up to Rel-17), only single-port PDP is specified. If multi-port PDP is to be adopted, substantial specification impact is expected, including UE capability discussion and RAN4 work on measurement accuracy of PRS-RSRPP. Considering the marginal performance improvement and increased measurement size, it is not justified to pursue multi-port PDP as model input. Thus we propose that only single-port PDP is considered as model input.

[bookmark: _Toc135002579]For AI/ML based positioning, do not support multi-port PDP as model input. Single-port PDP as in existing specification is sufficient.

[bookmark: _Ref134019909]Table 8 90%tile 2D positioning accuracy using averaged PDP, 2-port PDP and CIR inputs for the small models and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario. Nt=Nt'=256.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Averaged PDP
	Cent. Assist.
	0.36 M
	9 M
	0.426
	0.524
	0.658
	0.873

	
	Cent. Direct
	0.36 M
	9 M
	0.426
	0.510
	0.656
	0.863

	2-port PDP
	Cent. Assist.
	0.37 M
	11 M
	0.400
	0.498
	0.647
	0.875

	
	Cent. Direct
	0.37 M
	11 M
	0.404
	0.502
	0.643
	0.833

	2-port CIR
	Cent. Assist.
	0.73 M
	32 M
	0.306
	0.371
	0.512
	0.720

	
	Cent. Direct
	0.73 M
	32 M
	0.300
	0.373
	0.498
	0.718



[bookmark: _Toc134999921]Model input size – DP as minimum model input
In Section 1.4, we observe that, in the conversion from CIR to PDP:
· Phase information is lost
· Multi-port resolution is lost
And only the magnitude information averaged across ports is retained. 
Furthermore, in Observation 18, we find the addition of phase and multi-port resolution does not aid much to centralized models’ positioning accuracy when only small number of taps are retained. This indicates that, for small number of retained taps, most of the useful information resides in the location of the retained taps rather than the contents of these taps. 
Hence, to further reduce the dataset sizes, we take such information reduction to its logical end, we consider discarding the tap powers and using only the delay profile (DP) as inputs to the AI/ML models. This corresponds to the agreement below from RAN1#112bis.
Agreement
For evaluation of both the direct AI/ML positioning and AI/ML assisted positioning, company optionally adopt delay profile (DP) as a type of information for model input.
· DP is a degenerated version of PDP, where the path power is not provided.

An example to compare the CIR, PDP and DP type inputs is provided in Figure 7, Figure 10 and Figure 11. In a DP input, each is either 1 or 0 where the locations of value 1 are determined from the strongest taps in a PDP. One can view the DP type model inputs as 1-bit quantization of down-sampled PDP type model inputs.
[image: ]
[bookmark: _Ref131415059]Figure 10: Example of a power delay profile sample derived from the CIR in Figure 7.
[image: ]
[bookmark: _Ref131415062]Figure 11: Example of a 16-tap delay profile sample derived from the PDP in Figure 10.
That is, to store Nsamples of the down sampled DP samples, the dataset can use
· Nsamples * NTRP * Nt bits for the bitmaps.
To make a rough comparison amongst the three types of model inputs, the following specific values are used as an example for high resolution training datasets:
· N'TRP = NTRP = 18
· Nport = 2
· Nt = 256
· Nt' = 32 or 16
· Breal,CIR = 32, Breal,PDP =32
· Nsamples = 40,000
The dataset storage sizes [bytes] are
· 2.949 GB for full 256-tap CIR inputs
· where the size of one sample of model input is calculated by: (N'TRP * Nport * Nt * 2 * Breal,CIR ) (bits)
· 737.3 MB for full 256-tap PDP inputs
· where the size of one sample of model input is calculated by: (N'TRP * 1 * Nt * Breal,PDP ) (bits)
· 391.7 MB for 32-tap CIR inputs
· where the size of one sample of model input is calculated by: (N'TRP * Nt + N'TRP * Nport * N't * 2 * Breal,CIR) bits
· 115.2 MB for 32-tap PDP inputs
· where the size of one sample of model input is calculated by: (N'TRP * Nt + N'TRP * 1 * N't * Breal,PDP ) bits
· 207.36 MB for 16-tap CIR inputs
· 69.12 MB for 16-tap PDP inputs
· 23.04 MB for 32-tap DP inputs
· where the size of one sample of model input is calculated by: (N'TRP * Nt) bits
It can be observed that for a given number of TRPs and number of time domain taps, a dataset of DP samples may require a fraction of storage spaces for datasets of CIR or PDP samples. Compared to the full CIR input dataset, the size reduction is more than two orders of magnitude.

[bookmark: _Toc135002535]For a given number of time domain taps, a dataset of DP samples only requires a fraction of storage spaces for datasets of CIR or PDP samples.

For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we investigated the performance of DP inputs with different numbers of non-zero taps for the smallest centralized ML assisted positioning or direct positioning models in Sections 2.2.2.3 and 2.3.2.3 of [7]. We found there is an optimal setting of non-zero taps. This is to be expected:
· With too few taps, the DP inputs don’t capture all useful information.
· With too many taps, useful information is compromised since both strong taps and tiny taps are represented by the same value 1.
For the centralized ML assisted positioning approach, we found that 32-tap DP achieves the lowest 90%tile positioning error of 0.653 m. For the centralized ML direct positioning approach, we found that 32-tap DP achieves 90%tile positioning error of 0.658 m, which is very slightly higher than 0.639 m achieved by 64-tap DP. Going forward, we use 32-tap DP inputs for both types of centralized ML positioning approach. 
For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results in Table 9.
· The first row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The second row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small train dataset size of 10,000 DP samples, sub-meter 90%tile 2D error is achievable with all medium or large model size classes. For the small models, 90%tile 2D errors approaches 1 m.
· With a medium dataset size of 20,000 DP samples for large size models or a large dataset size of 40,000 DP samples for medium size models, 90%tile 2D errors approaching or better than 0.5 m can be achieved.
· With a very large dataset sizes of 80,000 DP samples, large models can achieve 90%tile 2D error < 0.30 m.

[bookmark: _Toc135002536]Using centralized ML assisted positioning or centralized ML direct positioning approaches with 32-tap DP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario,
- sub-meter 90%tile 2D error is achievable with a small train dataset and medium-size or large ML models;
- 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large ML models or a large train dataset and medium-size ML models;
- 90%tile 2D error approaching or below 0.30 m requires very large train datasets and large ML models.
[bookmark: _Toc135002537]Positioning accuracy better than the average training sample distance can be achieved using centralized ML assisted positioning or centralized ML direct positioning approaches with 32-tap DP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario.

[bookmark: _Ref131422680]Table 9 90%tile 2D positioning accuracy using 32-tap DP inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario. Nt= 256, Nt'=32.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models DP
	Cent. Assist.
	0.36 M
	9 M
	0.571
	0.653
	0.798
	0.989

	
	Cent. Direct
	0.36 M
	9 M
	0.558
	0.658
	0.789
	1.014

	Medium models DP
	Cent. Assist.
	1.4 M
	34 M
	0.390
	0.477
	0.600
	0.834

	
	Cent. Direct
	1.4 M
	34 M
	0.391
	0.465
	0.600
	0.823

	Large models DP
	Cent. Assist.
	5.6 M
	132 M
	0.294
	0.371
	0.502
	0.715

	
	Cent. Direct
	5.6 M
	132 M
	0.298
	0.379
	0.522
	0.758



[image: ]
Figure 12: Positioning accuracy vs training data size according to Table 9. Model input is DP.

Comparing Table 9 and Table 11 and Table 7 and Table 4, we can further observe that
· Models using 32-tap DP inputs achieve better positioning accuracy than those using full 256-tap PDP inputs if the number of training samples is doubled for the DP models.
· That is, it can be observed that 32-tap DP models with 20,000 training samples perform better than 256-tap PDP models with 10,000 samples. Similarly, for 40,000 32-tap DP vs 20,000 256-tap PDP and so forth.
· Models using 32-tap DP inputs achieve comparable positioning accuracy than those using full 256-tap CIR inputs if the number of training samples is doubled for the DP models.
· That is, it can be observed that 32-tap DP models with 20,000 training samples perform similarly to 256-tap CIR models with 10,000 samples. Similarly, for 40,000 32-tap DP vs 20,000 256-tap CIR and so forth.
· For 40,000 samples and the small models, models using 32-tap DP inputs achieve comparable positioning accuracy as models using 16-tap CIR or models using 32-tap PDP inputs.

[bookmark: _Toc135002538]Delay profile input type is highly effective for centralized direct positioning or assisted positioning models. Models using 32-tap DP inputs can achieve positioning accuracy comparable to that achieved by models using CIR or PDP inputs but with a fraction of the training dataset storage sizes.

[bookmark: _Ref134524731][bookmark: _Toc134999922]Model input size due to Nt’ – sub-sampling of taps
Sources have used time domain CIR or PDP on a regular sampling grid as input to the AI/ML models. To store Nsamples of the CIR or PDP samples, the dataset will use:
· For CIR: Nsamples * NTRP * Nport * Nt * 2 * Breal bits
· For PDP: Nsamples * NTRP * 1 * Nt * Breal bits
Some sources have suggested sub-sampling from the regular sampling grid to reduce the datasets.
Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the trade-off among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.
One way to reduce the number of active (nonzero) time domain taps while keeping as much radio environment information as possible is to down-select from the Nt taps only the Nt’ taps with stronger powers than the rest of the taps. For the CIR, such tap down selection is determined by averaging the power over RX ports.
A generic representation of such sub-sampled CIR or PDP is to store each sample in two pieces of information:
· A length-Nt bitmap representing the locations of the nonzero taps for a TRP link.
· The values of the nonzero taps.
To store Nsamples of the sub-sampled CIR measurement, the dataset will use:
· Nsamples * NTRP * Nt bits for the bitmaps.
· Nsamples * NTRP * Nport * Nt’ * 2 * Breal,CIR bits for the nonzero taps.
To store Nsamples of the sub-sampled PDP measurement, the dataset will use:
· Nsamples * NTRP * Nt bits for the bitmaps.
· Nsamples * NTRP * 1 * Nt’ * Breal,PDP bits for the nonzero taps.
To make a rough comparison amongst the two types of model inputs, the following specific values are used as an example for high resolution training datasets:
· N'TRP = NTRP =18
· Nport = 2
· Nt = 256
· N't = 128, 64, 32
· Breal,CIR = 32, Breal,PDP =32
· Nsamples = 40,000
The dataset storage sizes [bytes] are given in Table 10, where
· For CIR: the size of one sample of model input is calculated by: (N'TRP * Nt + N'TRP * Nport * N't * 2 * Breal,CIR) bits
· For PDP: the size of one sample of model input is calculated by: (N'TRP * Nt + N'TRP * 1 * N't * Breal,PDP ) bits

[bookmark: _Ref133934513]Table 10 Dataset storage sizes [bytes] for 40,000 samples with different sub-sampled length N't.
	Dataset storage sizes for 40,000 samples [MB] with different sub-sampled length N't

	Input type
	Nt'=256
	Nt'=128
	Nt'=64
	Nt'=32
	Nt'=16
	Nt'=9

	CIR
	2949.1
	1497.6
	760.32
	391.68
	207.36
	126.72

	PDP
	737.3
	391.68
	207.36
	115.2
	69.12
	48.96



[bookmark: _Toc135002539]One way to reduce the number of active (nonzero) time domain taps while keeping as much radio environment information is to down select from the full time domain window size of Nt to only the Nt’ taps with stronger power than the rest of the taps. For the CIR, such tap down-selection is determined by averaging the power over RX ports.
[bookmark: _Toc135002540]A generic representation of sub-sampled CIR or PDP is to store each sample in two pieces of information: (1) a length-Nt bitmap representing the location of the nonzero taps; and (2) the values of the nonzero taps.

We conducted this investigation using the smallest models in the three positioning approaches. For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results in Table 11.
· The first row of each model classes contains the 90%tile 2D positioning errors of the semi-distributed ML-assisted positioning approach in Section 2.1 of [7]. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· As expected, positioning accuracy improves with the number of retained CIR or PDP taps.
· Zeroing out half of the 256 taps result in negligible positioning accuracy losses.
· Approaching or better than 1 m UE positioning accuracy can be achieved by retaining only 9 strongest CIR or PDP taps with the centralized models. For the semi-distributed models, 16 or 32 taps are needed for the PDP or CIR inputs, respectively.
· Approaching or better than 0.5 m UE positioning accuracy can be achieved by retaining 64 strongest CIR taps with the centralized models or by retaining 128 strongest CIR taps with for the semi-distributed models.

[bookmark: _Toc135002541]Retaining a smaller number of strongest CIR or PDP taps can be an effective approach to reduce training dataset storage sizes.
- Zeroing out half of the 256 taps result in negligible positioning accuracy losses.
- Approaching or better than 1 m UE positioning accuracy can be achieved by retaining only 9 strongest CIR or PDP taps with the centralized models.
- Approaching or better than 0.5 m UE positioning accuracy can be achieved by retaining 64 strongest CIR taps with the centralized models.

[bookmark: _Ref131412693]Table 11 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps (training dataset size = 40,000 samples, Nt=256).
	Model class
	Positioning approach
	Model complexity
[# paras]
	90%tile 2D positioning error [m] with numbers of down sampled taps in {60%, 6m, 2m} InF-DH

	
	
	
	Nt'=256
	Nt'=128
	Nt'=64
	Nt'=32
	Nt'=16
	Nt'=9

	Small models CIR
	Dist. Assist.
	0.86 M
	0.453
	0.478
	0.558
	0.764
	1.208
	1.995

	
	Cent. Assist.
	0.73 M
	0.371
	0.372
	0.434
	0.545
	0.678
	0.805

	
	Cent. Direct
	0.73 M
	0.373
	0.382
	0.425
	0.540
	0.678
	0.824

	Small models PDP
	Dist. Assist.
	0.43 M
	0.680
	0.687
	0.732
	0.856
	1.001
	1.452

	
	Cent. Assist.
	0.36 M
	0.524
	0.534
	0.514
	0.604
	0.698
	0.868

	
	Cent. Direct
	0.36 M
	0.510
	0.522
	0.522
	0.580
	0.689
	0.824



Comparing Table 11 and Table 7, we can observe that:
· A CIR training dataset with 40,000 samples of 64 strongest taps allows the models to achieve better positioning accuracy than a PDP training dataset with 40,000 samples of 256 strongest taps.
· A CIR training dataset with 40,000 samples of 64 strongest taps allows the models to achieve similar positioning accuracy than a PDP training dataset with 80,000 samples of 256 strongest taps.
· For small number of retained taps, centralized models using either CIR or PDP inputs achieve quite similar positioning accuracy. More specifically, for 9, 16 or 32 taps, the centralized models using CIR inputs achieve positioning errors less than 10% lower than those achieved by centralized models using PDP inputs.
· On the other hand, for full 256-tap inputs, centralized models using CIR inputs achieve >25% lower positioning errors than centralized models using PDP inputs.

[bookmark: _Ref131414119][bookmark: _Toc135002542]For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario and considering the possibility of reducing training dataset storage sizes with down sampling, models using CIR or PDP inputs can achieve similar positioning accuracy at similar storage sizes of the training datasets.
[bookmark: _Ref131416293][bookmark: _Toc135002543]For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, centralized models using either CIR or PDP inputs achieve similar positioning accuracy for small number of retained taps (e.g., 9, 16 or 32 taps).

[bookmark: _Toc134999923]Model input size due to Nt – Sample truncation
Sources have considered truncating time domain CIR or PDP samples to reduce training dataset storage sizes. To make a rough comparison amongst the two types of model inputs, the following specific values are used as an example for high resolution training datasets:
· N'TRP = NTRP = 18
· Nport = 2
· Nt = 256, 128, 64, 32
· Breal,CIR = 32, Breal,PDP =32
· Nsamples = 40,000
The dataset storage sizes [bytes] are given in Table 12, where
· For CIR: the size of one sample of model input is calculated by: (N'TRP * Nport * Nt * 2 * Breal,CIR ) (bits),
· For PDP: the size of one sample of model input is calculated by: (N'TRP * 1 * Nt * Breal,PDP ) (bits),
· For DP: the size of one sample of model input is calculated by: (N'TRP * Nt) bits.

[bookmark: _Ref133934502]Table 12 Dataset storage sizes [bytes] for 40,000 samples with different truncated time domain lengths Nt.
	Dataset storage sizes for 40,000 samples [MB] with different truncated time domain lengths Nt

	Input type
	Nt =256
	Nt =128
	Nt =64
	Nt =32

	CIR
	2949.1
	1474.6
	737.3
	368.6

	PDP
	737.3
	368.6
	184.3
	92.2

	DP
	23.0
	11.5
	5.8
	-



[bookmark: _Toc135002544]One way to reduce the number of active (nonzero) time domain taps is to truncate a larger time domain window size Nt,1 by keeping only a smaller time domain window size Nt,2. Such truncation approach reduces the dataset storage sizes proportionally for all three different input types: CIR, PDP and DP.

Another effect of truncating the input time domain lengths is the corresponding reduction in computational complexity since there is few data to process as shown in Table 13. For the CIR input example, the computational complexity is reduced from 32 M FLOPs to 15 M FLOPs when the input length is cut in half.
[bookmark: _Hlk134437011]For neural networks using weight sharing (such as convolutional layers), the number of model parameters is relatively insensitive to the time domain lengths of the inputs as the example discussed in Section 1.2. For the case of our models, the model complexity in terms of numbers of parameters is unchanged by the time domain truncation as shown in Table 13.

[bookmark: _Toc135002545]Time domain truncation can reduce the computational complexity of AI/ML models proportionally. However, for AI/ML models using extensive weight sharing, the impact of time domain truncation on the model complexity (number of parameters) is marginal to none.

For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results using the smallest models in Table 13. It can be observed that time domain truncation with lowered computational complexity decreases the positioning accuracy of all three types of inputs.
A 90%tile positioning error below 0.5 m can be achieved with CIR with at least Nt =128 time domain window size. It can be further noted that, given the same training dataset storage size (number of samples  size of one sample), more samples with length-128 input lead to better performance than fewer samples with length-256 input. 
· More specifically, a training dataset of 20,000 length-256 CIR samples has the same storage size as a training dataset of 40,000 length-128 CIR samples. For the smallest model, the former achieves a 90%tile positioning error of around 0.5 m while the latter achieves a 90%tile positioning error of around 0.45 m.
A 90%tile positioning error below 1 m can be achieved with (1) CIR or PDP with at least Nt =64, or (2) DP (with 32 active taps) of at least Nt =128 in time domain window size. Unlike the previous case, more samples with Nt =64 samples do not lead to better performance than fewer samples with Nt =256 samples. 
· More specifically, a training dataset of 10,000 length-256 CIR samples has the same storage size as a training dataset of 40,000 length-64 CIR samples. For the smallest model, both datasets lead a 90%tile positioning error of around 0.7 m.
State of the art accuracy cannot be maintained with severe time domain truncation. For the CIR and PDP inputs, truncation to Nt =32 is not advisable. For the DP inputs, truncation below Nt =128 is not recommended. 
Comparing all three input types, the DP inputs still achieve the best tradeoff between positioning accuracy and training dataset storage sizes. For instance, even without time domain truncation, a DP dataset is still a fraction of the sizes of the truncated CIR/PDP datasets and can achieve better positioning accuracy than highly truncated CIR/PDP datasets.

[bookmark: _Toc135002546]Time domain truncation can be an approach to trade off positioning accuracy and training dataset storage sizes. Given the same CIR/PDP dataset storage size, similar or slightly better positioning accuracy can be achieved with moderate time domain truncation.
[bookmark: _Toc135002547]The DP inputs still achieve better tradeoff between positioning accuracy and training dataset storage sizes even considering the possibility of time domain truncation.

Further comparison can be made between time domain truncation in this section and sample down-selection in Section 1.4.3.
· As shown in Table 10 and Table 12, a dataset with time domain truncation to Nt=X taps has a similar storage size as a dataset with time domain down selection to Nt' =X taps. For instance, a 128-tap CIR dataset (i.e., Nt=Nt'=128) takes 1.475 GB and a dataset of 256-tap CIR with 128 active taps (i.e., Nt=256, Nt'=128) takes 1.498 GB.
· For similar dataset storage size, training the AI/ML models with time domain down-selection datasets leads to better performance than training with time domain truncation. For instance, models trained with a dataset of 256-tap CIR with 128 active taps (i.e., Nt=256, Nt'=128) achieve 90%tile positioning errors of 0.37 m. Models trained with a 128-tap CIR dataset (i.e., Nt=Nt'=128) achieve 90%tile positioning errors of 0.45 m, which is more than 20% higher.
· The performance disadvantage of time domain truncation can be considered as a tradeoff between computational complexity and model accuracy.

[bookmark: _Toc135002548]Time domain truncation and time domain down-selection can result in similar dataset size reduction. However, models trained with time domain down-selection can achieve better performance but also require higher computational complexity than models trained with time domain truncation.

[bookmark: _Ref134436944]Table 13 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of time domain window size Nt (training dataset size = 40,000 samples, Nt=Nt').
	Input type
	Time domain window size Nt
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m] in {60%, 6m, 2m} InF-DH

	
	
	
	
	Cent. Assist.
	Cent. Direct

	CIR
	256
	0.73 M
	32 M
	0.371
	0.373

	CIR
	128
	0.73 M
	15 M
	0.463
	0.443

	CIR
	64
	0.73 M
	7 M
	0.704
	0.668

	CIR
	32
	0.73 M
	3 M
	1.627
	1.602

	PDP
	256
	0.36 M
	9 M
	0.520
	0.510

	PDP
	128
	0.36 M
	4 M
	0.596
	0.563

	PDP
	64
	0.36 M
	2 M
	0.713
	0.711

	PDP
	32
	0.36 M
	0.8 M
	1.261
	1.165

	DP
	256
	0.36 M
	9 M
	0.653
	0.658

	DP
	128
	0.36 M
	4 M
	0.679
	0.658

	DP
	64
	0.36 M
	2 M
	1.970
	1.976



[bookmark: _Toc134999924]Model input size due to N'TRP – Reduced number of active TRPs
As agreed in RAN1 #112bis, in this section, we investigate the effect of reduced number of TRPs.
Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP - N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP - N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· For Approach 2: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18 - N’TRP) TRPs.
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity) is the summation of the Nmodel models.

Agreement
In the evaluation of AI/ML based positioning, if N’TRP<18, the set of N’TRP TRPs that provide measurements to model input of an AI/ML model are reported using the TRP indices shown below.
[image: ]
We investigated two reduced sets of TRPs based on Approach 2 as follows:
· For N'TRP = 9, we retain TRPs with even indices.
· For N'TRP = 6, we retrain TRPs at indices 0, 5, 6, 11, 12 and 17.
One model is used to cover the entire evaluation area.
The dataset storage sizes are given in Table 14, where sub-sampling is not applied, bitmap is used to indicate the timing, and Nt=256: 
· For CIR: the size of one sample of model input is calculated by: (N'TRP * Nport * Nt * 2 * Breal,CIR) (bits)
· For PDP: the size of one sample of model input is calculated by: (N'TRP * 1 * Nt * Breal,PDP ) (bits)
· For DP: the size of one sample of model input is calculated by: (N'TRP * Nt) bits


Another effect of reducing the number of TRPs is the reduction of both model complexity and computational complexity as shown in Table 15. 

[bookmark: _Toc135002549]Another way to reduce the number of active (nonzero) time domain taps is to reduce the number of TRPs. Such TRP reduction approach reduces the dataset sizes proportionally for all three different input types: CIR, PDP and DP.
[bookmark: _Toc135002550]Reducing the number of active TRPs can decrease both model complexity and computational complexity of the AI/ML models.

[bookmark: _Ref134444962]Table 14 Dataset storage sizes for 40,000 samples with different number of active TRPs. Nt=N't=256
	Dataset storage sizes for 40,000 samples [MB] with different number of active TRPs

	Input type
	18 TRPs
	9 TRPs
	6 TRPs

	CIR
	2949.1
	1474.6
	983.0

	PDP
	737.3
	368.6
	245.8

	DP
	23.0
	11.5
	7.7



For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results using the smallest models in Table 15, which is also plotted in Figure 13. It can be observed that reducing the number of TRPs decreases the positioning accuracy of three types of inputs.
A 90%tile positioning error below 0.5 m cannot be maintained when the number of TRPs is reduced to six or nine. Furthermore, unlike the time domain truncation cases, the dataset size savings from reducing the number of TRPs do not appear to offer a good tradeoff with the losses of positioning accuracy. 
· More specifically, a training dataset of 20,000 CIR samples from 18 TRPs has the same storage size as a training dataset of 40,000 CIR samples from 9 TRPs. For the smallest model, the former achieves a 90%tile positioning error of around 0.5 m while the latter achieves a 90%tile positioning error of around 0.62 m.
A 90%tile positioning error below or around 1 m can be achieved with (1) CIR samples from at least 6 TRPs, (2) PDP samples from at least 9 TRPs, or (3) DP samples from at least 18 TRPs. Large reduction of TRPs leads to even less favorable tradeoff between training dataset sizes and losses of positioning accuracy.
· More specifically, a training dataset of 10,000 CIR samples from 18 TRPs has a smaller storage size than a training dataset of 40,000 CIR samples from 6 TRPs. For the smallest model, the former achieves a 90%tile positioning error of around 0.7 m while the latter achieves a 90%tile positioning error of around 1 m.
Comparing all three input types, the DP inputs still achieve the best tradeoff between positioning accuracy and training dataset sizes. For instance, even without reducing the number of TRPs, a DP dataset is still a fraction of the sizes of the truncated CIR/PDP datasets.

[bookmark: _Toc135002551]Reducing the number of active TRPs does not appear to offer favorable tradeoffs between positioning accuracy and training dataset sizes when compared to the better tradeoffs achieved by time domain truncation.

[bookmark: _Ref134445192]Table 15 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of retained taps (training dataset size = 40,000 samples).
	Input type
	Number of retained TRPs
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m] in {60%, 6m, 2m} InF-DH

	
	
	
	
	Cent. Assist.
	Cent. Direct

	CIR
	18
	0.73 M
	32 M
	0.369
	0.373

	CIR
	9
	0.24 M
	10.3 M
	0.629
	0.621

	CIR
	6
	0.11 M
	4.7 M
	1.039
	1.031

	PDP
	18
	0.36 M
	9 M
	0.526
	0.510

	PDP
	9
	0.12 M
	3.1 M
	0.801
	0.777

	PDP
	6
	0.05 M
	1.4 M
	1.250
	1.191

	DP
	18
	0.36 M
	9 M
	0.667
	0.658

	DP
	9
	0.12 M
	3.1 M
	1.202
	1.153

	DP
	6
	0.05 M
	1.4 M
	1.987
	1.921



[image: ]
[bookmark: _Ref134984057]Figure 13: Positioning accuracy vs number of active TRP (N'TRP) for centralized ML assisted positioning and centralized ML direct positioning.

[bookmark: _Toc134999925]Model input size estimation
As can be seen in the above sub-sections, the model input size is affected by the type of model input (CIR, PDP, DP), the time domain window size Nt, the number of retained taps (Nt') if sub-sampling is used, and the number of active TRPs (N'TRP). Furthermore, the positioning performance is also affected by the number of samples in the training dataset. Thus for achieving a certain positioning performance target, all these factors need to be considered in the design and training of the AI/ML model.
For model inference, one only need to consider model input size of one sample. This model input size is important since it affects the number of measurement values that need to be obtained in real-time deployment. If the model input is measured at an entity different than the model inference entity, it additionally has impact on the signalling overhead, i.e., the number of bits that need to be signalled from one entity to another entity over an interface (e.g., LPP or NRPPa). Thus it is important to calculate the model input size, and analyze the best tradeoff between signalling overhead, model complexity, and positioning accuracy. This corresponds to the following agreement from RAN1#112bis.
Agreement
For the evaluation of AI/ML based positioning method, the measurement size and signalling overhead for the model input is reported. 

Based on the analysis and examples in the subsections above, we propose the following calculation for estimating the measurement size and signalling overhead. Note that in the sub-sections above, the dataset storage size was calculated assuming that bitmap is used to indicate the timing of the Nt' paths for CIR, PDP and DP, while the proposals below consider also the method of directly indicating path timings as in the existing specification. 

Measurement size and signalling overhead for DP
[bookmark: _Toc135002580]For the evaluation of AI/ML based positioning method, model input size for one sample of DP is calculated as the following. 
(a) [bookmark: _Toc135002581]If using bitmap to indicate the timing of the N't paths: (N'TRP * Nt) bits, where a length Nt bitmap is used to report DP for a link. 
(b) [bookmark: _Toc135002582]If directly indicating path timing of the N't paths: (N'TRP * Nt' * Bt ) bits, where Bt is the number bits to represent the timing value of a detected path. 

Measurement size and signalling overhead for CIR and PDP when not applying sub-sampling
[bookmark: _Toc135002583]For the evaluation of AI/ML based positioning method, model input size for one sample of CIR or PDP is calculated as the following, if sub-sampling is not applied.  
(c) [bookmark: _Toc135002584]For CIR: (N'TRP * Nport * Nt * 2 * Breal,CIR ) bits, where Breal,CIR is the number of bits to represent a real value for CIR.  
(d) [bookmark: _Toc135002585]For PDP: (N'TRP * 1 * Nt * Breal,PDP ) bits, where Breal,PDP is the number of bits to represent a real value for path power.

Measurement size and signalling overhead for CIR and PDP when sub-sampling is applied
[bookmark: _Toc135002586]For the evaluation of AI/ML based positioning method, model input size for one sample of CIR or PDP is calculated as the following, if sub-sampling is applied.  
(e) [bookmark: _Toc135002587]If using bitmap to indicate the timing of the N't paths: For CIR: (N'TRP * Nt + N'TRP * Nport * N't * 2 * Breal,CIR) bits, where Breal,CIR is the number of bits to represent a real value for CIR. For PDP: (N'TRP * Nt + N'TRP * 1 * N't * Breal,PDP ) bits, where Breal,PDP is the number of bits to represent a real value for path power. 
(f) [bookmark: _Toc135002588]If directly indicating path timing of the N't paths: For CIR: (N'TRP * Nport * N't * (Bt + 2 * Breal,CIR )) bits, where Breal,CIR is the number of bits to represent a real value for CIR.  For PDP: (N'TRP * 1 * N't * (Bt + Breal,PDP )) bits, where Breal,PDP is the number of bits to represent a real value for path power.

In the above, N'TRP is the number of TRPs that provide measurements as model input, and N'TRP <= 18 for the evaluation. Regarding the number of bits to represent the real values (Bt, Breal,CIR, Breal,PDP), this requires investigation of quantization range and quantization granularity of these values. We do not expect RAN1 investigate the value for Bt, Breal,CIR, Breal,PDP in the study item.

[bookmark: _Toc134999926]Impact of labeled/unlabeled samples
It was agreed in RAN1 #110:
Agreement
For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies.
For datasets containing both labeled and unlabeled samples, semi-supervised learning [6] can be used to obtain improved performance. We investigate the impact of different unlabeled percentages in the dataset on the performance of the centralized AI/ML assisted positioning approach and the AI/ML direct positioning approach in Section 2.1.
For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our centralized AI/ML assisted positioning results in Table 16 and AI/ML direct positioning results in Table 17. It can be observed that semi-supervised learning performance increases with the percentage of labeled samples in the dataset. That is, semi-supervised learning is a viable solution when not all samples in a dataset are labeled.

[bookmark: _Ref134196476]Table 16 90%tile 2D positioning accuracy using PDP inputs for centralized AI/ML assisted positioning approach and different unlabeled sample percentages in the {60%, 6m, 2m} InF-DH dataset.
	Input
	Unlabeled %
	Labeled
	Unlabeled
	Total
	M paras
	M FLOPs
	90%tile [m]

	PDP
	97.50%
	1,000
	39,000
	40,000
	1.4
	34
	2.985

	PDP
	97.50%
	2,000
	78,000
	80,000
	1.4
	34
	1.898

	PDP
	95.00%
	1,000
	19,000
	20,000
	1.4
	34
	3.081

	PDP
	95.00%
	2,000
	38,000
	40,000
	1.4
	34
	1.975

	PDP
	95.00%
	4,000
	76,000
	80,000
	1.4
	34
	1.188

	PDP
	90.00%
	1,000
	9,000
	10,000
	1.4
	34
	3.212

	PDP
	90.00%
	2,000
	18,000
	20,000
	1.4
	34
	2.040

	PDP
	90.00%
	4,000
	36,000
	40,000
	1.4
	34
	1.247

	PDP
	90.00%
	8,000
	72,000
	80,000
	1.4
	34
	0.823

	PDP
	80.00%
	4,000
	16,000
	20,000
	1.4
	34
	1.294

	PDP
	80.00%
	8,000
	32,000
	40,000
	1.4
	34
	0.872

	PDP
	80.00%
	16,000
	64,000
	80,000
	1.4
	34
	0.598



[bookmark: _Ref134196478]Table 17 90%tile 2D positioning accuracy using PDP inputs for AI/ML direct positioning approach and different unlabeled sample percentages in the {60%, 6m, 2m} InF-DH dataset.
	Input
	Unlabeled %
	Labeled
	Unlabeled
	Total
	M paras
	M FLOPs
	90%tile [m]

	PDP
	97.50%
	1,000
	39,000
	40,000
	1.4
	34
	3.206

	PDP
	97.50%
	2,000
	78,000
	80,000
	1.4
	34
	2.038

	PDP
	95.00%
	1,000
	19,000
	20,000
	1.4
	34
	3.261

	PDP
	95.00%
	2,000
	38,000
	40,000
	1.4
	34
	2.059

	PDP
	95.00%
	4,000
	76,000
	80,000
	1.4
	34
	1.309

	PDP
	90.00%
	1,000
	9,000
	10,000
	1.4
	34
	3.324

	PDP
	90.00%
	2,000
	18,000
	20,000
	1.4
	34
	2.164

	PDP
	90.00%
	4,000
	36,000
	40,000
	1.4
	34
	1.348

	PDP
	90.00%
	8,000
	72,000
	80,000
	1.4
	34
	0.863

	PDP
	80.00%
	4,000
	16,000
	20,000
	1.4
	34
	1.357

	PDP
	80.00%
	8,000
	32,000
	40,000
	1.4
	34
	0.906

	PDP
	80.00%
	16,000
	64,000
	80,000
	1.4
	34
	0.626



However, it should be pointed out that, from the general descriptions in the literature [6] and our specific algorithm described in Section 2.1, semi-supervised learning training requires more computational complexity than supervised learning training.
Hence, it is worth taking further analysis on how much the increased training complexity of semi-supervised learning bring against the simpler supervised learning. Toward this end, we compare the UE 90%tile 2D positioning accuracy of 80,000-sample datasets with various levels of unlabeled samples with that of fully labeled datasets with 10,000 or 20,000-samples in Table 18 and Table 19. It can be observed that
· For a given dataset size, better AI/ML model performance can be obtained by increasing the percentage of labeled samples in the dataset. 
· For a dataset size of 80,000 samples, 90%tile 2D positioning error is around 1.9 m when only 2.5% of the dataset is labeled. The 90%tile 2D positioning error can be reduced to around 0.6 m when 20% of the dataset is labeled.
· However, semi-supervised learning using both labeled and unlabeled samples does not appear to bring obvious performance gains over supervised learning using only labeled samples.
· For instance, semi-supervised learning with 8,000 labeled and 72,000 unlabeled samples achieves 90%tile 2D positioning error of around 0.8 m. This is slightly worse than the 0.7 m 90%tile 2D positioning error achieved by supervised learning using only 10,000 labeled samples.
· Similarly, semi-supervised learning with 16,000 labeled and 64,000 unlabeled samples achieves 90%tile 2D positioning error of around 0.6 m. This level of accuracy is right between the accuracy levels achieved by supervised learning using only 20,000 or 10,000 labeled samples, which achieve 90%tile 2D positioning errors of around 0.5 m and 0.7 m, respectively.

[bookmark: _Toc135002552]For a dataset with both labeled and unlabeled samples, semi-supervised learning is a viable solution to utilize both labeled and unlabeled samples for training the AI/ML models. However, semi-supervised learning training requires more computational complexity than supervised learning training.
[bookmark: _Toc135002553]It is not clear that semi-supervised learning training using both labeled and unlabeled samples brings clear improvement over well-designed supervised learning training using only the limited labeled samples.

[bookmark: _Ref134197823]Table 18 90%tile 2D positioning accuracy using PDP inputs for centralized AI/ML assisted positioning approach and different unlabeled sample percentages in the {60%, 6m, 2m} InF-DH dataset.
	Input
	Unlabeled %
	Labeled
	Unlabeled
	Total
	M paras
	M FLOPs
	90%tile [m]

	PDP
	97.50%
	2,000
	78,000
	80,000
	1.4
	34
	1.898

	PDP
	95.00%
	4,000
	76,000
	80,000
	1.4
	34
	1.188

	PDP
	90.00%
	8,000
	72,000
	80,000
	1.4
	34
	0.823

	PDP
	0%
	10,000
	0
	10,000
	1.4
	34
	0.707

	PDP
	80.00%
	16,000
	64,000
	80,000
	1.4
	34
	0.598

	PDP
	0%
	20,000
	0
	20,000
	1.4
	34
	0.474



[bookmark: _Ref134197828]Table 19 90%tile 2D positioning accuracy using PDP inputs for AI/ML direct positioning approach and different unlabeled sample percentages in the {60%, 6m, 2m} InF-DH dataset.
	Input
	Unlabeled %
	Labeled
	Unlabeled
	Total
	M paras
	M FLOPs
	90%tile [m]

	PDP
	97.50%
	2,000
	78,000
	80,000
	1.4
	34
	2.038

	PDP
	95.00%
	4,000
	76,000
	80,000
	1.4
	34
	1.309

	PDP
	90.00%
	8,000
	72,000
	80,000
	1.4
	34
	0.863

	PDP
	0%
	10,000
	0
	10,000
	1.4
	34
	0.735

	PDP
	80.00%
	16,000
	64,000
	80,000
	1.4
	34
	0.626

	PDP
	0%
	20,000
	0
	20,000
	1.4
	34
	0.496



[bookmark: _Toc134999927]Impact of train dataset labelling errors
It was agreed in RAN1 #112 to investigate the impact of training dataset labelling errors:
Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy:  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]
It should be noted that the labelling errors are added per dimension. That is, a 2D UE position with labelling errors  is given by

where  is the true 2D UE position and  and  are independent random variables following a zero-mean truncated Gaussian distribution with standard deviation of . Therefore, the 2D distance errors of the labels 

have a standard deviation close to .
We conducted this investigation using the smallest models in the three positioning approaches, semi-distributed ML-assisted, centralized ML-assisted and centralized ML direct. Our investigation results are summarized in Table 20, Table 21, and Table 22 for the CIR, PDP or DP inputs, respectively. We can evaluate the sensitivity of different ML positioning approaches and different input types to labelling errors with a simple regression of the 90%tile 2D positioning error with labelling error on the standard deviation of the labelling errors:

We can observe that
· For the CIR inputs, the semi-distributed assisted model exhibits lower sensitivity to labelling errors with a  than the centralized models with .
· For the PDP inputs, all three ML positioning approaches exhibit lower sensitivity to labelling errors with  for the semi-distributed assisted model and with  for the centralized models.
· With the DP inputs, the centralized models obtained further lower sensitivity to labelling errors with .
· Sub-meter 90%tile 2D positioning errors can be achieved with labeling error STD less than 1 m.

[bookmark: _Toc135002554]Different ML positioning approaches can exhibit different levels of sensitivity to labeling errors. Semi-distributed ML assisted positioning approaches exhibit lower sensitivity to labeling errors than centralized ML positioning approaches.
[bookmark: _Toc135002555]Different model inputs can affect the sensitivity of the ML models to labeling errors. For the centralized ML assisted positioning or direct positioning approaches, higher sensitivity to labeling errors is observed with CIR inputs than with PDP or DP inputs.

[bookmark: _Ref131497361]Table 20 90%tile 2D positioning accuracy using CIR inputs for different training dataset labeling error STD [m] in the {60%, 6m, 2m} InF-DH scenario. Training dataset size=40,000 samples, Nt=256.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different labelling error STD in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	0 m
	0.25 m
	0.5 m
	1 m

	Small models CIR
	Dist. Assist.
	0.86 M
	36 M
	0.453
	0.552
	0.704
	1.116

	
	Cent. Assist.
	0.73 M
	32 M
	0.371
	0.462
	0.702
	1.253

	
	Cent. Direct
	0.73 M
	32 M
	0.373
	0.478
	0.709
	1.262



[bookmark: _Ref131497376]Table 21 90%tile 2D positioning accuracy using PDP inputs for different training dataset labeling error STD [m] in the {60%, 6m, 2m} InF-DH scenario. Training dataset size=40,000 samples, Nt=256.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different labelling error STD in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	0 m
	0.25 m
	0.5 m
	1 m

	Small models PDP
	Dist. Assist.
	0.43 M
	11.5 M
	0.680
	0.734
	0.866
	1.234

	
	Cent. Assist.
	0.36 M
	9 M
	0.524
	0.563
	0.690
	1.142

	
	Cent. Direct
	0.36 M
	9 M
	0.510
	0.566
	0.708
	1.141



[bookmark: _Ref131497380]Table 22 90%tile 2D positioning accuracy using 32-tap DP inputs for different training dataset labeling error STD [m] in the {60%, 6m, 2m} InF-DH scenario. Training dataset size=40,000 samples, Nt=256.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different labelling error STD in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	0 m
	0.25 m
	0.5 m
	1 m

	Small models DP
	Cent. Assist.
	0.36 M
	9 M
	0.653
	0.717
	0.824
	1.220

	
	Cent. Direct
	0.36 M
	9 M
	0.658
	0.694
	0.803
	1.216



[image: ]
Figure 14: Positioning accuracy vs label error standard deviation L (meters) for three positioning approaches and model input type of CIR, PDP, and DP.

[bookmark: _Toc134999928]Impact of fine-tuning dataset sizes
The four different AI/ML positioning approaches we study in this contribution and [1] exhibit different sensitivity to environmental changes.
· We found the models estimating observable first path delays for the LoS links to be insensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. In fact, the quality of observable first path delays for the LoS links remain accurate even when the models are deployed to completely different InF environments. These models behave almost like conventional signal processing algorithms in terms of their robustness to various environmental changes.
· The caveat is, for environments without enough LoS links, accurate UE positioning cannot be obtained using the outputs from this type of model, since the conventional positioning methods need to have at least 3 LoS links to produce accurate horizontal position estimation.
· The models estimating unobservable direct path delays for all links and the models estimating the UE positions directly are rather sensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. This is because these models are in essence performing fingerprinting either locally or regionally/globally. When the operating environment changes, mitigation solutions are needed.
Since the fingerprinting type AI/ML models are sensitive to operating environment changes, it is necessary to address solutions for operating environment changes:
· We consider in this section solutions using fine-tuning for models trained in one environment to adapt to a second environment.
· We consider in the next section solutions to train models using data from more than one environment such that the trained model can operate in a diverse variety of environments.

The following was agreed in RAN1 #111:
Agreement
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.
Toward this end, we investigate the performance of fine-tuning a model originally trained with samples collected from the {60%, 6m, 2m} InF-DH scenario using samples collected from the {40%, 2m, 2m} InF-DH scenario. 
We conducted this investigation using the smallest models in the three positioning approaches. Our investigation results are summarized in Table 23 to Table 25.
· The first row of each model classes contains the 90%tile 2D positioning errors of the semi-distributed ML-assisted positioning approach in Section 2.1 of [7]. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small number of fine-tuning samples (e.g., 1,000 or 2,000 samples), the accuracy of the models can be improved substantially. The 90%tile positioning errors are reduced by at least 50% with all three models. However, even with such improvements, the accuracy (with 90%tile positioning errors > 2 m) is still not acceptable.
· However, further increases of fine-tuning dataset sizes improve the model performance only gradually. To achieve sub-meter 90%tile positioning errors, a fine-tuning dataset size of at least 10,000 samples is needed.
· To reach the best achievable performance, the fine-tuning dataset size essentially has to increase to the same level as training a model from scratch.
· For instance, with the distributed assisted models, fine-tuning requires the same number of samples as training from scratch.
· For the centralized models, fine-tuning may be able to provide some reduction in the required number of samples. However, the saving may be no more than 10% reduction.

[bookmark: _Toc135002556]Fine-tuning is a viable technique to adapt models originally trained for a first environment to operate in a second, substantially different, environment. However, fine-tuning does not appear to provide much saving in the number of samples to reach state-of-the-art positioning accuracy when compared to training the models from scratch.

[bookmark: _Ref131781094]Table 23. 90%tile UE 2D positioning errors for small Model I trained with 40,000 CIR samples from {60%, 6m, 2m} and fine-tuned with different number of CIR samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Dist. Assist.
	0.86 M
	0.409
	0.420
	0.543
	0.782
	1.285
	1.808
	2.404
	8.720

	Cent. Assist.
	0.73 M
	0.697
	0.621
	0.818
	1.141
	1.806
	2.284
	2.885
	6.913

	Cent. Direct
	0.73 M
	0.674
	0.621
	0.841
	1.177
	1.801
	2.329
	3.030
	7.354



Table 24. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and fine-tuned with different number of PDP samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Dist. Assist.
	0.43 M
	0.596
	0.552
	0.738
	0.989
	1.408
	1.882
	2.486
	8.176

	Cent. Assist.
	0.36 M
	0.854
	0.782
	0.983
	1.269
	1.879
	2.378
	2.843
	6.904

	Cent. Direct
	0.36 M
	0.810
	0.791
	0.991
	1.267
	1.876
	2.418
	2.880
	6.542



[bookmark: _Ref131781098]Table 25. 90%tile UE 2D positioning errors for small Model I trained with 40,000 DP samples from {60%, 6m, 2m} and fine-tuned with different number of DP samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Cent. Assist.
	0.36 M
	1.071
	1.025
	1.281
	1.614
	2.455
	3.164
	3.972
	11.940

	Cent. Direct
	0.36 M
	1.033
	1.036
	1.294
	1.618
	2.441
	3.230
	3.902
	11.554



It should however be further pointed out that, once these models are fine-tuned to operate for a substantially different, new, environment, they no longer perform adequately for the original environment. Our investigation results are summarized in Table 26 to Table 28.
· The first row of each model classes contains the 90%tile 2D positioning errors of the semi-distributed ML-assisted positioning approach in Section 2.1 of [7]. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small number of fine-tuning samples (e.g., 1,000 or 2,000 samples), the accuracy of the original models on the original operating environment is substantially degraded. The 90%tile 2D positioning errors of all three models jump from below 0.5 m to around 6 m in the worst case.
· It is, however, surprising to observe that the performance of these models being fine-tuned for a substantially different, new, environment actually recover some of their performance on the original environment with more fine-tuning samples. The models appear to attempt good performance in both environments. But they fail to achieve state-of-the-art accuracy for both. 
· That is, in order to operate at state-of-the-art performance in multiple environments, multiple sets of model weights will need to be kept. This is rather different than the mixed dataset training to be discussed in Section 1.9

[bookmark: _Toc135002557]Once the models are fine-tuned to operate for a substantially different, new, environment, they no long perform adequately for the original environment. That is, if operation at state-of-the-art performance in multiple environments is needed, multiple sets of model weights need to be stored.

[bookmark: _Ref131781127]Table 26. 90%tile UE 2D positioning errors for small Model I trained with 40,000 CIR samples from {60%, 6m, 2m} and fine-tuned with different number of CIR samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset.
	Positioning approach
	Model
complexity 
[# of 
parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {60%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	Dist. Assist.
	0.86 M
	0.451
	2.111
	2.653
	3.465
	4.293
	5.267
	5.863

	Cent. Assist.
	0.73 M
	0.371
	1.358
	1.549
	1.865
	2.473
	2.911
	3.258

	Cent. Direct
	0.73 M
	0.373
	1.351
	1.668
	1.993
	2.632
	3.453
	3.352



Table 27. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and fine-tuned with different number of PDP samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset.
	Positioning approach
	Model
complexity 
[# of 
parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {60%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	Dist. Assist.
	0.43 M
	0.684
	2.424
	2.813
	3.417
	4.123
	4.962
	5.110

	Cent. Assist.
	0.36 M
	0.524
	1.383
	1.515
	1.803
	2.352
	2.917
	2.911

	Cent. Direct
	0.36 M
	0.510
	1.379
	1.591
	1.795
	2.455
	2.794
	3.013



[bookmark: _Ref131781131]Table 28. 90%tile UE 2D positioning errors for small Model I trained with 40,000 DP samples from {60%, 6m, 2m} and fine-tuned with different number of DP samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset.
	Positioning approach
	Model
complexity 
[# of 
parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {60%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	Cent. Assist.
	0.36 M
	0.653
	1.880
	2.143
	2.430
	3.264
	3.580
	4.047

	Cent. Direct
	0.36 M
	0.658
	1.957
	2.242
	2.436
	3.346
	3.715
	3.967




[bookmark: _Ref134448079][bookmark: _Toc134999929] Impact of train/test SNR mismatch
It was agreed in RAN1 #111 to investigate SNR mismatch between training and testing.
Agreement
For AI/ML based positioning, company optionally evaluate the impact of at least the following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)
· Channel estimation error
We investigate the performance sensitivity of the ML positioning models trained with datasets with one SNR range but tested with datasets with a different SNR range. Toward this end, we assume three different testing time UE transmit powers for testing the trained ML models: 23, 8, or -7 dBm. Given the geometry of the InF environment and the 3GPP channel model, we have calculated in Section 1.12 the SNR ranges before considering shadowing and fast fading for these UE transmit power to be: 
· Between 21.9 and 52.3 dB for 23 dBm UE power.
· Between 6.9 and 37.3 dB for 8 dBm UE power.
· Between -8.1 and 22.3 dB for -7 dBm UE power.
We trained the smallest centralized models with 40,000 samples at two different training time UE transmit powers: 23 and -7 dBm. Our investigation results are summarized in Table 29, Table 30 and Table 31 for CIR, PDP or DP type inputs, respectively. We observe that:
· For CIR inputs:
· The models exhibit moderate sensitivity to an SNR mismatch of -15 dB. For models trained at 23 dBm UE power, the 90%tile 2D positioning errors jump from below 0.5 m to over 2 m when the UE transmit power is reduced by 15 dB.
· The models exhibit high sensitivity to an SNR mismatch of +15 dB. For models trained at -7 dBm UE power, the 90%tile 2D positioning errors jump from around 0.5 m to around 5 m when the UE transmit power is increased by 15 dB.
· The models exhibit much higher sensitivity to an SNR mismatch of -30 dB than to an SNR mismatch of +30 dB.
· For PDP inputs:
· The models exhibit low sensitivity to an SNR mismatch of -15 dB. For models trained at 23 dBm UE power, the 90%tile 2D positioning errors increase slightly from around 0.5 m to around 0.65 m when the UE transmit power is reduced by 15 dB.
· The models exhibit high sensitivity to an SNR increase of +15 dB. For models trained at -7 dBm UE power, the 90%tile 2D positioning errors jump from around 0.55 m to around 6 m.
· The models exhibit lower sensitivity to an SNR mismatch of -30 dB than to an SNR mismatch of +30 dB.
· For DP inputs:
· The models using DP inputs exhibits much lower sensitivity to SNR mismatches than models using CIR or PDP inputs. Even with an SNR mismatch of 30 dB, the models maintain 90%tile 2D positioning error below 0.9 m.
· Note that the DP samples are computed from CIR/PDP samples that are already contaminated by noises. Hence, for -7 dBm UE transmit power, an individual DP sample from a faraway TRP can contain several erroneous/nonoptimal tap positions. But the models taking the DP inputs from multiple TRPs can correct such errors and arrive at high positioning accuracy.

[bookmark: _Toc135002558]Centralized ML assisted or direct positioning models using PDP inputs exhibits much lower sensitive to train/test SNR drops than models using CIR inputs.
- Models using PDP inputs are still usable with an SNR drop of 15 dB with 90%tile 2D positioning errors below 0.7 m.
- The 90%tile 2D positioning errors of models using CIR inputs jump to >2 m with an SNR drop of 15 dB.
- With an SNR drop of 30 dB, models using CIR or PDP inputs are not usable.
[bookmark: _Toc135002559]Centralized ML assisted or direct positioning models using PDP inputs exhibits much higher sensitive to train/test SNR increases than models using CIR inputs. All models become unusable with SNR increases of at least 15 dB.
[bookmark: _Toc135002560]Centralized ML assisted or direct positioning models using DP inputs are protected from train/test SNR mismatch. Even with an SNR mismatch of 30 dB, the models maintain 90%tile 2D positioning error below 0.9 m.

[bookmark: _Ref131510642]Table 29 90%tile 2D positioning accuracy using CIR inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE transmit powers in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	23 dBm UE
	8 dBm UE
	-7 dBm UE

	CIR trained with 23 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	0.371
	2.253
	52.587

	
	Cent. Direct
	0.73 M
	32 M
	0.373
	2.146
	29.281

	CIR trained with -7 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	7.664
	4.938
	0.513

	
	Cent. Direct
	0.73 M
	32 M
	7.441
	5.188
	0.532



[bookmark: _Ref131510644]Table 30 90%tile 2D positioning accuracy using PDP inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE transmit powers in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	23 dBm UE
	8 dBm UE
	-7 dBm UE

	PDP trained with 23 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	0.520
	0.648
	4.765

	
	Cent. Direct
	0.73 M
	32 M
	0.510
	0.672
	4.514

	PDP trained with -7 dBm UE
	Cent. Assist.
	0.36 M
	9 M
	10.567
	6.485
	0.566

	
	Cent. Direct
	0.36 M
	9 M
	8.396
	5.595
	0.558



[bookmark: _Ref131510647]Table 31 90%tile 2D positioning accuracy using DP inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE transmit powers in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	23 dBm UE
	8 dBm UE
	-7 dBm UE

	DP trained with 23 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	0.653
	0.656
	0.899

	
	Cent. Direct
	0.73 M
	32 M
	0.658
	0.655
	0.867

	DP trained with -7 dBm UE
	Cent. Assist.
	0.36 M
	9 M
	0.748
	0.751
	0.681

	
	Cent. Direct
	0.36 M
	9 M
	0.754
	0.741
	0.679



[bookmark: _Ref131524911][bookmark: _Toc134999930]Effectiveness of mixed dataset training
To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training is a superior approach than either training multiple models from scratch or storing multiple fine-tuned models. In this section, we demonstrate the effectiveness of mixed dataset training to address various train/test mismatch:
· We show in Section 1.9.1 mixed dataset training can address model performance issues with different train/test environmental clutter parameters.
· We show in Section 1.9.2 mixed dataset training can address model performance issues with different train/test SNR mismatches.
· We show in Section 1.9.3 mixed dataset training can address model performance issues with different environmental random conditions (represented by 3GPP channel model seeds).
Based on these extensive investigations, we can observe that

[bookmark: _Toc135002561]To operate at state-of-the-art performance in multiple substantially different environmental conditions (e.g., different SNRs, different random conditions, different clutter distributions), mixed dataset training is a universal and superior solution to either training multiple models from scratch or storing multiple fine-tuned models with explicit environment identification and model switching.

[bookmark: _Ref134022458][bookmark: _Toc134999931]Mixed dataset training for different clutter parameters
To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training is a superior approach than either training multiple models from scratch or storing multiple fine-tuned models. To investigate, we compare the performance of models trained with three different train datasets:
· Train with 40,000 samples from {60%, 6m, 2m}
· Train with 40,000 samples from {40%, 2m, 2m}
· Train with 40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}
We believe this is a fair comparison between these two operating scenarios:
· Train two models to operate in two different environments at high performance
· Train a single model to operate in two different environments at high performance
Since there do exist training samples from two different environments to train two different models for the two substantially different environments, the entirety of the training samples should be used when training a single model to operate in two different environments.
We conducted this investigation using the smallest models in the three positioning approaches. Our investigation results are summarized in Table 32 to Table 34.
· The first row of each model classes contains the 90%tile 2D positioning errors of the distributed ML-assisted positioning approach in Section 2.1 of [7]. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· The test results show that even small models trained with mixed datasets from two substantially different environments can operate at high accuracy in four different environments.
· In fact, in some cases, models trained with mixed datasets achieve better performance in an environment than models trained exclusively using samples from that environment. We expect such outperformance to be even more prevalent with larger model sizes.
· These models trained with mixed datasets achieve such state-of-the-art performance without the need to explicitly identifying the operating environment or switching of models.
· For the alternative approach of keeping multiple models for multiple operating environments, reliability of environment identification becomes the critical point of failure. Evidence of environment identification reliability should be provided by proponent companies and studied further.
· From the first principle of representation learning, having several discrete models doing similar/related jobs based on the same inputs wastes the complexity budget. By pooling them into a single model like the mixed dataset, training here allows the single model to share commonly useful features (constructed by early layers) and achieve better performance in all similar/related jobs for the same complexity budget.

[bookmark: _Toc135002562]Even with small model sizes, models trained with mixed datasets can operate at state-of-the-art performance in multiple substantially different environments with no need of explicit environment identification and model switching.
[bookmark: _Toc135002563]For the alternative approach of keeping multiple models for multiple operating environments, reliability of environment identification becomes the critical point of failure.
[bookmark: _Toc135002564]To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training is superior to either training multiple models from scratch or storing multiple fine-tuned models with explicit environment identification and model switching.

[bookmark: _Ref131781522]Table 32. 90%tile UE 2D positioning errors for small Model I trained with 40,000 CIR samples from {60%, 6m, 2m} and/or {40%, 2m, 2m} and tested on four different environments.
	Positioning approach
	Model complexity [# of parameters]
	Training
dataset
	90%tile UE 2D positioning errors [m] – small Model I
on different test sets

	
	
	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	Dist. Assisted
	0.86 M
	{60%, 6m, 2m}
	8.720
	4.284
	0.489
	0.451

	
	
	{40%, 2m, 2m}
	0.409
	0.594
	2.045
	2.317

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.473
	0.553
	0.602
	0.594

	Cent. Assisted
	0.73 M
	{60%, 6m, 2m}
	6.913
	2.935
	0.412
	0.371

	
	
	{40%, 2m, 2m}
	0.697
	0.8
	1.477
	1.591

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.641
	0.564
	0.428
	0.415

	Cent. Direct
	0.73 M
	{60%, 6m, 2m}
	7.354
	3.275
	0.419
	0.373

	
	
	{40%, 2m, 2m}
	0.674
	0.770
	1.461
	1.595

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.616
	0.552
	0.421
	0.410



Table 33. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and/or {40%, 2m, 2m} and tested on four different environments.
	Positioning approach
	Model complexity [# of parameters]
	Training
dataset
	90%tile UE 2D positioning errors [m] – small Model I
on different test sets

	
	
	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	Dist. Assisted
	0.43 M
	{60%, 6m, 2m}
	8.176
	4.134
	0.728
	0.684

	
	
	{40%, 2m, 2m}
	0.596
	0.891
	2.555
	2.841

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.601
	0.701
	0.792
	0.784

	Cent. Assisted
	0.36 M
	{60%, 6m, 2m}
	6.904
	2.453
	0.549
	0.524

	
	
	{40%, 2m, 2m}
	0.854
	0.900
	1.408
	1.518

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.816
	0.707
	0.592
	0.586

	Cent. Direct
	0.36 M
	{60%, 6m, 2m}
	6.542
	2.463
	0.544
	0.510

	
	
	{40%, 2m, 2m}
	0.810
	0.883
	1.413
	1.521

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.807
	0.701
	0.587
	0.579



[bookmark: _Ref131781524]Table 34. 90%tile UE 2D positioning errors for small Model I trained with 40,000 DP samples from {60%, 6m, 2m} and/or {40%, 2m, 2m} and tested on four different environments.
	Positioning approach
	Model complexity [# of parameters]
	Training
dataset
	90%tile UE 2D positioning errors [m] – small Model I
on different test sets

	
	
	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	Cent. Assisted
	0.36 M
	{60%, 6m, 2m}
	11.940
	3.867
	0.705
	0.653

	
	
	{40%, 2m, 2m}
	1.071
	1.168
	1.888
	2.047

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	1.052
	0.919
	0.762
	0.750

	Cent. Direct
	0.36 M
	{60%, 6m, 2m}
	11.554
	3.889
	0.693
	0.658

	
	
	{40%, 2m, 2m}
	1.033
	1.116
	1.860
	1.977

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	1.024
	0.909
	0.736
	0.720



[bookmark: _Ref134022451][bookmark: _Toc134999932]Mixed dataset training for different operating SNRs
Given the effectiveness of mixed dataset training demonstrated in Section 1.9.1, model position accuracy in the presence of SNR mismatch may be improved by training the models with multiple datasets corresponding to various extents of SNR mismatch. To investigate, we compare the performance of models trained with the following different train datasets:
· Train with 40,000 samples with 23 dBm UE power
· Train with 40,000 samples with -7 dBm UE power
· Train with 40,000 samples with 23 dBm UE power and 40,000 samples with -7 dBm UE power
· Train with 40,000 samples with 23 dBm UE power, 40,000 samples with 8 dBm UE power, and 40,000 samples with -7 dBm UE power
It should be noted that only one dataset at the 23 dBm UE power needs to be collected in reality. For lower UE transmit powers, the datasets can be synthesized from the 23 dBm UE dataset. More specifically, let a received CIR sample in 23 dBm UE dataset be

where  is the received channel response and  is the noise. Given the subcarrier spacing and the receiver noise figure, the power of the noise is known and denoted by . The sample can be converted into a sample corresponding to a 3 dBm UE power scenario by

where  is a zero-mean complex Gaussian noise of variance .

[bookmark: _Toc135002565]To address model position accuracy in the presence of SNR mismatch, only one physical dataset corresponding to the 23 dBm UE power needs to be collected. Datasets corresponding to lower UE transmit powers can be synthesized on demand.

We conducted this investigation using the smallest models in the two centralized positioning approaches. Our investigation results are summarized in Table 35, Table 36 and Table 37 for the CIR, PDP and DP input types.
For both the CIR and PDP inputs, training the models with datasets with different UE transmit powers completely solves the train/test SNR mismatch issues identified in Section 1.8: uniform UE positioning accuracy can be expected across a range of 30 dB UE transmit power differential.
· For models trained with only the two extreme UE powers (23 and -7 dBm), a 90%tile position error of around 0.47 m and 0.51 m can be achieved across the 30 dB UE transmit power range for the CIR and PDP inputs, respectively.
· For the CIR inputs, training with three possible UE powers (23, 8 and -7 dBm) can provide further performance improvements.
Though the DP input type is already much more robust against train/test SNR mismatch the CIR/PDP inputs as shown in Section 1.8, training with datasets of different UE transmit powers can further improve the model accuracy and robustness.
· For models trained with only the two extreme UE powers (23 and -7 dBm), a 90%tile position error of around 0.64 m can be achieved across the 30 dB UE transmit power range. This is much lower than the 0.9 m worst accuracy achieved by models trained with only one UE transmit power.
· Training with three possible UE powers (23, 8 and -7 dBm) further lowers the 90%tile position errors across the 30 dB UE transmit power range.

[bookmark: _Toc135002566]Model position accuracy in the presence of SNR mismatch up to 30 dB can be maintained at state-of-the-art level by training small models with multiple datasets corresponding to various operating SNRs.

[bookmark: _Ref134447703]Table 35 90%tile 2D positioning accuracy using CIR inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	90%tile 2D positioning error [m] with different UE transmit powers in {60%, 6m, 2m} InF-DH

	
	
	23 dBm UE
	15.5 dBm UE
	8.5 dBm UE
	0.5 dBm UE
	-7 dBm UE

	CIR trained with 23 dBm UE
	Cent. Assist.
	0.368
	0.642
	2.284
	6.200
	53.119

	
	Cent. Direct
	0.373
	0.614
	2.029
	5.520
	29.281

	CIR trained with -7 dBm UE
	Cent. Assist.
	7.721
	7.297
	4.990
	1.236
	0.513

	
	Cent. Direct
	7.441
	7.165
	5.401
	1.324
	0.532

	CIR trained with 23, -7 dBm UE
	Cent. Assist.
	0.467
	0.464
	0.467
	0.475
	0.507

	
	Cent. Direct
	0.446
	0.449
	0.446
	0.456
	0.487

	CIR trained with 23, 8, -7 dBm UE
	Cent. Assist.
	0.419
	0.414
	0.421
	0.436
	0.505

	
	Cent. Direct
	0.425
	0.424
	0.427
	0.448
	0.492



[bookmark: _Ref134447707]Table 36 90%tile 2D positioning accuracy using PDP inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	90%tile 2D positioning error [m] with different UE transmit powers in {60%, 6m, 2m} InF-DH

	
	
	23 dBm UE
	15.5 dBm UE
	8.5 dBm UE
	0.5 dBm UE
	-7 dBm UE


	PDP trained with 23 dBm UE
	Cent. Assist.
	0.527
	0.527
	0.652
	1.349
	4.827

	
	Cent. Direct
	0.510
	0.519
	0.650
	1.487
	4.514

	PDP trained with -7 dBm UE
	Cent. Assist.
	10.520
	9.626
	6.506
	1.948
	0.563

	
	Cent. Direct
	8.396
	7.757
	5.818
	1.886
	0.558

	PDP trained with 23, -7 dBm UE
	Cent. Assist.
	0.538
	0.537
	0.543
	0.532
	0.562

	
	Cent. Direct
	0.507
	0.507
	0.509
	0.508
	0.532

	PDP trained with 23, 8, -7 dBm UE
	Cent. Assist.
	0.500
	0.503
	0.503
	0.507
	0.547

	
	Cent. Direct
	0.490
	0.491
	0.491
	0.502
	0.525



[bookmark: _Ref134447709]Table 37 90%tile 2D positioning accuracy using DP inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	90%tile 2D positioning error [m] with different UE transmit powers in {60%, 6m, 2m} InF-DH

	
	
	23 dBm UE
	15.5 dBm UE
	8.5 dBm UE
	0.5 dBm UE
	-7 dBm UE


	DP trained with 23 dBm UE
	Cent. Assist.
	0.668
	0.658
	0.660
	0.681
	0.901

	
	Cent. Direct
	0.658
	0.655
	0.652
	0.659
	0.867

	DP trained with -7 dBm UE
	Cent. Assist.
	0.754
	0.755
	0.740
	0.722
	0.683

	
	Cent. Direct
	0.754
	0.748
	0.747
	0.730
	0.679

	DP trained with 23, -7 dBm UE
	Cent. Assist.
	0.630
	0.632
	0.631
	0.627
	0.660

	
	Cent. Direct
	0.610
	0.614
	0.611
	0.607
	0.643

	DP trained with 23, 8, -7 dBm UE
	Cent. Assist.
	0.608
	0.613
	0.613
	0.612
	0.658

	
	Cent. Direct
	0.592
	0.592
	0.594
	0.602
	0.637



[bookmark: _Ref134022455][bookmark: _Toc134999933]Mixed dataset training for different drops
Given the effectiveness of mixed dataset training demonstrated in Section 1.9.1, model position accuracy in the presence of different random condition differences (represented by 3GPP channel model random seeds) may be improved by training the models with multiple datasets corresponding to various random condition differences. This is evaluated by using different 3GPP channel model random seeds, i.e., different drops.
To investigate, we compare the performance of models trained with three different train datasets:
· Train with 40,000 samples generated by a first spatial seed
· Train with 40,000 samples generated by a second spatial seed 
· Train with 40,000 samples generated by a first spatial seed and 40,000 samples generated by a second spatial seed
We conducted this investigation using the smallest models in the three positioning approaches. Our investigation results are summarized in Table 38, Table 39 and Table 40 for the CIR, PDP and DP input types.
It can be observed that training the models with samples generated by both spatial seeds allows the models to achieve state of the art accuracy in both spatial conditions. This is true for all three input types.

[bookmark: _Toc135002567]Model position accuracy in the presence of different random condition differences (represented by 3GPP channel model random seeds) can be addressed by training small models with multiple datasets corresponding to the random condition differences (represented by 3GPP channel model random seeds).

There appears a small performance degradation for the small models to operate in both random spatial conditions. For instance, the 90%tile position error with CIR inputs is increased from 0.37 m to 0.44 m. We expect such performance losses to reduce if a large model is used.

[bookmark: _Ref134449957]Table 38 90%tile 2D positioning accuracy using CIR inputs for different environmental random seeds in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different datasets.
	Model details
	Positioning approach
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	Drop 1
	Drop 2

	CIR trained with drop 1 dataset
	Cent. Assist.
	0.371
	17.332

	
	Cent. Direct
	0.373
	16.802

	CIR trained with drop 1 and drop 2 datasets
	Cent. Assist.
	0.435
	0.446

	
	Cent. Direct
	0.437
	0.439



[bookmark: _Ref134449960]Table 39 90%tile 2D positioning accuracy using PDP inputs for different environmental random seeds in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different datasets.
	Model details
	Positioning approach
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	Drop 1
	Drop 2

	PDP trained with drop 1 dataset
	Cent. Assist.
	0.524
	17.860

	
	Cent. Direct
	0.510
	17.935

	PDP trained with drop 1 and drop 2 datasets
	Cent. Assist.
	0.626
	0.629

	
	Cent. Direct
	0.594
	0.592



[bookmark: _Ref134449961]Table 40 90%tile 2D positioning accuracy using DP inputs for different environmental random seeds in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different datasets.
	Model details
	Positioning approach
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	Drop 1
	Drop 2

	DP trained with drop 1 dataset
	Cent. Assist.
	0.653
	21.488

	
	Cent. Direct
	0.658
	20.374

	DP trained with drop 1 and drop 2 datasets
	Cent. Assist.
	0.826
	0.811

	
	Cent. Direct
	0.784
	0.807



[bookmark: _Toc134999934]Impact of UE timing errors
In this section, we investigate and analyze the performance of the ML models against UE timing errors. We first train Model I with 40,000 samples without UE timing errors. We further train the same model with STD = 25 ns and STD = 50 ns UE timing errors. Then, we test these models against test dataset 1f with random UE timing errors at various STD values (X ns). As agreed in a previous RAN1 meeting, the random UE timing errors are generated according to a truncated Gaussian distribution with a (pre-truncation) STD (aka, ) and truncation at ±2*STD (aka,  ). 
We conducted this investigation using the smallest models. Our investigation results for the centralized models are summarized in Table 41, Table 42 and Table 43 for the CIR, PDP or DP inputs, respectively. The results are also plotted in Figure 15 - Figure 17.
· For ML positioning models trained without any UE timing errors, positioning accuracy can still maintain a high level for UE synchronization STD up to 10 ns for the CIR or DP inputs. But the PDP inputs, high level of positioning accuracy can be maintained for UE synchronization STD up to at least 5 ns. For larger UE timing errors, the ML models’ positioning accuracy can degrade substantially.
· However, if the ML positioning models are trained with 25 or 50 ns UE timing errors, the models can maintain high level of positioning accuracy for UE timing errors up to 50 ns. In general, we find centralized models can overcome UE timing errors by observing multiple inputs from the TRPs simultaneously.

[bookmark: _Toc135002568]Centralized ML positioning models can overcome UE timing errors. 
- Models trained without any UE timing error can achieve high positioning accuracy for UE timing error STD up to 10 ns for the CIR or DP inputs.
- Models trained with UE timing error STD of 25 ns can achieve high positioning accuracy for UE timing error STD up to at least 50 ns for the CIR inputs and up to at least 25 ns for the PDP or DP inputs.
- Models trained with UE timing error STD of 50 ns can achieve high positioning accuracy for UE timing error STD up to at least 50 ns.

[bookmark: _Ref134452734]Table 41 90%tile 2D positioning accuracy using CIR inputs for different UE synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE timing error STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	CIR trained with 0 ns
	Cent. Assist.
	0.73 M
	32 M
	0.427
	0.553
	0.98
	5.553
	18.375

	
	Cent. Direct
	0.73 M
	32 M
	0.431
	0.556
	0.946
	5.383
	18.302

	CIR trained with 25 ns
	Cent. Assist.
	0.73 M
	32 M
	0.511
	0.517
	0.51
	0.537
	0.896

	
	Cent. Direct
	0.73 M
	32 M
	0.384
	0.381
	0.383
	0.395
	0.694

	CIR trained with 50 ns
	Cent. Assist.
	0.73 M
	32 M
	0.544
	0.549
	0.548
	0.557
	0.581

	
	Cent. Direct
	0.73 M
	32 M
	0.406
	0.413
	0.406
	0.411
	0.439



[bookmark: _Ref134452736]Table 42 90%tile 2D positioning accuracy using PDP inputs for different UE synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE timing error STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	PDP trained with 0 ns
	Cent. Assist.
	0.36 M
	9 M
	0.586
	0.747
	1.281
	6.76
	20.081

	
	Cent. Direct
	0.36 M
	9 M
	0.571
	0.754
	1.354
	6.886
	20.350

	PDP trained with 25 ns
	Cent. Assist.
	0.36 M
	9 M
	0.703
	0.711
	0.711
	0.748
	1.303

	
	Cent. Direct
	0.36 M
	9 M
	0.534
	0.538
	0.543
	0.562
	1.041

	PDP trained with 50 ns
	Cent. Assist.
	0.36 M
	9 M
	0.762
	0.768
	0.762
	0.776
	0.810

	
	Cent. Direct
	0.36 M
	9 M
	0.567
	0.571
	0.566
	0.577
	0.589



[bookmark: _Ref134452738]Table 43 90%tile 2D positioning accuracy using DP inputs for different UE synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE timing error STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	DP
trained with 0 ns
	Cent. Assist.
	0.36 M
	9 M
	0.732
	0.801
	0.981
	4.142
	19.213

	
	Cent. Direct
	0.36 M
	9 M
	0.743
	0.809
	0.992
	4.297
	18.222

	DP
trained with 25 ns
	Cent. Assist.
	0.36 M
	9 M
	0.861
	0.861
	0.869
	0.910
	1.425

	
	Cent. Direct
	0.36 M
	9 M
	0.678
	0.677
	0.682
	0.713
	1.197

	DP
trained with 50 ns
	Cent. Assist.
	0.36 M
	9 M
	0.936
	0.929
	0.933
	0.938
	0.988

	
	Cent. Direct
	0.36 M
	9 M
	0.477
	0.465
	0.474
	0.483
	0.503



[image: ]
[bookmark: _Ref134991228]Figure 15: Positioning accuracy vs UE timing error STD (ns), when the model input is CIR.

[image: ]
Figure 16: Positioning accuracy vs UE timing error STD (ns), when the model input is PDP.

[image: ]
[bookmark: _Ref134991232]Figure 17: Positioning accuracy vs UE timing error STD (ns), when the model input is DP.

[bookmark: _Toc134999935]Impact of network synchronization errors
In this section, we investigate and analyze the performance of the ML models against network synchronization errors. We first train Model I with 40,000 samples without network synchronization errors. We further train the same model with STD = 25 ns and STD = 50 ns network synchronization errors. Then, we test these models against test dataset 1f with random network synchronization errors at various STD values (X ns). As agreed in a previous RAN1 meeting, the random network synchronization errors are generated according to a truncated Gaussian distribution with a (pre-truncation) STD (aka, ) and truncation at ±2*STD (aka,  ). 
We conducted this investigation using the smallest models. Our investigation results for the centralized models are summarized in Table 44, Table 45 and Table 46 for the CIR, PDP or DP inputs, respectively. The results are also plotted in Figure 18 - Figure 20.
We can observe that:
· For ML positioning models trained without any network synchronization errors, positioning accuracy can still maintain a high level for network synchronization STD up to 10 ns. For larger network synchronization errors, the ML models’ positioning accuracy can degrade substantially.
· However, if the ML positioning models are trained with 25 or 50 ns network synchronization errors, the models can maintain high level of positioning accuracy for network synchronization errors up to 50 ns.
· In general, we find centralized models can overcome uncorrelated network synchronization errors. In fact, network synchronization errors can be used as a type of data augmentation during training to enhanced trained model performance. This is because the models can learn to correct these uncorrelated synchronization errors from observing multiple inputs from the TRPs simultaneously.

[bookmark: _Toc135002569]Centralized ML positioning models can overcome uncorrelated network synchronization errors. In fact, network synchronization errors can be used as a type of data augmentation during training to enhanced trained model performance.
- Models trained without any network synchronization error can achieve high positioning accuracy for network synchronization error STD up to 10 ns.
- Models trained with network synchronization error STD of 25 ns can achieve high positioning accuracy for network synchronization error STD up to at least 50 ns.

[bookmark: _Ref131499703][bookmark: _Hlk131164680]Table 44 90%tile 2D positioning accuracy using CIR inputs for different network synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different network synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different network synchronization STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	CIR trained with 0 ns
	Cent. Assist.
	0.73 M
	32 M
	0.423
	0.518
	0.77
	2.553
	13.514

	
	Cent. Direct
	0.73 M
	32 M
	0.432
	0.504
	0.701
	2.394
	12.787

	CIR trained with 25 ns
	Cent. Assist.
	0.73 M
	32 M
	0.371
	0.372
	0.376
	0.444
	0.855

	
	Cent. Direct
	0.73 M
	32 M
	0.373
	0.376
	0.376
	0.433
	0.841

	CIR trained with 50 ns
	Cent. Assist.
	0.73 M
	32 M
	0.410
	0.412
	0.412
	0.436
	0.522

	
	Cent. Direct
	0.73 M
	32 M
	0.419
	0.415
	0.414
	0.439
	0.528



[bookmark: _Ref131499706]Table 45 90%tile 2D positioning accuracy using PDP inputs for different network synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different network synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different network synchronization STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	PDP trained with 0 ns
	Cent. Assist.
	0.36 M
	9 M
	0.589
	0.67
	0.876
	2.942
	16.501

	
	Cent. Direct
	0.36 M
	9 M
	0.571
	0.666
	0.900
	3.158
	16.318

	PDP trained with 25 ns
	Cent. Assist.
	0.36 M
	9 M
	0.527
	0.525
	0.536
	0.633
	1.076

	
	Cent. Direct
	0.36 M
	9 M
	0.510
	0.516
	0.529
	0.604
	1.068

	PDP trained with 50 ns
	Cent. Assist.
	0.36 M
	9 M
	0.541
	0.548
	0.548
	0.574
	0.675

	
	Cent. Direct
	0.36 M
	9 M
	0.532
	0.532
	0.541
	0.564
	0.675



[bookmark: _Ref131499709]Table 46 90%tile 2D positioning accuracy using DP inputs for different network synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different network synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different network synchronization STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	DP
trained with 0 ns
	Cent. Assist.
	0.36 M
	9 M
	0.740
	0.763
	0.860
	1.622
	10.301

	
	Cent. Direct
	0.36 M
	9 M
	0.744
	0.774
	0.872
	1.620
	9.954

	DP
trained with 25 ns
	Cent. Assist.
	0.36 M
	9 M
	0.653
	0.667
	0.692
	0.833
	1.637

	
	Cent. Direct
	0.36 M
	9 M
	0.658
	0.664
	0.679
	0.834
	1.659

	DP
trained with 50 ns
	Cent. Assist.
	0.36 M
	9 M
	0.778
	0.782
	0.796
	0.851
	1.023

	
	Cent. Direct
	0.36 M
	9 M
	0.765
	0.779
	0.769
	0.840
	1.046


[image: ]
[bookmark: _Ref134991272]Figure 18: Positioning accuracy vs network synchronization error STD (ns), when the model input is CIR.

[image: ]
Figure 19: Positioning accuracy vs network synchronization error STD (ns), when the model input is PDP.
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[bookmark: _Ref134991279]Figure 20: Positioning accuracy vs network synchronization error STD (ns), when the model input is DP.


[bookmark: _Ref117263196][bookmark: _Toc118718120][bookmark: _Toc134999936]Description of datasets and performance of conventional positioning solutions
We assume all TRPs measure a UE SRS, with  and  spanning a 100 MHz BWP with a carrier frequency of 3.5 GHz. The LoS and NLoS path losses for InF-DH are given by [TR 38.901]:

· The max and min 3D distances between a UE and a BS in the InF scenario are 121 and 6.5 m, respectively. The corresponding max and min path losses are hence 90.1 and 59.7 dB, respectively, before considering shadowing.
· With 23 dBm UE power (the agreed maximum UE TX power, see Table 6-1 of TR 38.857), the range of received powers at a TRP is -67.1 to -36.7 dBm before considering shadowing and fast fading. 
· For a 100 MHz carrier, the thermal noise floor is -89 dBm (assuming NF=5 dB). Hence, the SNR before considering shadowing and fast fading is between 21.9 and 52.3 dB.
· For UE transmit power at 13 or 3 dBm, the corresponding SNRs are reduced by 10 and 20 dB, respectively.
· In summary, the SNRs before considering shadowing and fast fading are
· Between 21.9 and 52.3 dB for 23 dBm UE power.
· Between 6.9 and 37.3 dB for 8 dBm UE power.
· Between -8.1 and 22.3 dB for -7 dBm UE power.
Each TRP is equipped with a (M, N, P, Mg, Ng) = (1, 1, 2, 1, 1) antenna. Our study indicates that for the small hall with 18 TRPs, this gNB antenna array is adequate for UE positioning. Note: The array size is smaller than the agreed ((M, N, P, Mg, Ng) = (4, 4, 2, 1, 1)). The smaller antenna array reduces the size of input to AI/ML model to 1/16, allowing for a lower complexity AI/ML solution (including model training, inference, monitoring, and update).
· For the FR1 scenario with carrier frequency of 3.5 GHz, the received signals are sampled at  MHz. A sampling tap is hence 8.14 ns or equivalently 2.44 m at speed of light.
· The received signals are correlated with the SRS sequence to obtain raw estimates of the frequency domain channel responses. No further filtering is performed.
· The collated frequency responses are converted to the time domain channel impulses using 4096 FFT and only a window of 256 consecutive samples is retained. The input to each AI/ML model is, therefore, a
· NTRP × Nport × Nt =3×2×256 complex array in Section 2.1, and a 
· NTRP × Nport × Nt =18×2×256 complex array in Section 2.2 and Section 2.3.
Other than the parameters explicitly described above, we follow the agreed simulation assumptions for FR1 and use the baseline assumptions wherever applicable (e.g., UE antenna height = 1.5 m, gNB antenna height = 8 m).
Note: For FR1 scenario with a carrier frequency of 3.5 GHz, different environment clutter settings of the InF-DH deployment scenario have very different LoS probabilities as tabulated in Table 47.
[bookmark: _Ref110581322]Table 47. LoS probabilities of different InF-DH environment settings.
	Environment clutter setting
	LoS Probability

	{40%, 2m, 2m}
	0.449

	{50%, 2m, 2m}
	0.352

	{60%, 2m, 2m}
	0.268

	{40%, 6m, 2m}
	0.014

	{50%, 6m, 2m}
	0.025

	[bookmark: _Hlk117081197]{60%, 6m, 2m}
	0.008



To enable the AI/ML experiments in this paper, we generated the following datasets.
· Datasets 1a, 1b, 1c, 1d, 1e, 1f with respective clutter parameters {40%, 2m, 2m}, {50%, 2m, 2m}, {60%, 2m, 2m}, {40%, 6m, 2m}, {50%, 6m, 2m}, and {60%, 6m, 2m}. Each one of these datasets is comprised of two disjoint parts:
· Train sub-dataset: This part contains 96,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs, and it is used for training and validation.
· Test sub-dataset: This part contains 4,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs. This part is not used for training/validation – it is used only for final test evaluation.
· Datasets 2a, 2b, 2c, 2d, 2e, 2f with respective clutter parameters of {40%, 2m, 2m}, {50%, 2m, 2m}, {60%, 2m, 2m}, {40%, 6m, 2m}, {50%, 6m, 2m}, and {60%, 6m, 2m}.
· These datasets each contains 4,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs. 
· These datasets are never used for training/validation -- they are only used for final test evaluation.
· These datasets are generated using different random number generator seeds (w.r.t. Datasets 1x above) for UE location, spatial correlation maps, and channel models. Dataset 2a, 2b, 2c 2d, 2e, 2f can be understood as test datasets with different UE locations, clutter layout, and clutter parameters to Dataset 1x. The purpose of these datasets is to evaluate the generalizability of the ML models.
In Figure 21 (a) and Figure 21 (c), we compare the excess delays of NLoS links to BS#0 (with 2D coordinate [-50, -20] with respect to the center of InF hall) in the first and the second datasets, respectively. Similarly, in Figure 21 (b) and Figure 21 (d), we compare the excess delays of NLoS links to BS#10 (with 2D coordinate [10, 0] with respect to the center of InF hall) in the first and the second datasets, respectively. It can be observed that the two test datasets contain very different propagation and spatial conditions. Here the small hall (L=120m x W=60m) is assumed, and the center of the hall is assigned coordinate [0, 0].
[image: ][image: ]
(a) to BS#0 in the 1st dataset					(b) to BS#10 in the 1st dataset
[image: ][image: ]
(c) to BS#0 in the 2nd dataset					(d) to BS#10 in the 2nd dataset
[bookmark: _Ref110513736]Figure 21 Excess delays to BS#0 or BS#10 in the first test dataset or the second test dataset (‘jet’ color map is shown: darker blue points have smaller excess delays than lighter yellow/red points).
[bookmark: _Toc118718121][bookmark: _Toc134999937] Performance of conventional positioning solutions
Given the LoS probabilities for dataset 2a, 2b, 2c, 2d with clutter parameters of {40%, 2m, 2m}, {50%, 2m, 2m}, {60%, 2m, 2m}, and {60%, 6m, 2m} shown in Table 47, a dummy LoS classifier can achieve an accuracy of . Examining the CDF of the received powers for the LoS and NLoS links, one can devise a baseline LoS classification solution by comparing the received power to a threshold. Using such a baseline classification algorithm, a LoS classification accuracy of around 70% can be achieved for the first three datasets and around 90% for the last test dataset. Applying comparison of the powers of the detected first tap against others, the LoS classification accuracy can be further improved for the first three test datasets. The accuracy results for these LoS classification baselines are provided in Table 48.
[bookmark: _Ref114820293]Table 48 LoS classification accuracy baselines.
	Dataset
	Dummy classifier
	RX power only classifier
	Tap power comparison

	{40%, 2m, 2m}
	0.551
	0.702
	0.809

	{50%, 2m, 2m}
	0.648
	0.717
	0.787

	{60%, 2m, 2m}
	0.732
	0.733
	0.767

	{60%, 6m, 2m}
	0.992
	0.916
	0.703



The positioning error distribution of the conventional solution is shown in Figure 22. It can be observed that the positioning errors of 50% UEs are no more than 0.13 m. However, the conventional solution sometimes delivers positions that may be very off. For instance, at 90%tile, the positioning error is 9.595 m. The UE positioning errors for other agreed reporting percentiles are listed in Table 49. The results in Figure 22 and Table 49 are the baseline performance for the evaluation, which are generated by using legacy methods to produce input (LoS classification and ToA) for UL-TDOA.
[bookmark: _Ref114819624]Table 49 Baseline results for comparison. UE positioning errors obtained using conventional non-ML solutions to produce input (LoS classification and ToA) for UL-TDOA.
	CDF Percentile
	UE horizontal position error [m]

	
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.131
	2.855
	5.643
	6.175

	67
	1.783
	5.646
	7.650
	8.432

	80
	4.814
	9.254
	10.668
	11.315

	90
	9.595
	16.775
	17.541
	15.849



[image: ]
[bookmark: _Ref114834045]Figure 22 Baseline results for comparison. Positioning error distributions using conventional non-ML solutions
[bookmark: _Toc134999938]Evaluation results and discussion for AI/ML models
[bookmark: _Ref131138532][bookmark: _Toc134999939]Semi-supervised learning
For datasets containing both labeled and unlabeled samples, semi-supervised learning [6] can be used to obtain improved performance. An approach based on data augmentation is illustrated in Figure 22.
· For labeled samples in the mini-batch, regular distance measures between the ground truth label  and the model estimate  can be used the labeled sample losses.
· For unlabeled samples in the mini-batch, data augmentation is applied to obtain different versions of the same unlabeled sample. These versions are fed into the model to obtain different estimates. Regular distance measures between these different estimates can be used as the model consistency losses of the unlabeled samples.
· The labeled sample loss and the unlabeled sample loss are combined, possibly with a relative weighting, to train the model.
It can be observed from the above description that semi-supervised learning training requires more computational complexity than supervised learning training.

[image: ]
Figure 23 Semi-supervised training based on data augmentation.
In the following, we consider the performance of this semi-supervised training using the PDP input for the centralized AI/ML assisted positioning approach and AI/ML direct positioning approach.

[bookmark: _Toc134999940]Semi-supervised learning for centralized AI/ML assisted positioning with PDP inputs
Model architecture

Table 50 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain PDP, obtained from SRS estimation, 18x1x256 real array (PDP)

	ML model output 
	18 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	1.4 M real parameters

	Computation complexity for model inference: number of FLOPs 
	34 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



Performance with 97.5% unlabeled training datasets
[image: ][image: ]
Figure 24 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with 97.5% unlabeled training dataset.

Table 51 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 97.5% unlabeled data.
	CDF Percentile
	Direct path ToA errors [m] 

	
	1,000 labeled + 
39,000 unlabeled
	2,000 labeled + 
78,000 unlabeled

	50
	0.762
	0.480

	67
	1.141
	0.720

	80
	1.572
	0.990

	90
	2.150
	1.359



Table 52 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 97.5% unlabeled data.
	CDF Percentile
	UE 2D position errors [m] 

	
	1,000 labeled + 
39,000 unlabeled
	2,000 labeled + 
78,000 unlabeled

	50
	1.331
	0.853

	67
	1.782
	1.148

	80
	2.350
	1.451

	90
	2.985
	1.898



Performance with 95% unlabeled training datasets
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Figure 25 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with 95% unlabeled training dataset.

Table 53 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 95% unlabeled data.
	CDF Percentile
	Direct path ToA errors [m] 

	
	1,000 labeled + 
19,000 unlabeled
	2,000 labeled + 
38,000 unlabeled
	4,000 labeled + 
76,000 unlabeled

	50
	0.732
	0.472
	0.318

	67
	1.126
	0.714
	0.475

	80
	1.606
	1.003
	0.648

	90
	2.253
	1.392
	0.875



Table 54 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 95% unlabeled data.
	CDF Percentile
	UE 2D position errors [m] 

	
	1,000 labeled + 
19,000 unlabeled
	2,000 labeled + 
38,000 unlabeled
	4,000 labeled + 
76,000 unlabeled

	50
	1.320
	0.851
	0.565

	67
	1.834
	1.173
	0.753

	80
	2.376
	1.532
	0.948

	90
	3.081
	1.975
	1.188



Performance with 90% unlabeled training datasets

[image: ][image: ]
Figure 26 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with 90% unlabeled training dataset.

[bookmark: _Hlk134191580]Table 55 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 90% unlabeled data.
	CDF Percentile
	Direct path ToA errors [m] 

	
	1,000 labeled + 
9,000 unlabeled
	2,000 labeled + 
18,000 unlabeled
	4,000 labeled + 
36,000 unlabeled
	8,000 labeled + 
72,000 unlabeled

	50
	0.834
	0.527
	0.320
	0.224

	67
	1.246
	0.786
	0.481
	0.331

	80
	1.717
	1.090
	0.661
	0.449

	90
	2.346
	1.479
	0.915
	0.598



Table 56 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 90% unlabeled data.
	CDF Percentile
	UE 2D position errors [m] 

	
	1,000 labeled + 
9,000 unlabeled
	2,000 labeled + 
18,000 unlabeled
	4,000 labeled + 
36,000 unlabeled
	8,000 labeled + 
72,000 unlabeled

	50
	1.482
	0.936
	0.570
	0.403

	67
	1.981
	1.273
	0.748
	0.523

	80
	2.552
	1.602
	0.975
	0.651

	90
	3.212
	2.040
	1.247
	0.823



Performance with 80% unlabeled training datasets

[image: ][image: ]
Figure 27 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with 80% unlabeled training dataset.

Table 57 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 80% unlabeled data.
	CDF Percentile
	Direct path ToA errors [m] 

	
	4,000 labeled + 
16,000 unlabeled
	8,000 labeled + 
32,000 unlabeled
	16,000 labeled + 
64,000 unlabeled

	50
	0.332
	0.240
	0.172

	67
	0.494
	0.354
	0.251

	80
	0.674
	0.477
	0.341

	90
	0.923
	0.635
	0.455



Table 58 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 80% unlabeled data.
	CDF Percentile
	UE 2D position errors [m] 

	
	4,000 labeled + 
16,000 unlabeled
	8,000 labeled + 
32,000 unlabeled
	16,000 labeled + 
64,000 unlabeled

	50
	0.601
	0.417
	0.301

	67
	0.785
	0.544
	0.391

	80
	1.003
	0.685
	0.486

	90
	1.294
	0.872
	0.598



[bookmark: _Toc134999941]Semi-supervised learning for AI/ML direct positioning with PDP inputs
Model architecture

Table 59 Key features of the ML models for direct positioning 
	ML model input 
	Time domain PDP, obtained from SRS estimation, 18x1x256 real array (PDP)

	ML model output 
	2D UE position estimate

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	1.4 M real parameters

	Computation complexity for model inference: number of FLOPs 
	34 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node



Performance with 97.5% unlabeled training datasets
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Figure 28 UE 2D positioning error distributions for direct positioning model for the {60%, 6m, 2m} test dataset with 97.5% unlabeled training dataset.

Table 60 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 97.5% unlabeled data.
	CDF Percentile
	UE 2D position errors [m] 

	
	1,000 labeled + 
39,000 unlabeled
	2,000 labeled + 
78,000 unlabeled

	50
	1.535
	0.884

	67
	2.030
	1.207

	80
	2.566
	1.568

	90
	3.206
	2.038



Performance with 95% unlabeled training datasets

[image: ]
Figure 29 UE 2D positioning error distributions for direct positioning model for the {60%, 6m, 2m} test dataset with 95% unlabeled training dataset.

Table 61 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 95% unlabeled data.
	CDF Percentile
	UE 2D position errors [m] 

	
	1,000 labeled + 
19,000 unlabeled
	2,000 labeled + 
38,000 unlabeled
	4,000 labeled + 
76,000 unlabeled

	50
	1.504
	0.952
	0.596

	67
	2.013
	1.267
	0.806

	80
	2.580
	1.632
	1.020

	90
	3.261
	2.059
	1.309



Performance with 90% unlabeled training datasets

[image: ]
Figure 30 UE 2D positioning error distributions for direct positioning model for the {60%, 6m, 2m} test dataset with 90% unlabeled training dataset.

Table 62 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 90% unlabeled data.
	CDF Percentile
	UE 2D position errors [m] 

	
	1,000 labeled + 
9,000 unlabeled
	2,000 labeled + 
18,000 unlabeled
	4,000 labeled + 
36,000 unlabeled
	8,000 labeled + 
72,000 unlabeled

	50
	1.535
	0.986
	0.614
	0.417

	67
	2.082
	1.344
	0.819
	0.547

	80
	2.603
	1.724
	1.035
	0.679

	90
	3.324
	2.164
	1.348
	0.863



Performance with 80% unlabeled training datasets

[image: ]
Figure 31 UE 2D positioning error distributions for direct positioning model for the {60%, 6m, 2m} test dataset with 80% unlabeled training dataset.

Table 63 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and 80% unlabeled data.
	CDF Percentile
	UE 2D position errors [m] 

	
	4,000 labeled + 
16,000 unlabeled
	8,000 labeled + 
32,000 unlabeled
	16,000 labeled + 
64,000 unlabeled

	50
	0.624
	0.436
	0.306

	67
	0.839
	0.569
	0.406

	80
	1.054
	0.717
	0.506

	90
	1.357
	0.906
	0.626



[bookmark: _Ref131139406]

[bookmark: _Ref134803312][bookmark: _Toc134999942]Update on AI/ML-assisted positioning – Centralized
In this section, we estimate the unobserved direct path ToA using a centralized ML model with UL SRS channel impulse responses collected from all TRPs. The input to the AI/ML model is a three-dimensional complex-valued tensor  when using CIR, or  when using PDP or DP. Since the ML model inference or training requires suitable specific hardware, the model is expected to be performed in a centralized unit with the needed hardware. When the centralized unit is a gNB which is connected to many TRPs (up to 65535 according to TS 38.455), then this deployment belongs to Case 3a (NG-RAN node assisted positioning with gNB-side model). The target outputs of the model are the 18 unobserved direct path ToAs, . The estimated unobserved direct path ToAs are forwarded to the LMF to obtain UE positions using conventional positioning algorithms.
[image: ]
Figure 32 AI/ML assisted positioning where a gNB acts as the centralized node and process all UL CIRs forwarded from all TRPs to product estimates for unobserved direct path ToAs, which are further processed with conventional positioning algorithms to position of the target UE.

[bookmark: _Toc134999943]ML model architectures
For complex-valued inputs, we consider a model architecture using the complex activation functions and complex convolutional and MaxAbsPooling modules described in [1]. To further reduce model and computational complexity, low-cost convolution solutions have been adopted. The model consists of 34 layers. 
For real-valued inputs, we keep the same model architecture except swapping out components designed specifically for complex values with those for real values.
Specific details of the model and computational complexity values of the three models are summarized in the following tables. For the baseline, the models are trained using {60%, 6m, 2m} train dataset.
CIR
Table 64 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain CIR, obtained from SRS estimation, 18x2x256 complex array 

	ML model output 
	18 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.73 M real parameters


	Computation complexity for model inference: number of FLOPs 
	Model I: 32 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA


PDP
Table 65 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain PDP, obtained from SRS estimation, 18x1x256 real array 

	ML model output 
	18 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.36 M real parameters


	Computation complexity for model inference: number of FLOPs 
	Model I: 9 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



DP
Table 66 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain delay profile (DP), obtained from SRS estimation, 18x1x256 real array, consisting of zeros or ones

	ML model output 
	18 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.36 M real parameters


	Computation complexity for model inference: number of FLOPs 
	Model I: 9 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



[bookmark: _Toc134999944]ML model performance with different time domain truncation
In this section, we evaluate the effect of using fewer time-domain taps (Nt) as input to the centralized direct path ToA estimation ML models. Note that, in this experiment Nt = Nt’ and no taps are forced to be zero. Model I is trained on 40,000 samples from the {60%, 6m, 2m} dataset (dataset 1f), with 23 dBm UE transmit power.
CIR
Using CIR data, the direct path ToA estimation error distribution and the UE 2D positioning errors with different time-domain taps are provided in Figure 33. It can be observed that 
· Using fewer time-domain taps reduces performance but sub-meter accuracy, for both direct path ToA estimation and UE 2D positioning, can be achieved for as few as 64 taps.
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[bookmark: _Ref131513262]Figure 33 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain truncation sizes for Model I (trained with 40,000 samples).

Table 67 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.

	CDF Percentile
	Direct path ToA errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps

	50
	0.102
	0.126
	0.188
	0.400

	67
	0.150
	0.184
	0.275
	0.597

	80
	0.201
	0.248
	0.369
	0.817

	90
	0.267
	0.329
	0.489
	1.125



Table 68 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	UE 2D positioning errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps

	50
	0.184
	0.227
	0.335
	0.729

	67
	0.238
	0.297
	0.437
	0.961

	80
	0.295
	0.365
	0.553
	1.228

	90
	0.371
	0.463
	0.704
	1.627




PDP
Using PDP data, the direct path ToA estimation error distribution and the UE 2D positioning errors with different time-domain taps are provided in Figure 34. It can be observed that: 
· Using fewer time-domain taps reduces performance but sub-meter accuracy, for both direct path ToA estimation and UE 2D positioning, can be achieved for as few as 64 taps.
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[bookmark: _Ref131513522]Figure 34 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain truncation sizes for Model I (trained with 40,000 samples).

Table 69 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	Direct path ToA errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps

	50
	0.149
	0.166
	0.202
	0.338

	67
	0.216
	0.241
	0.296
	0.499

	80
	0.288
	0.323
	0.392
	0.671

	90
	0.377
	0.421
	0.517
	0.892



Table 70 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	UE 2D positioning errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps

	50
	0.270
	0.302
	0.367
	0.606

	67
	0.344
	0.386
	0.475
	0.796

	80
	0.424
	0.475
	0.583
	0.982

	90
	0.520
	0.596
	0.713
	1.261



[bookmark: _Ref131421888]DP
Using DP data, the direct path ToA estimation error distribution and the UE 2D positioning errors with different time-domain taps are provided in 
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Figure 35. It can be observed that: 
· Using 128 time-domain taps instead of 256 taps reduces performance negligibly, where the 90%-tile of direct path ToA estimation and UE 2D positioning degrade less than 3 cm.
· Using as few as 64 time-domain taps reduces performance considerably.
[bookmark: _Ref131513818]
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Figure 35 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain truncation sizes for Model I (trained with 40,000 samples).

Table 71 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	256 taps
	128 taps
	64 taps

	50
	0.184
	0.185
	0.462

	67
	0.269
	0.273
	0.693

	80
	0.359
	0.368
	0.956

	90
	0.469
	0.487
	1.358



Table 72 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	256 taps
	128 taps
	64 taps

	50
	0.337
	0.338
	0.831

	67
	0.429
	0.441
	1.112

	80
	0.521
	0.546
	1.444

	90
	0.653
	0.679
	1.970




[bookmark: _Ref134444591][bookmark: _Toc134999945]ML model performance with reduced number of TRPs
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Figure 36 ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different input types and reduced number of TRPs for Model I (trained with 40,000 samples).
CIR
Table 73 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain CIR, obtained from SRS estimation, 9x2x256 complex array 

	ML model output 
	9 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.24 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 10 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



Table 74 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain CIR, obtained from SRS estimation, 6x2x256 complex array 

	ML model output 
	6 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.11 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 5 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



For centralized AI/ML-assisted positioning using CIR data, the direct path ToA estimation error distribution and the UE 2D positioning errors with reduced number of TRPs are provided in Figure 37. It can be observed that: 
· Using fewer number of TRPs reduces performance. However, even with one third of the TRPs, sub-meter accuracy for direct path ToA estimation and about 1m accuracy for UE 2D positioning, can be achieved.

[image: ][image: ]
[bookmark: _Ref131514591]Figure 37 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with reduced number of TRPs for Model I (trained with 40,000 samples).

Table 75 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and reduced number of TRPs.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
trained with 40,000 samples with reduced number of TRPs

	
	NTRP = 18
	NTRP = 9
	NTRP = 6

	50
	0.103
	0.175
	0.284

	67
	0.15
	0.256
	0.419

	80
	0.201
	0.342
	0.563

	90
	0.266
	0.453
	0.750



Table 76 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and reduced number of TRPs.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with reduced number of TRPs

	
	NTRP = 18
	NTRP = 9
	NTRP = 6

	50
	0.184
	0.318
	0.513

	67
	0.237
	0.411
	0.667

	80
	0.298
	0.503
	0.826

	90
	0.369
	0.629
	1.039



PDP
Table 77 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain PDP, obtained from SRS estimation, 9x1x256 real array 

	ML model output 
	9 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.12 M real parameters


	Computation complexity for model inference: number of FLOPs 
	Model I: 3 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



Table 78 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain PDP, obtained from SRS estimation, 6x1x256 real array 

	ML model output 
	6 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.05 M real parameters


	Computation complexity for model inference: number of FLOPs 
	Model I: 1 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA




For centralized AI/ML-assisted positioning using PDP data, the direct path ToA estimation error distribution and the UE 2D positioning errors with reduced number of TRPs are provided in Figure 38.
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[bookmark: _Ref131514741]Figure 38 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with reduced number of TRPs for Model I (trained with 40,000 samples).

Table 79 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and reduced number of TRPs.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
trained with 40,000 samples with reduced number of TRPs

	
	NTRP = 18
	NTRP = 9
	NTRP = 6

	50
	0.149
	0.223
	0.334

	67
	0.217
	0.327
	0.486

	80
	0.288
	0.435
	0.658

	90
	0.376
	0.571
	0.877



Table 80 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and reduced number of TRPs.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with reduced number of TRPs

	
	NTRP = 18
	NTRP = 9
	NTRP = 6

	50
	0.270
	0.410
	0.601

	67
	0.342
	0.526
	0.780

	80
	0.426
	0.650
	0.980

	90
	0.526
	0.801
	1.250



DP
Table 81 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain delay profile (DP), obtained from SRS estimation, 9x1x256 real array, consisting of zeros or ones

	ML model output 
	9 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.12 M real parameters


	Computation complexity for model inference: number of FLOPs 
	Model I: 3 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



Table 82 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain delay profile (DP), obtained from SRS estimation, 6x1x256 real array, consisting of zeros or ones

	ML model output 
	6 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.05 M real parameters


	Computation complexity for model inference: number of FLOPs 
	Model I: 1 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



For centralized AI/ML-assisted positioning using PD data, the direct path ToA estimation error distribution and the UE 2D positioning errors with reduced number of TRPs are provided in Figure 39. 
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[bookmark: _Ref131514759]Figure 39 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with reduced number of TRPs for Model I (trained with 40,000 samples).

Table 83 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and reduced number of TRPs.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
trained with 40,000 samples with reduced number of TRPs

	
	NTRP = 18
	NTRP = 9
	NTRP = 6

	50
	0.189
	0.314
	0.509

	67
	0.276
	0.460
	0.743

	80
	0.365
	0.623
	1.011

	90
	0.477
	0.837
	1.378



Table 84 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and reduced number of TRPs.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with reduced number of TRPs

	
	NTRP = 18
	NTRP = 9
	NTRP = 6

	50
	0.341
	0.573
	0.917

	67
	0.436
	0.742
	1.215

	80
	0.535
	0.944
	1.539

	90
	0.667
	1.202
	1.987



[bookmark: _Toc134999946]Models trained with mixed (different drops) datasets
To address the performance losses of applying a model trained with one {60%, 6m, 2m} environment dataset (dataset 1f) to different environments with the same clutter parameter but different spatial and propagation seeds, i.e., different drops, one approach is to train the model with a mix of realizations from more than one drop of environmental datasets. In this section, we investigate the performance of Model I when trained with an even mix of the two drops of {60%, 6m, 2m} datasets, e.g., datasets 1f and 1a. We then test the trained models on 3rd drop test datasets. A UE transmit power of 23 dBm is used.
It can be observed that for different input types, The models trained with an even mix of the two drops of {60%, 6m, 2m} datasets do not generalize well to the third drop. 
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Figure 40 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the model trained with a combination of data from two drops of {60%, 6m, 2m}, and tested with test dataset with different drops.

CIR
Table 85 Direct path ToA estimation errors from the model trained with a combination of data from two drops of {60%, 6m, 2m}, and tested with test dataset with different drops.
	[bookmark: _Hlk133844323]CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.102
	4.027
	3.651

	67
	0.150
	5.855
	5.363

	80
	0.201
	7.838
	7.103

	90
	0.267
	10.259
	9.280



	CDF Percentile
	Direct path ToA errors [m] - Model I trained with 
40,000 samples from drop 1 and 40,000 samples from drop 2 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.125
	0.124
	3.506

	67
	0.182
	0.181
	5.118

	80
	0.243
	0.242
	6.817

	90
	0.317
	0.317
	9.010



Table 86 UE 2D positioning errors for the model trained with a combination of data from two drops of {60%, 6m, 2m}, and tested with test dataset with different drops.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.184
	8.598
	7.564

	67
	0.238
	11.039
	9.829

	80
	0.295
	13.702
	12.369

	90
	0.371
	17.332
	15.103



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from drop 1 and 40,000 samples from drop 2 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.224
	0.224
	7.403

	67
	0.289
	0.290
	9.878

	80
	0.350
	0.353
	12.225

	90
	0.435
	0.446
	14.902




PDP
Table 87 Direct path ToA estimation errors from the model trained with a combination of data from two drops of {60%, 6m, 2m}, and tested with test dataset with different drops.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.149
	4.337
	4.100

	67
	0.217
	6.331
	5.971

	80
	0.288
	8.366
	7.886

	90
	0.377
	10.851
	10.365



	CDF Percentile
	Direct path ToA errors [m] - Model I trained with 
40,000 samples from drop 1 and 40,000 samples from drop 2 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.175
	0.180
	3.394

	67
	0.255
	0.262
	4.937

	80
	0.340
	0.348
	6.532

	90
	0.449
	0.457
	8.498



Table 88 UE 2D positioning errors for the model trained with a combination of data from two drops of {60%, 6m, 2m}, and tested with test dataset with different drops.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.271
	9.184
	8.662

	67
	0.344
	11.733
	11.387

	80
	0.426
	14.403
	14.162

	90
	0.524
	17.860
	17.329



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from drop 1 and 40,000 samples from drop 2 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.316
	0.324
	7.192

	67
	0.413
	0.417
	9.245

	80
	0.508
	0.508
	11.404

	90
	0.626
	0.629
	14.228



DP
Table 89 Direct path ToA estimation errors from the model trained with a combination of data from two drops of {60%, 6m, 2m}, and tested with test dataset with different drops.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.184
	4.901
	4.420

	67
	0.269
	7.187
	6.428

	80
	0.359
	9.561
	8.500

	90
	0.469
	12.669
	11.122



	CDF Percentile
	Direct path ToA errors [m] - Model I trained with 
40,000 samples from drop 1 and 40,000 samples from drop 2 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.230
	0.234
	4.165

	67
	0.333
	0.341
	6.034

	80
	0.443
	0.456
	8.061

	90
	0.586
	0.593
	10.582



Table 90 UE 2D positioning errors for the model trained with a combination of data from two drops of {60%, 6m, 2m}, and tested with test dataset with different drops.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.337
	10.217
	9.256

	67
	0.429
	13.410
	11.851

	80
	0.521
	17.048
	14.870

	90
	0.653
	21.488
	18.729



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from drop 1 and 40,000 samples from drop 2 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.413
	0.419
	8.812

	67
	0.530
	0.542
	11.481

	80
	0.654
	0.665
	14.222

	90
	0.826
	0.811
	17.980



[bookmark: _Toc134999947]Performance of ML models under different UE timing errors
[bookmark: _Hlk133832687]In this section, we investigate and analyze the performance of the ML models against UE timing errors.
· First, we use Model I trained with 40,000 samples without UE timing errors and trained with UE timing errors with standard deviation (STD) 25 ns and 50 ns.
· We also use Model I trained with 40,000 samples without NW sync. errors and trained with NW sync. errors with standard deviation (STD) 25 ns and 50 ns.
Then, we test the models against test dataset 1f with random UE timing errors at various STD values. As agreed in a previous RAN1 meeting, the random UE timing errors are generated according to a truncated Gaussian distribution with a (pre-truncation) STD (aka, ) and truncation at ±2×STD (aka,  ). It can be observed that:
· In all evaluated models, the UE position estimation accuracy degrades gradually as the UE timing error increases. However, the decrease is smaller when training with higher UE timing error. 
· The UE position estimation errors for the model trained without UE timing errors is more susceptible to UE timing error, where the 90%-tile UE position estimation error goes from below 0.5 m to over 20 m (for CIR and PDP data) m when testing on data with increasing UE timing error from STD = 0 ns to STD = 50 ns.
· However, the UE position estimation error for the model trained with UE timing errors of STD = 50 ns is more robust to UE timing error, where the 90%-tile UE position estimation error increases only slightly when increasing UE timing error from STD = 0 ns to STD = 50 ns.
· The model trained with UE timing errors of STD = 25 ns performs better than the one trained with UE timing errors of STD = 50 ns up to UE timing error of STD = 25 ns, while the latter shows advantage for UE timing errors of STD = 50 ns.

CIR
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Figure 41 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and with different UE timing error settings at training and different UE timing error settings at testing.
Table 91 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various UE timing errors and tested with various UE timing STD values (X ns).
	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with UE STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.118
	0.146
	0.201
	0.460
	1.664

	67
	0.172
	0.216
	0.308
	0.980
	4.192

	80
	0.230
	0.296
	0.449
	1.953
	8.078

	90
	0.304
	0.403
	0.699
	3.842
	13.262



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with UE STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.134
	0.135
	0.136
	0.139
	0.172

	67
	0.197
	0.196
	0.199
	0.205
	0.262

	80
	0.263
	0.265
	0.265
	0.273
	0.375

	90
	0.348
	0.349
	0.349
	0.362
	0.581



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with UE STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.143
	0.144
	0.142
	0.144
	0.152

	67
	0.209
	0.209
	0.208
	0.211
	0.222

	80
	0.280
	0.280
	0.280
	0.283
	0.297

	90
	0.368
	0.367
	0.369
	0.373
	0.395



Table 92 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various UE timing errors and tested with various UE timing STD values (X ns).
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.212
	0.254
	0.345
	0.796
	3.16

	67
	0.275
	0.341
	0.472
	1.581
	7.388

	80
	0.341
	0.432
	0.659
	3.172
	12.574

	90
	0.427
	0.553
	0.980
	5.553
	18.375



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.251
	0.251
	0.255
	0.265
	0.320

	67
	0.322
	0.330
	0.331
	0.338
	0.435

	80
	0.408
	0.410
	0.411
	0.419
	0.590

	90
	0.511
	0.517
	0.510
	0.537
	0.896



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.272
	0.274
	0.276
	0.274
	0.286

	67
	0.356
	0.354
	0.356
	0.359
	0.378

	80
	0.441
	0.442
	0.440
	0.446
	0.463

	90
	0.544
	0.549
	0.548
	0.557
	0.581



PDP
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Figure 42 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and with different UE timing error settings at training and different UE timing error settings at testing.

Table 93 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various UE timing errors and tested with various UE timing STD values (X ns).
	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with UE STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.164
	0.199
	0.273
	0.603
	2.147

	67
	0.239
	0.295
	0.422
	1.249
	5.139

	80
	0.320
	0.406
	0.620
	2.510
	9.211

	90
	0.421
	0.557
	0.950
	4.857
	14.429



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with UE STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.180
	0.180
	0.179
	0.189
	0.238

	67
	0.263
	0.264
	0.262
	0.277
	0.358

	80
	0.352
	0.353
	0.352
	0.371
	0.513

	90
	0.464
	0.463
	0.467
	0.488
	0.800



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with UE STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.196
	0.197
	0.193
	0.200
	0.203

	67
	0.287
	0.287
	0.282
	0.291
	0.300

	80
	0.384
	0.384
	0.380
	0.388
	0.405

	90
	0.503
	0.506
	0.504
	0.512
	0.534



Table 94 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various UE timing errors and tested with various UE timing STD values (X ns).
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.300
	0.350
	0.461
	1.004
	3.953

	67
	0.385
	0.462
	0.641
	1.975
	8.623

	80
	0.475
	0.589
	0.884
	3.821
	13.999

	90
	0.586
	0.747
	1.281
	6.76
	20.081



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.350
	0.345
	0.349
	0.362
	0.445

	67
	0.452
	0.455
	0.453
	0.473
	0.607

	80
	0.561
	0.566
	0.566
	0.586
	0.826

	90
	0.703
	0.711
	0.711
	0.748
	1.303



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.380
	0.380
	0.375
	0.383
	0.401

	67
	0.489
	0.492
	0.492
	0.496
	0.528

	80
	0.608
	0.610
	0.614
	0.611
	0.648

	90
	0.762
	0.768
	0.762
	0.776
	0.810



DP
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Figure 43 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and with different UE timing error settings at training and different UE timing error settings at testing.

Table 95 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various UE timing errors and tested with various UE timing STD values (X ns).
	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with UE STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.206
	0.223
	0.255
	0.430
	1.220

	67
	0.300
	0.325
	0.376
	0.745
	3.453

	80
	0.400
	0.436
	0.520
	1.375
	7.279

	90
	0.526
	0.576
	0.714
	2.814
	12.722



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with UE STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.224
	0.224
	0.221
	0.233
	0.281

	67
	0.329
	0.326
	0.328
	0.343
	0.428

	80
	0.439
	0.436
	0.443
	0.463
	0.612

	90
	0.580
	0.581
	0.589
	0.614
	0.929



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with UE STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.240
	0.243
	0.242
	0.242
	0.252

	67
	0.352
	0.353
	0.351
	0.354
	0.372

	80
	0.474
	0.473
	0.473
	0.476
	0.503

	90
	0.627
	0.625
	0.627
	0.635
	0.670



Table 96 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various UE timing errors and tested with various UE timing STD values (X ns).
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.372
	0.399
	0.449
	0.729
	2.238

	67
	0.481
	0.517
	0.593
	1.171
	6.318

	80
	0.592
	0.637
	0.751
	2.138
	11.776

	90
	0.732
	0.801
	0.981
	4.142
	19.213



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.434
	0.430
	0.434
	0.449
	0.536

	67
	0.555
	0.558
	0.562
	0.583
	0.739

	80
	0.688
	0.683
	0.707
	0.726
	0.981

	90
	0.861
	0.861
	0.869
	0.910
	1.425



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.464
	0.461
	0.467
	0.466
	0.494

	67
	0.608
	0.601
	0.607
	0.610
	0.637

	80
	0.758
	0.742
	0.744
	0.757
	0.795

	90
	0.936
	0.929
	0.933
	0.938
	0.988




[bookmark: _Toc134999948]Models trained with mixed (SNR values) datasets
The SNRs before considering shadowing and fast fading are
· Between 21.9 and 52.3 dB for 23 dBm UE power.
· Between 6.9 and 37.3 dB for 8 dBm UE power.
· Between -8.1 and 22.3 dB for -7 dBm UE power.
As explained in [7], the centralized model exhibits very high sensitivity to train/test SNR mismatch.
To address the performance losses due to SNR mismatch between train and test environments, one approach is to train the model with a mix of realizations from more than one SNR datasets. In this section, we investigate the performance of Model I when trained with an even mix of the 23 dBm and -7 dBm datasets. We then test the trained models on five different SNR environments. The clutter parameter of {60%, 6m, 2m} is used.

CIR
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Figure 44 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with different UE Power settings at training and with different UE power settings at testing.
Table 138 Direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with mixed dataset of 23, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.128
	0.128
	0.128
	0.130
	0.141

	67
	0.188
	0.188
	0.188
	0.190
	0.207

	80
	0.253
	0.253
	0.253
	0.257
	0.279

	90
	0.333
	0.333
	0.335
	0.337
	0.367



	CDF Percentile
	Model I trained with mixed dataset of 23, 8, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.117
	0.117
	0.118
	0.125
	0.140

	67
	0.172
	0.171
	0.173
	0.181
	0.205

	80
	0.230
	0.229
	0.231
	0.240
	0.274

	90
	0.301
	0.301
	0.304
	0.316
	0.360



Table 139 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with mixed dataset of 23, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.236
	0.235
	0.235
	0.238
	0.261

	67
	0.306
	0.306
	0.308
	0.308
	0.337

	80
	0.375
	0.374
	0.377
	0.383
	0.413

	90
	0.467
	0.464
	0.467
	0.475
	0.507




	CDF Percentile
	Model I trained with mixed dataset of 23, 8, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.216
	0.216
	0.218
	0.225
	0.258

	67
	0.278
	0.275
	0.278
	0.291
	0.333

	80
	0.337
	0.337
	0.341
	0.357
	0.408

	90
	0.419
	0.414
	0.421
	0.436
	0.505




PDP
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Figure 45 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with different UE Power settings at training and with different UE power settings at testing.
Table 140 Direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with mixed dataset of 23, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.150
	0.150
	0.150
	0.152
	0.157

	67
	0.218
	0.218
	0.219
	0.220
	0.228

	80
	0.292
	0.292
	0.292
	0.292
	0.303

	90
	0.384
	0.384
	0.385
	0.383
	0.398



	CDF Percentile
	Model I trained with mixed dataset of 23, 8, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.143
	0.143
	0.143
	0.145
	0.154

	67
	0.208
	0.208
	0.207
	0.211
	0.223

	80
	0.275
	0.275
	0.274
	0.280
	0.297

	90
	0.359
	0.359
	0.359
	0.366
	0.391



Table 141 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with mixed dataset of 23, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.270
	0.271
	0.273
	0.275
	0.283

	67
	0.350
	0.350
	0.349
	0.351
	0.361

	80
	0.432
	0.432
	0.432
	0.430
	0.450

	90
	0.538
	0.537
	0.543
	0.532
	0.562



	CDF Percentile
	Model I trained with mixed dataset of 23, 8, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.261
	0.260
	0.260
	0.266
	0.280

	67
	0.330
	0.329
	0.331
	0.339
	0.358

	80
	0.408
	0.406
	0.410
	0.416
	0.444

	90
	0.500
	0.503
	0.503
	0.507
	0.547



DP
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Figure 46 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with different UE Power settings at training and with different UE power settings at testing.
Table 97 Direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with mixed dataset of 23, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.176
	0.175
	0.176
	0.176
	0.182

	67
	0.257
	0.257
	0.257
	0.257
	0.269

	80
	0.344
	0.344
	0.343
	0.344
	0.361

	90
	0.454
	0.453
	0.453
	0.453
	0.476



	CDF Percentile
	Model I trained with mixed dataset of 23, 8, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.171
	0.171
	0.171
	0.171
	0.180

	67
	0.250
	0.250
	0.250
	0.250
	0.264

	80
	0.336
	0.335
	0.336
	0.332
	0.353

	90
	0.443
	0.442
	0.445
	0.438
	0.466



Table 98 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with mixed dataset of 23, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.323
	0.323
	0.321
	0.320
	0.333

	67
	0.413
	0.410
	0.414
	0.410
	0.434

	80
	0.511
	0.509
	0.512
	0.509
	0.530

	90
	0.630
	0.632
	0.631
	0.627
	0.660



	CDF Percentile
	Model I trained with mixed dataset of 23, 8, -7 dBm UE power

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.312
	0.313
	0.313
	0.313
	0.330

	67
	0.401
	0.403
	0.402
	0.397
	0.422

	80
	0.502
	0.499
	0.499
	0.494
	0.524

	90
	0.608
	0.613
	0.613
	0.612
	0.658



[bookmark: _Toc134999949]Models trained with multi-port PDP input datasets
Table 99 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain PDP, obtained from SRS estimation, 18x2x256 real array 

	ML model output 
	18 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.37 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 11 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA
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Figure 47 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different training set sizes and different input types for Model I.

Table 100 Direct path ToA estimation errors of Model I for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model I

	
	80,000
	40,000
	20,000
	10,000

	50
	0.116
	0.141
	0.176
	0.222

	67
	0.169
	0.205
	0.257
	0.332

	80
	0.223
	0.275
	0.346
	0.453

	90
	0.292
	0.361
	0.459
	0.610



Table 101 2D positioning errors of Model I for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning errors [m] - Model I

	
	80,000
	40,000
	20,000
	10,000

	50
	0.208
	0.255
	0.322
	0.413

	67
	0.268
	0.330
	0.420
	0.537

	80
	0.327
	0.412
	0.518
	0.679

	90
	0.400
	0.498
	0.647
	0.875




[bookmark: _Ref131139421][bookmark: _Toc134999950]Update on direct AI/ML positioning
In this section, we estimate UE positions directly using trained AI/ML models from UL SRS channel impulse responses. The input to the AI/ML model is a three-dimensional complex-valued tensor  when using CIR, or  when using PDP or DP. Since the ML model inference or training requires suitable specific hardware, the model is expected to be performed in a centralized unit with the needed hardware. In this case, the centralized unit is expected to be LMF.
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Figure 48 Direct AI/ML positioning at a centralized node processing all UL CIRs forwarded from all TRPs to produce estimates of the target UE position.

[bookmark: _Toc134999951]ML model architectures
We consider three model architectures for each input type. Each of the models consists of 18 layers with different internal widths. 
Specific details of the model and computational complexity values of the three models are summarized in the following tables. For the baseline, the models are trained using {60%, 6m, 2m} train dataset.
CIR
Table 102 Key features of the ML model I for direct UE positioning
	ML model input 
	Time domain CIR, obtained from SRS estimation, 18x2x256 complex array 

	ML model output 
	UE position estimate

	Model complexity: 
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.73 M real parameters


	Computation complexity for model inference (number of FLOPs)
	Model I: 32 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in LMF



PDP
Table 103 Key features of the ML model I for direct UE positioning
	ML model input 
	Time domain PDP, obtained from SRS estimation, 18x1x256 real array 

	ML model output 
	UE position estimate

	Model complexity: 
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.36 M real parameters


	Computation complexity for model inference (number of FLOPs)
	Model I: 9 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in LMF



DP
Table 104 Key features of the ML model I for direct UE positioning
	ML model input 
	Time domain delay profile (DP), obtained from SRS estimation, 18x1x256 real array, consisting of zeros or ones

	ML model output 
	UE position estimate

	Model complexity: 
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.36 M real parameters


	Computation complexity for model inference (number of FLOPs)
	Model I: 9 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in LMF



[bookmark: _Toc134999952]ML model performance with different time domain truncation
In this section, we evaluate the effect of using fewer time-domain taps (Nt) as input to the centralized direct UE position estimation ML models. Note that, in this experiment Nt = Nt’ and no taps set to zero. Model I is trained on 40,000 samples from the {60%, 6m, 2m} dataset (dataset 1f), with 23 dBm UE transmit power.
The UE 2D positioning errors when using different time-domain taps are provided in Figure 49 (using CIR data), Figure 50 (using PDP data), and Figure 51 (using DP-32 data). It can be observed that 
· Reducing the number of time-domain taps to 128 has little effect on performance for CIR and PDP and no effect on DP-32. 
· Reducing to 64 taps still gives submeter accuracy for CIR and PDP, but not for DP-32.
· 32 taps will not cover the factory hall which explains the bad performance when data is reduced to that.

 CIR
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[bookmark: _Ref134190565]Figure 49 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain truncation sizes for Model I (trained with 40,000 samples), using CIR data.

Table 105 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps, using CIR data.
	CDF Percentile
	UE 2D positioning errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps

	50
	0.186
	0.225
	0.332
	0.747

	67
	0.240
	0.288
	0.43
	0.983

	80
	0.296
	0.356
	0.539
	1.234

	90
	0.373
	0.443
	0.668
	1.602




 PDP
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[bookmark: _Ref134194647]Figure 50 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain truncation sizes for Model I (trained with 40,000 samples), using PDP data.

Table 106 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps, using PDP data.
	CDF Percentile
	UE 2D positioning errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps

	50
	0.265
	0.287
	0.357
	0.559

	67
	0.338
	0.369
	0.461
	0.731

	80
	0.415
	0.451
	0.573
	0.913

	90
	0.510
	0.563
	0.711
	1.165




 DP
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[bookmark: _Ref134194712]Figure 51 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain truncation sizes for Model I (trained with 40,000 samples), using DP-32 data.

Table 107 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps, using DP-32 data.
	CDF Percentile
	UE 2D positioning errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps

	50
	0.332
	0.336
	0.824
	N/a

	67
	0.430
	0.437
	1.106
	N/a

	80
	0.531
	0.535
	1.447
	N/a

	90
	0.658
	0.658
	1.976
	N/a





[bookmark: _Toc134999953]ML model performance with reduced number of TRPs
Similarly to section 2.2.3, the effect of reduced number of TRPs is investigated. The following two approaches are investigated:
· NTRP = 9, where we select TRPs of even indices.
· NTRP = 6, where we select TRPs of indices equal to 0, 5, 6, 11, 12 and 17.

For direct AI/ML-assisted positioning, the UE 2D positioning errors with reduced number of TRPs are provided in Figure 52 (CIR input data), Figure 53 (PDP input data), and Figure 54 (DP-32 input data). It can be observed that: 
· Reducing to 9 TRPs gives submeter accuracy at 90%-tile for both CIR and PDP input data.
· When reducing to only 6 TRPs, the error becomes larger than one meter at 90%-tile.
· The DP input data model is more sensitive to TRP reduction; the 90%-tile error increased by 75% when the number of TRPs is reduced from 18 to 9. The corresponding error increase for PDP and CIR is 52% and 66%, respectively. 

CIR
Table 108 Key features of the ML models for direct UE positioning, when reducing to 9 TRPs, CIR data
	ML model input 
	Time domain CIR, obtained from SRS estimation, 9x2x256 complex array 

	ML model output 
	UE position estimate

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.24 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 10 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in LMF




Table 109 Key features of the ML models for direct UE positioning, when reducing to 6 TRPs, CIR data
	ML model input 
	Time domain CIR, obtained from SRS estimation, 6x2x256 complex array 

	ML model output 
	UE position estimate

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.11 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 5 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in LMF



[image: ]
[bookmark: _Ref134447391]Figure 52 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with reduced number of TRPs for Model I (trained with 40,000 samples), using CIR data.

Table 110 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and reduced number of TRPs, using CIR data.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with reduced number of TRPs

	
	NTRP = 18
	NTRP = 9
	NTRP = 6

	50
	0.186
	0.307
	0.483

	67
	0.240
	0.403
	0.639

	80
	0.296
	0.500
	0.801

	90
	0.373
	0.621
	1.031




PDP
Table 111 Key features of the ML models for direct UE positioning, when reducing to 9 TRPs, PDP data
	ML model input 
	Time domain PDP, obtained from SRS estimation, 9x1x256 real array 

	ML model output 
	UE position estimate

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.12 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 3 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in LMF



Table 112 Key features of the ML models for direct UE positioning, when reducing to 6 TRPs, PDP data
	ML model input 
	Time domain PDP, obtained from SRS estimation, 6x1x256 real array 

	ML model output 
	UE position estimate

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.05 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 1 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in LMF
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[bookmark: _Ref134447410]Figure 53 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with reduced number of TRPs for Model I (trained with 40,000 samples), using PDP data.

Table 113 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and reduced number of TRPs, using PDP data.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with reduced number of TRPs

	
	NTRP = 18
	NTRP = 9
	NTRP = 6

	50
	0.265
	0.392
	0.595

	67
	0.338
	0.506
	0.776

	80
	0.415
	0.627
	0.952

	90
	0.510
	0.777
	1.191




DP
Table 114 Key features of the ML models for direct UE positioning, when reducing to 9 TRPs, DP data
	ML model input 
	Time domain delay profile (DP), obtained from SRS estimation, 9x1x256 real array, consisting of zeros or ones

	ML model output 
	UE position estimate

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.12 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 3 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in LMF



Table 115 Key features of the ML models for direct UE positioning, when reducing to 6 TRPs, DP data
	ML model input 
	Time domain delay profile (DP), obtained from SRS estimation, 6x1x256 real array, consisting of zeros or ones

	ML model output 
	UE position estimate

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.05 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 1 M FLOPs


	Number of ML models deployed for inference 
	One per deployment, residing in LMF
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[bookmark: _Ref134447434]Figure 54 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with reduced number of TRPs for Model I (trained with 40,000 samples), using DP-32 data.

Table 116 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and reduced number of TRPs, using DP-32 data.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with reduced number of TRPs

	
	NTRP = 18
	NTRP = 9
	NTRP = 6

	50
	0.332
	0.558
	0.896

	67
	0.430
	0.731
	1.195

	80
	0.531
	0.910
	1.514

	90
	0.658
	1.153
	1.921



[bookmark: _Toc134999954]Models trained with mixed (different drops) datasets
To address the performance losses of applying a model trained with one {60%, 6m, 2m} environment dataset (dataset 1f) to different environments with the same clutter parameter but different spatial and propagation seeds, i.e., different drops, one approach is to train the model with a mix of realizations from more than one drop of environmental datasets. In this section, we investigate the performance of Model I when trained with an even mix of the two drops of {60%, 6m, 2m} datasets, e.g., datasets 1f and 1a. We then test the trained models on 3rd drop test datasets. A UE transmit power of 23 dBm is used.

[image: ]

Figure 55 Direct UE 2D positioning estimation error distributions for the model trained with a combination of data from two drops of {60%, 6m, 2m}, and tested with test dataset from the two drops used in training (drop 1 and drop 2) and with test dataset from different drops (drop 3).
The detailed results per data type can be found in the coming subsections. It can be observed that model positioning accuracy in the presence of different random conditions may be improved by training the models with multiple dataset corresponding to various random condition differences. A model trained with mixed conditions achieves very good performance for the conditions part of the mixed training. 
CIR
Table 117 Direct UE 2D positioning error for the model trained with data from one dataset and tested with test dataset with different drop, CIR input.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.186
	8.757
	7.658 

	67
	0.240
	11.130
	9.900 

	80
	0.296
	13.614
	12.418

	90
	0.373
	16.802
	15.946



Table 118 Direct UE 2D positioning error for the model trained with a combination of data from two drops (drop 1 and drop 2) and tested with test dataset with different drops, CIR input.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m} and 40,000 samples from drop 2 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.220
	0.228
	7.456

	67
	0.286
	0.289
	9.674

	80
	0.350
	0.351
	11.994

	90
	0.437
	0.439
	14.387



PDP
Table 119 Direct UE 2D positioning error for the model trained with data from one dataset and tested with test dataset with different drop, PDP input.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.265
	8.725
	8.200

	67
	0.338
	11.348
	10.492

	80
	0.415
	14.070
	12.949

	90
	0.510
	17.935
	15.919



Table 120 Direct UE 2D positioning error for the model trained with a combination of data from two drops (drop 1 and drop 2) and tested with test dataset with different drops, PDP input.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m} and 40,000 samples from drop 2 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.314
	0.309
	7.677

	67
	0.396
	0.393
	9.944

	80
	0.486
	0.484
	12.180

	90
	0.594
	0.592
	14.632




DP
Table 121 Direct UE 2D positioning error for the model trained with data from one dataset and tested with test dataset with different drop, DP input.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.332
	9.801
	8.876

	67
	0.430
	12.615
	11.910

	80
	0.531
	15.730
	14.917

	90
	0.658
	20.374
	19.324



Table 122 Direct UE 2D positioning error for the model trained with a combination of data from two drops (drop 1 and drop 2) and tested with test dataset with different drops, DP input.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from drop 1 {60%, 6m, 2m} and 40,000 samples from drop 2 {60%, 6m, 2m}

	
	Drop 1
	Drop 2
	Drop 3

	50
	0.413
	0.416
	8.845

	67
	0.529
	0.534
	11.339

	80
	0.648
	0.651
	13.989

	90
	0.784
	0.807
	17.653




[bookmark: _Toc134999955]Performance of ML models under different UE timing errors
In this section, we investigate and analyze the performance of the ML models against UE timing errors.
· First, we use Model I trained with 40,000 samples without UE timing errors and trained with UE timing errors with standard deviation (STD) 25 ns and 50 ns.
· Secondly, we use Model I trained with mixed datasets with various UE timing errors.
· We also use Model I trained with 40,000 samples without NW sync. errors and trained with NW sync. errors with standard deviation (STD) 25 ns and 50 ns.
Then, we test the models against test dataset 1f with random UE timing errors at various STD values. As agreed in a previous RAN1 meeting, the random UE timing errors are generated according to a truncated Gaussian distribution with a (pre-truncation) STD (aka, ) and truncation at ±2×STD (aka,  ). It can be observed that:
· In all evaluated models, the UE position estimation accuracy degrades gradually as the UE timing error increases. However, the decrease is smaller when training with higher UE timing error. 
· The UE position estimation errors for the model trained without UE timing errors is more susceptible to UE timing error, where the 90%-tile UE position estimation error goes from below 0.5 m to around 20 m when testing on data with increasing UE timing error from STD = 0 ns to STD = 50 ns.
· However, the UE position estimation error for the model trained with UE timing errors of STD = 50 ns is more robust to UE timing error, where the 90%-tile UE position estimation error increases only slightly when increasing UE timing error from STD = 0 ns to STD = 50 ns.
· For CIR and PDP input, the model trained with UE timing errors of STD = 25 ns performs better than the one trained with UE timing errors of STD = 50 ns up to UE timing error of STD = 25 ns, while the latter shows advantage for UE timing errors of STD = 50 ns.
In this subsection we present evaluation results for models trained with various UE timing error and tested with random UE timing errors at various STD values.
CIR
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a) Trained with UE timing STD = 0 ns	b) Trained with UE timing STD = 25 ns
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c) Trained with UE timing STD = 50 ns
Figure 56 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with a) no UE timing error, b) UE timing STD = 25 ns, c) UE timing STD = 50 ns, and tested with various UE timing STD values (X ns), CIR input.
Table 123 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with no UE timing error and tested with various UE timing STD values (X ns), CIR input.
	CDF Percentile
	Direct UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.217
	0.257
	0.336
	0.762
	3.128

	67
	0.281
	0.340
	0.477
	1.555
	7.308

	80
	0.346
	0.432
	0.657
	2.955
	12.138

	90
	0.431
	0.556
	0.946
	5.383
	18.302



Table 124 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with UE timing STD = 25 ns and tested with various UE timing STD values (X ns), CIR input.
	CDF Percentile
	Direct UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.197
	0.197
	0.196
	0.203
	0.242

	67
	0.251
	0.252
	0.252
	0.261
	0.334

	80
	0.310
	0.311
	0.306
	0.324
	0.449

	90
	0.384
	0.381
	0.383
	0.395
	0.694



Table 125 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with UE timing STD = 50 ns and tested with various UE timing STD values (X ns), CIR input.
	CDF Percentile
	Direct UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.209
	0.205
	0.206
	0.213
	0.219

	67
	0.265
	0.267
	0.267
	0.271
	0.287

	80
	0.329
	0.330
	0.329
	0.335
	0.353

	90
	0.406
	0.413
	0.406
	0.411
	0.439



PDP
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a) Trained with UE timing STD = 0 ns	b) Trained with UE timing STD = 25 ns
[image: ]
c) Trained with UE timing STD = 50 ns
Figure 57 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with a) no UE timing error, b) UE timing STD = 25 ns, c) UE timing STD = 50 ns, and tested with various UE timing STD values (X ns), PDP input.
Table 126 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with no UE timing error and tested with various UE timing STD values (X ns), PDP input.
	CDF Percentile
	Direct UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.301
	0.360
	0.467
	1.043
	4.079

	67
	0.386
	0.468
	0.655
	2.127
	8.674

	80
	0.472
	0.585
	0.935
	3.848
	14.070

	90
	0.571
	0.754
	1.354
	6.886
	20.350



Table 127 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with UE timing STD = 25 ns and tested with various UE timing STD values (X ns), PDP input.
	CDF Percentile
	Direct UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.286
	0.286
	0.283
	0.293
	0.359

	67
	0.363
	0.365
	0.363
	0.375
	0.479

	80
	0.446
	0.447
	0.444
	0.464
	0.638

	90
	0.534
	0.538
	0.543
	0.562
	1.041



Table 128 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with UE timing STD = 50 ns and tested with various UE timing STD values (X ns), PDP input.
	CDF Percentile
	Direct UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.288
	0.290
	0.289
	0.293
	0.309

	67
	0.369
	0.372
	0.370
	0.377
	0.398

	80
	0.460
	0.464
	0.460
	0.466
	0.485

	90
	0.567
	0.571
	0.566
	0.577
	0.589




DP
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a) Trained with UE timing STD = 0 ns	b) Trained with UE timing STD = 25 ns
[image: ]
c) Trained with UE timing STD = 50 ns
Figure 58 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with a) no UE timing error, b) UE timing STD = 25 ns, c) UE timing STD = 50 ns, and tested with various UE timing STD values (X ns), DP input.
Table 129 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with no UE timing error and tested with various UE timing STD values (X ns), DP input.
	CDF Percentile
	Direct UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.383
	0.407
	0.464
	0.731
	2.267

	67
	0.488
	0.522
	0.607
	1.233
	6.086

	80
	0.598
	0.647
	0.763
	2.208
	11.583

	90
	0.743
	0.809
	0.992
	4.297
	18.222



Table 130 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with UE timing STD = 25 ns and tested with various UE timing STD values (X ns), DP input.
	CDF Percentile
	Direct UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.347
	0.336
	0.344
	0.360
	0.426

	67
	0.450
	0.442
	0.446
	0.462
	0.579

	80
	0.552
	0.544
	0.549
	0.565
	0.777

	90
	0.678
	0.677
	0.682
	0.713
	1.197



Table 131 Direct UE 2D positioning error for Model I trained with 40,000 samples from {60%, 6m, 2m} with UE timing STD = 50 ns and tested with various UE timing STD values (X ns), DP input.
	CDF Percentile
	Direct UE 2D positioning errors [m]
Model I trained with 40,000 samples with UE STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.477
	0.465
	0.474
	0.483
	0.503

	67
	0.582
	0.576
	0.589
	0.594
	0.617

	80
	0.726
	0.705
	0.725
	0.731
	0.773

	90
	0.477
	0.465
	0.474
	0.483
	0.503



[bookmark: _Toc134999956]Models trained with mixed (SNR values) datasets
The SNRs before considering shadowing and fast fading are
· Between 21.9 and 52.3 dB for 23 dBm UE power.
· Between 6.9 and 37.3 dB for 8 dBm UE power.
· Between -8.1 and 22.3 dB for -7 dBm UE power.
As explained in [7], the centralized model exhibits very high sensitivity to train/test SNR mismatch.
To address the performance losses due to SNR mismatch between train and test environments, one approach is to train the model with a mix of realizations from more than one SNR datasets. In this section, we investigate the performance of Model I when trained with 1) an even mix of the 23 dBm and -7 dBm datasets, and 2) an even mix of the 23 dBm, 8 dBm and -7 dBm datasets. We then test the trained models on five different SNR environments. The clutter parameter of {60%, 6m, 2m} is used.
The UE 2D positioning errors when using different time-domain taps are provided in Figure 59 (using CIR data), Figure 60 (using PDP data), and Figure 61 (using DP-32 data). It can be observed that 
· Training with a mix of datasets with different SNRs remedies the performance loss experienced when training at one SNR level and testing on another.
· Training with a mix of datasets with UE Tx power 23 dBm, 8 dBm and -7 dBm gives slightly better performance than training with a mix of 23 dBm and -7 dBm, for CIR and PDP data. The difference is very small, though.

 CIR
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[bookmark: _Ref134449271]Figure 59 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with different UE Tx power settings at training and with different UE Tx power settings at testing, using CIR data.


Table 132 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps, using CIR data.
	CDF Percentile
	Model I trained with mixed dataset of 23, -7 dBm UE Tx power, CIR data

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.227
	0.226
	0.227
	0.232
	0.244

	67
	0.289
	0.288
	0.291
	0.3
	0.317

	80
	0.36
	0.359
	0.361
	0.367
	0.392

	90
	0.446
	0.449
	0.446
	0.456
	0.487



	CDF Percentile
	Model I trained with mixed dataset of 23, 8, -7 dBm UE Tx power, CIR data

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.211
	0.211
	0.211
	0.222
	0.246

	67
	0.275
	0.274
	0.274
	0.284
	0.312

	80
	0.343
	0.343
	0.343
	0.357
	0.396

	90
	0.425
	0.424
	0.427
	0.448
	0.492



PDP
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[bookmark: _Ref134449283]Figure 60 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with different UE Tx power settings at training and with different UE Tx power settings at testing, using PDP data.


Table 133 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps, using PDP data.
	CDF Percentile
	Model I trained with mixed dataset of 23, -7 dBm UE Tx power, PDP data

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.262
	0.261
	0.262
	0.271
	0.275

	67
	0.333
	0.334
	0.335
	0.337
	0.356

	80
	0.414
	0.416
	0.411
	0.414
	0.438

	90
	0.507
	0.507
	0.509
	0.508
	0.532



	CDF Percentile
	Model I trained with mixed dataset of 23, 8, -7 dBm UE Tx power, PDP data

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.254
	0.253
	0.254
	0.254
	0.271

	67
	0.329
	0.329
	0.327
	0.331
	0.348

	80
	0.401
	0.398
	0.401
	0.403
	0.429

	90
	0.490
	0.491
	0.491
	0.502
	0.525



DP
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[bookmark: _Ref134449321]Figure 61 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with different UE Tx power settings at training and with different UE Tx power settings at testing, using DP-32 data.


Table 134 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps, using DP-32 data.
	CDF Percentile
	Model I trained with mixed dataset of 23, -7 dBm UE Tx power, DP-32 data

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.305
	0.305
	0.304
	0.310
	0.325

	67
	0.395
	0.395
	0.396
	0.399
	0.421

	80
	0.491
	0.494
	0.491
	0.497
	0.517

	90
	0.610
	0.614
	0.611
	0.607
	0.643



	CDF Percentile
	Model I trained with mixed dataset of 23, 8, -7 dBm UE Tx power, DP-32 data

	
	23 dBm UE power
	15.5 dBm UE power
	8.5 dBm UE power
	0.5 dBm UE power
	-7 dBm UE power

	50
	0.306
	0.307
	0.308
	0.309
	0.323

	67
	0.390
	0.394
	0.388
	0.393
	0.414

	80
	0.480
	0.481
	0.479
	0.481
	0.506

	90
	0.592
	0.592
	0.594
	0.602
	0.637





[bookmark: _Toc134999957]Models trained with multi-port PDP input datasets
Table 135 Key features of the ML model for direct UE positioning when using multi-port PDP data
	ML model input 
	Time domain PDP, obtained from SRS estimation, 18x2x256 real array 

	ML model output 
	UE position estimate

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.37 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 11 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in LMF



[image: ]
Figure 62 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different training set sizes for Model I, trained with 2-port PDP data. Model I trained and tested with averaged PDP data inserted for comparison.
Table 136 2D positioning errors of Model I trained with 2-port PDP data for {60%, 6m, 2m} test dataset at different percentiles. Model I trained and tested with averaged PDP data inserted for comparison.
	CDF Percentile
	2D positioning errors [m] - Model I, 2-port PDP data

	
	80,000
	40,000
	20,000
	10,000

	50
	0.209
	0.254
	0.320
	0.415

	67
	0.268
	0.323
	0.412
	0.537

	80
	0.325
	0.404
	0.512
	0.663

	90
	0.404
	0.502
	0.643
	0.833



	CDF Percentile
	2D positioning errors [m] - Model I, averaged PDP data

	
	80,000
	40,000
	20,000
	10,000

	50
	0.222
	0.265
	0.329
	0.418

	67
	0.286
	0.338
	0.431
	0.547

	80
	0.352
	0.415
	0.528
	0.688

	90
	0.426
	0.510
	0.656
	0.863





[bookmark: _Ref134423192][bookmark: _Toc134999958]Update on fully distributed AI/ML-assisted positioning
In RAN1 #111, two sources provided investigation results for fully distributed ML models at the individual TRP levelError! No bookmark name given.. However, both solutions require quite high model and computational complexity. To address the complexity issues of the fully distributed assisted positioning approach, we consider using only PDP inputs and adopting low-cost convolutional operations.
In this section, we consider distributed ML models at different TRPs to estimate the unobserved direct path ToAs, , at individual TRPs independently. An identical model architecture is adopted for all TRPs. However, each TRP is equipped with a different trained model using PDPs received at the given TRP only, resulting in 18 different models, each with a different set of parameter values.

[image: ]
[bookmark: _Ref131088925]Figure 63 AI/ML assisted positioning where UL CIR based unobserved direct path ToA estimation using AI/ML is deployed to all TRPs. During deployment, each TRP uses a different ML model and process the received PDP samples independently and forward its outputs to the centralized node for estimating the position of the target UE.

[bookmark: _Toc131525530][bookmark: _Toc134999959]ML model architectures
The models output one real value. 
· The real values are taken as the direct path ToA estimates for the three TRPs associated with the gNB. 
Specific details of the model and computational complexity values of the model are summarized in the following table. For the baseline, the models are trained using {60%, 6m, 2m} train dataset, i.e., dataset 1f.
Table 137 Key features of the ML model for unobserved direct path time of arrival estimation.
	ML model input
	Time domain PDP, obtained from SRS estimation: 1x1x256 real array

	ML model output
	Direct path ToA estimate

	Model complexity: 
	Per model size
	34 layers

	
	Number of parameters
	18 x 939 K = 16.9 M

	Computation complexity for model inference: number of FLOPs
	18 x 23.35 M = 420 M

	Number of ML models obtained from training
	18 (One ML model per TRP)

	Number of ML models deployed for inference
	18 (One ML model per TRP)

	Function for position estimation of the target UE
	Legacy method: UTDOA



[bookmark: _Toc131525531][bookmark: _Toc134999960]ML model performance with different trainset sizes
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Figure 64 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different training set sizes.
Table 138 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different training set sizes.
	CDF Percentile
	Direct path ToA errors [m] - Model 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.427
	0.953
	1.511
	2.108

	67
	0.806
	1.786
	2.804
	3.751

	80
	1.671
	3.449
	5.128
	6.454

	90
	4.395
	7.37
	9.656
	11.526



Table 139 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different training set sizes.
	CDF Percentile
	UE 2D positioning errors [m] - Model 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.284
	0.649
	1.063
	1.558

	67
	0.389
	0.886
	1.449
	2.136

	80
	0.512
	1.176
	1.871
	2.791

	90
	0.720
	1.558
	2.501
	3.611




[bookmark: _Toc134999961][bookmark: _Ref118642550][bookmark: _Toc118718162]Model Monitoring
[bookmark: _Toc134999962]Intrinsic model monitoring for AI/ML assisted approaches (Case 3a)
As another candidate solution, the AI/ML assisted approach for Case 3a in Section 2.1 – Section 2.2 can be monitored without collecting new test samples. For these AI/ML assisted approaches, the LMF takes the estimated time of arrivals into conventional triangulation-based error minimization framework to search and determine the UE position. It can be expected that the minimization outcome will have smaller residual losses when the AI/ML models are operating in the correct environment and are generating correct time of arrivals than when the models are applied to an environment different than the one used to train the models. In Figure 65, we provide the residual losses from conventional triangulation-based error minimization positioning algorithms. The AI/ML models for supplying the ToAs are trained with a dataset for the {60%, 6m, 2m} parameter.
· When the trained model is operating in the same environment of {60%, 6m, 2m}, the residual losses shown in blue line are below 0.77 with a probability of 99%.
· When the trained model is operating in the substantially different environment of {40%, 2m, 2m} where the model performs badly, the residual losses shown in orange line are above 0.77 with a probability of 99%.
· When the trained model is operating in a moderately different environment of {40%, 6m, 2m}, where the test environment has drifted from the training set environment, but the model is still performing well, the distribution of the residual losses shown in green remain quite similar to those for the {60%, 6m, 2m} environment (blue line).
From this analysis, it can be concluded that the residual losses from the conventional positioning algorithms can be used as a reliable metric to detect model/environment mismatch. For the example shown here, one could determine a threshold for flagging model refinement/re-training, for example, threshold =1 considering both blue and green curves. If the positioning residual losses are above this threshold, there is a high chance that the environment has drifted too far from the training environment and the model will need to be replaced or adjusted. 
In essence, the conventional triangulation-based in LMF provides a fairly accurate ground truth label  for  during deployment. Thus model monitoring metrics can be formulated to compare  with model output  in a statistical manner. In Figure 65, residual loss is a type a norm distance metric for model monitoring. Other types of model monitoring metrics can be formulated as well, e.g., Kolmogorov–Smirnov test.
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[bookmark: _Ref131539736]Figure 65: Residual losses from conventional triangulation-based error minimization positioning algorithms. The ML model is trained in the {60%, 6m, 2m} environment and tested in three environments: {60%, 6m, 2m}, {40%, 6m, 2m} and {40%, 2m, 2m}.

Based on the investigation above, the intrinsic model monitoring for AI/ML assisted approaches is a valuable model monitoring method. The complexity, latency, and power consumption are negligible since the computation is already part of the conventional triangulation method. While the evaluations results above are for network-side deployment (i.e., Case 3a), we expect the same principle applies to UE-side deployment, i.e., Case 1 with AI/ML assisted, Case 2a. 
Thus we have the following observations on the model monitoring KPIs for AI/ML assisted positioning approaches.  Similar to the self-model monitoring method, the model monitoring latency (i.e., from the start of model drift to the time of drift detected) is yet to be investigated.
[bookmark: _Toc135002570]For AI/ML assisted positioning approaches (e.g., Case 3a), model monitoring metrics can be accurately and reliably provided by the conventional positioning methods (e.g., residual loss). 
[bookmark: _Toc135002571]For AI/ML assisted positioning approaches, model monitoring leveraging conventional positioning method incurs negligible cost in terms of: signaling overhead, complexity, latency, and power consumption for obtaining a model monitoring sample.

[bookmark: _Toc135002589]Capture in TR 38.843 that: For AI/ML assisted positioning, model monitoring metrics can be reliably provided by the conventional positioning methods.

In literature, the important model monitoring metrics include: false alarm rate (FAR), missed detection rate (MDR), and detection delay.
For the simplistic case evaluated in Figure 65, they can be estimated as follows. Assume the threshold for declare the model has drifted or not is: residual loss =1. This corresponds to CDF=99.5% for the ‘no drift’ cases ({60%, 6m, 2m} and {40%, 2m, 2m}), and CDF=3% for the ‘drift’ case ({40%, 6m, 2m}).
The model monitoring algorithm can monitor  positioning requests to decide ‘drift’ or not. If for all  positioning requests, the residual loss is less than 1m, then ‘no drift’ is declared; otherwise, ‘drift’ is declared. In this case,
· FAR = , the probability that the environment has not significantly changed (stayed at blue or green curve), but ‘drift’ is declared.
· MDR = , the probability that the environment has changed significantly (i.e., changed to orange curve), but ‘no drift’ is declared.
The detection delay is the time to observe  positioning occasions. Plugging in  shows that this simple method can achieve FAR=1% and MDR=0.09%. 


[bookmark: _Toc134999963]Self-model monitoring for direct AI/ML positioning (Case 3b)
The four different AI/ML positioning approaches also exhibit different sensitivity to environmental changes.
· We found the models estimating observable first path delays for the LoS links to be insensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. In fact, the quality of observable first path delays for the LoS links remain accurate even when the models are deployed to completely different InF environments. These models behave almost like conventional signal processing algorithms in terms of their robustness to various environmental changes.
· The caveat is, for environments without enough LoS links, accurate UE positioning cannot be obtained using the outputs from this type of model, since the conventional positioning methods need to have at least 3 LoS links to produce accurate horizontal position estimation.
· The models estimating unobservable direct path delays for all links and the models estimating the UE positions directly are rather sensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. This is because these models are in essence performing fingerprinting either locally or regionally/globally. When the operating environment changes, mitigation solutions are needed.
Since the fingerprinting type AI/ML models are sensitive to operating environment changes, it is necessary to monitor the model performance over time and ensure the models are operating within performance requirements. In general, model performance monitoring requires periodically obtaining additional new test samples with both the required model inputs and the correct UE positions. 
However, when models are trained with data augmentation, self-model monitoring may be possible without collecting new test samples nor ground truth UE positions. One model-based self-monitoring method is described below.
· Model training with data augmentation
· Given ground truth samples 
· Train the model with a mixture of 
· Unmodified samples 
· Data augmentation modified samples  
· Self-model monitoring at operation
· Given positioning request data 
· Obtain a first target estimate  using unmodified data 
· Obtain a second target estimate  using data augmentation modified data  
· Check the difference between the two target estimates, . 
We investigate the effectiveness of this self-monitoring approach using the smallest model (0.73 M parameters) for the centralized direct positioning approach trained with {60%, 6m, 2m} dataset samples. The CDF of the test results are summarized in Figure 66. It can be observed that:
· When the model is operating in environments similar to that it was trained for (such as the {60%, 6m, 2m} and {40%, 6m, 2m} environments), the two UE position estimates do not differ by more than 1 m, i.e.,  m.
· When the model is operating in environments which it was not trained for and hence is under-performing, the two UE position estimates differ by more than 1 m with substantially high probabilities. For instance, in the {60%, 2m, 2m} and {40%, 2m, 2m} environments, the two UE position estimates differ by more than 1 m with 20% and 33% probabilities, respectively.
· While observing one UE position estimate difference of below 1 m is not reliable enough to ensure model is still operating in the intended environment, checking the  distribution in a small window of 10s-20s model inferences can achieve monitoring accuracy >99%. 
· Observing 14 UE position estimate differences of below 1 m is enough to ensure an environment change from {60%, 6m, 2m} to {60%, 2m, 2m} is identified with a probability > 95%.
· Observing 21 UE position estimate differences of below 1 m is enough to ensure an environment change from {60%, 6m, 2m} to {60%, 2m, 2m} is identified with a probability > 99%.
· Observing 8 UE position estimate differences of below 1 m is enough to ensure an environment change from {60%, 6m, 2m} to {40%, 2m, 2m} is identified with a probability > 96%.
· Observing 12 UE position estimate differences of below 1 m is enough to ensure an environment change from {60%, 6m, 2m} to {40%, 2m, 2m} is identified with a probability > 99%.

Note that the need of observing multiple instances is no different than any other model monitoring methods, since poor performance at a single instance cannot tell whether the model has truly degraded, or it’s a random anomaly.
This investigation demonstrates that the distribution of  can be used to generate model monitoring metrics. A variety of commonly used metrics for ML model monitoring can be considered, such as Kolmogorov–Smirnov (KS) test, Kullback–Leibler (KL) divergence, Population Stability Index (PSI). 

[bookmark: _Toc135002572]For a direct positioning ML model, self-model monitoring can be performed if the model was trained with data augmentation techniques. Otherwise, model monitoring generally requires collecting new ground truth samples during model operation.

[image: ]
[bookmark: _Ref126938774]Figure 66. 2D position estimate difference using unmodified or modified positioning request data at production in different operating environments for a small centralized direct positioning model trained with {60%, 6m, 2m} dataset samples.

The self-model monitoring approach for models trained with data augmentation described in this section can also be applied to the AI/ML assisted positioning approaches. Instead of checking the differences between UE position estimates, the L1 or L2 differences between vectors of direct path ToA estimates can be checked to identify environment changes.
Considering that data augmentation is widely used in model training, the self-model monitoring approach described above is a useful technique. Since the model monitoring can be performed together with model inference without any additional assistance (e.g., ground truth label  for ) from other nodes during operation, it has the advantage of no requirement of obtaining ground truth label during operation, no signaling overhead, and low latency for the model monitoring function.
Thus, we have the following observation and proposal. It is noted that the latency from the start of model drift to the time of drift detected is yet to be investigated. 

[bookmark: _Toc135002573]For both direct and AI/ML assisted positioning methods, self-model monitoring method does not require ground truth label and has no signaling overhead. The complexity, power consumption, and latency for obtaining one model monitoring sample are equal to one round of model inference. 

[bookmark: _Toc135002590]Capture in TR 38.843 that: For both direct and AI/ML assisted positioning methods, self-model monitoring is a candidate solution for model monitoring.
[bookmark: _Ref131674746]
The curves Figure 66 can be used to devise a monitoring method and calculate false alarm rate (FAR), missed detection rate (MDR), and detection delay as well.
Take the threshold of 2D position estimate difference = 1m. At this point, CDF=99.96% for {60%, 6m, 2m} and {40%, 6m, 2m}, CDF=80% for {60%, 2m, 2m}, and CDF= 67% for {40%, 2m, 2m}. 
The model monitoring protocol can be:
· Declare ‘no drift’ from {60%, 6m, 2m} to {60%, 2m, 2m} if the last  positioning instances have .
· Declare ‘no drift’ from {60%, 6m, 2m} to {40%, 2m, 2m} if the last  position instances have .
· Otherwise, declare ‘drift’ and the model trained for {60%, 6m, 2m} is no longer appropriate.
In this case, take ,
· FAR =  = 0.8%
· Missed detection rate of drift from {60%, 6m, 2m} to {60%, 2m, 2m}=  = 0.9%
· Missed detection rate of drift from {60%, 6m, 2m} to {40%, 2m, 2m}=  = 0.02%
The detection delay is the time to observe  positioning occasions.
Thus, compared with the intrinsic model monitoring method for AI/ML assisted positioning, the self-model monitoring method requires longer observation time. On the other hand, it has the advantage of being self-contained, and requiring no external assistance or information exchange. There is no delay spent to make a request and receive a response for the monitoring information. Thus self-model monitoring may have comparable or even lower detection delay in comparison.


[bookmark: _Ref134710266][bookmark: _Toc134999964]Model monitoring based on statistics of datasets
In this section, the method uses descriptive statistics to monitor whether the model is still appropriate for different operational phases in a deployment or at different deployments. The central idea is to make use of statistical measures of datasets via efficient statistical calculation to detect possible model drift.  
Firstly, form a grid of anchoring points, each element with coordinates  as the following,
[image: ]
Each  represents a location point in the service area. The set of  points is uniformly distributed in the service area (i.e., square grid points). The dimension of the whole area is defined by  and . 
To calculate the statistical moment of measurement datapoint v (i.e., variance) for a zone (or a grid square) associated with , the variance is calculated using all v associated with the zone of . Here such subset of v (e.g., a vector of RSRP) corresponds to the model output which is an estimated UE location within the zone of . After all variance values are calculated for the set of , they together form a block matrix whose blocks are the variance matrixes.
Then this block matrix of variance matrixes can be used as inputs for calculating the statistical distance between two distributions, as shown in the equation below. The inputs of the equation are two block matrices, where  is the one calculated using the reference dataset (e.g., training dataset), and  is another matrix calculated using the operational dataset (i.e., data at model deployment). As denoted by , a matrix element-wise division is done between  and . After that, a Frobenius-norm calculation as denoted by  is applied to obtain the distance between the two datasets.
[image: ]
In Figure 67, cumulative error density functions about the model performance and their corresponding data set distances are presented for a few of operational datasets and reference dataset (training data set). Each of them could be regarded as typical dataset collected at different sites, such as different halls of an indoor factory, or different factories. 
Among the curves in the figure, a cluster of data sets with their distances around 0.62 to 0.63 (light blue colors) indicate a slight model drift as compared to the reference data set (dark blue color) case. Another cluster of data sets with their distances to reference being around 1.9 (red colors) have severe model drifts in performance. 
[image: ]

[bookmark: _Ref131781929]Figure 67 Initial simulations: CDFs of positioning errors at different data set distances defined above
In such an example of statistical inspections on datasets, predefined dataset distance is used as detection metric for model drift detection. Its threshold can be set between 0.6 and 1.9 for detecting the possible substantial model drift. The concrete threshold value depends on all potential deployment scenarios and engineering goals. The preliminary evaluation results demonstrate the effectiveness of the data set inspection method to obtain the model monitoring metrics. 
To better illustrate the model drift relationship with the data set distance, a relative entropy (Kullback-Leibler divergence) could be used as an indicator of performance degradation and a measure of the model drift severity. Specifically, a relative entropy over the distributions of positioning errors with operational dataset and ones with the reference one is used to indicate the performance gap. 
[bookmark: _Hlk134710006]Therefore, Figure 68 presents the results, where the performance degradation indicator (y-axis in Figure 68, positioning error distribution) is a KL divergence between distributions of positioning errors of reference and errors of an operational data set with a same AI model. The x-axis is the dataset distances to the reference.
[image: ]

[bookmark: _Ref131621178]Figure 68 Comparisons: Model drift in performance vs operational data-set distance to reference data set
It is observed that the larger the distance (x-axis in Figure 84) an operational dataset has with regards to the reference one, the larger the gap of performances (i.e., larger performance degradation) in terms of model positioning errors. 

[bookmark: _Toc135002574]Initial evaluation results indicate that model monitoring can be effectively performed based on inspecting statistical metrics of the datasets.

[bookmark: _Toc135002591]Further investigate the model monitoring method based on statistical metrics of the datasets.

[bookmark: _Toc134999965]Autoencoder assisted model monitoring
As discussed in 3.3, dataset inspection provides a valid means to detect the possible model drift. This section focuses on a similar method but employing an autoencoder-like structure to remove the need of labelled data set. This method is an autoencoder assisted data inspection. Thus, this method is not only suitable for AI/ML model obtained via semi-supervised training, but also applicable in general model drift detection.
In addition to the AI/ML model for generating UE position, a decoder is also trained preparatorily at the training phase of an encoder, where the encoder is the AI/ML model for positioning function.
Instead of measuring the distance between the operational dataset to the reference dataset (usually training dataset) as discussed in Section 3.3, here, a measurement on the distance between the operational dataset and its output at the pretrained autoencoder (i.e., output of the decoder) is used as the model monitoring metric. Here the autoencoder refers to the concatenation of the encoder and the decoder.
Namely, if the model is working well for the deployed environment, then a dataset distance metric at time t between the encoder input  and decoder output  is expected to be small, based on the property of autoencoder (i.e., encoder-decoder pair). Moreover, the distance metric at model deployment should be comparable to that at training phase. 

[image: ]

[bookmark: _Ref131676229]Figure 69 Initial simulations: CDFs of positioning errors at different distances between inputs and outputs of the assisting autoencoder
[image: ]
[bookmark: _Ref131676232]Figure 70 Comparisons: Model drift in performance vs operational dataset distance to output dataset at the assisting autoencoder
In Figure 69 and Figure 70, it can be observed the larger the distance (x-axis in Figure 70) an operational dataset has with regards to its output dataset of the assisting autoencoder, the larger the gap of performances: degradations indicated by their CDFs differences at Figure 69 or  KL divergences (KL_D) of positioning error distributions (y-axis of Figure 70). 
  
[bookmark: _Toc135002575]Initial investigations on auto-encoder assisted model monitoring demonstrates that the scheme is effective.

[bookmark: _Toc135002592]Model drift monitoring without a labelled dataset should be further investigated.

[bookmark: _Toc134999966]Conclusion
Based on the extensive evaluation and analysis, we made the following observations: 
Observation 1	For a given train dataset size, data augmentation techniques and more training epochs can improve trained model performance.
Observation 2	Using semi-distributed or centralized ML assisted positioning or centralized ML direct positioning approaches with CIR inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, - sub-meter 90%tile 2D error is achievable with a small train dataset; - 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large enough ML models; - 90%tile 2D error approaching or below 0.25 m requires large train datasets as well as large enough ML models.
Observation 3	Positioning accuracy significantly better than the average training sample distance can be achieved using distributed or centralized ML assisted positioning or centralized ML direct positioning approaches with CIR inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario.
Observation 4	For a given number of TRPs and number of time domain taps, a PDP sample requires 1/(2*Nport) the number of bits for a CIR sample.
Observation 5	For a given model architecture, model complexity can be reduced by half and computational complexity can be reduced by two thirds when switching the inputs from complex dual-port CIR to PDP.
Observation 6	Using centralized ML assisted positioning or centralized ML direct positioning approaches with PDP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, - sub-meter 90%tile 2D error is achievable with a small train dataset; - 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large enough ML models; - 90%tile 2D error approaching or below 0.25 m requires large train datasets as well as large enough ML models. For the semi-distributed ML assisted positioning approach with PDP inputs, one class large datasets are generally needed than those for centralized ML positioning approaches.
Observation 7	Positioning accuracy significantly better than the average training sample distance can be achieved using centralized ML assisted positioning or centralized ML direct positioning approaches with PDP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario. For the semi-distributed ML assisted positioning approach with PDP inputs, large models are needed to achieve positioning accuracy significantly better than the average training sample distance.
Observation 8	For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario and assuming the same time domain resolution (i.e., the same sampling rate and the same number of taps), - For the same number of training samples, models using CIR inputs achieve better positioning accuracy than those using PDP inputs. - For the same storage sizes of the training datasets, models using PDP inputs can achieve better positioning accuracy than those using CIR inputs. It is, however, noted that doubling or quadrupling collection of ground truth UE positions may not be a favourable trade-off against recording the rich CIR information with fewer UE position drops.
Observation 9	When compared to the averaged PDP input type, the 2-port PDP input type (1) doubles the dataset sizes; (2) requires higher computational complexity; and (3) achieves marginal performance improvements.
Observation 10	For a given number of time domain taps, a dataset of DP samples only require a fraction of storage spaces for datasets of CIR or PDP samples.
Observation 11	Using centralized ML assisted positioning or centralized ML direct positioning approaches with 32-tap DP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, - sub-meter 90%tile 2D error is achievable with a small train dataset and medium-size or large ML models; - 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large ML models or a large train dataset and medium-size ML models; - 90%tile 2D error approaching or below 0.30 m requires very large train datasets and large ML models.
Observation 12	Positioning accuracy better than the average training sample distance can be achieved using centralized ML assisted positioning or centralized ML direct positioning approaches with 32-tap DP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario.
Observation 13	Delay profile input type is highly effective for centralized direct positioning or assisted positioning models. Models using 32-tap DP inputs can achieve positioning accuracy comparable to that achieved by models using CIR or PDP inputs but with a fraction of the training dataset storage sizes.
Observation 14	One way to reduce the number of active (nonzero) time domain taps while keeping as much radio environment information is to down select from the full time domain window size of Nt to only the Nt’ taps with stronger power than the rest of the taps. For the CIR, such tap down-selection is determined by averaging the power over RX ports.
Observation 15	A generic representation of sub-sampled CIR or PDP is to store each sample in two pieces of information: (1) a length-Nt bitmap representing the location of the nonzero taps; and (2) the values of the nonzero taps.
Observation 16	Retaining a smaller number of strongest CIR or PDP taps can be an effective approach to reduce training dataset storage sizes. - Zeroing out half of the 256 taps result in negligible positioning accuracy losses. - Approaching or better than 1 m UE positioning accuracy can be achieved by retaining only 9 strongest CIR or PDP taps with the centralized models. - Approaching or better than 0.5 m UE positioning accuracy can be achieved by retaining 64 strongest CIR taps with the centralized models.
Observation 17	For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario and considering the possibility of reducing training dataset storage sizes with down sampling, models using CIR or PDP inputs can achieve similar positioning accuracy at similar storage sizes of the training datasets.
Observation 18	For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, centralized models using either CIR or PDP inputs achieve similar positioning accuracy for small number of retained taps (e.g., 9, 16 or 32 taps).
Observation 19	One way to reduce the number of active (nonzero) time domain taps is to truncate a larger time domain window size Nt,1 by keeping only a smaller time domain window size Nt,2. Such truncation approach reduces the dataset storage sizes proportionally for all three different input types: CIR, PDP and DP.
Observation 20	Time domain truncation can reduce the computational complexity of AI/ML models proportionally. However, for AI/ML models using extensive weight sharing, the impact of time domain truncation on the model complexity (number of parameters) is marginal to none.
Observation 21	Time domain truncation can be an approach to trade off positioning accuracy and training dataset storage sizes. Given the same CIR/PDP dataset storage size, similar or slightly better positioning accuracy can be achieved with moderate time domain truncation.
Observation 22	The DP inputs still achieve better tradeoff between positioning accuracy and training dataset storage sizes even considering the possibility of time domain truncation.
Observation 23	Time domain truncation and time domain down-selection can result in similar dataset size reduction. However, models trained with time domain down-selection can achieve better performance but also require higher computational complexity than models trained with time domain truncation.
Observation 24	Another way to reduce the number of active (nonzero) time domain taps is to reduce the number of TRPs. Such TRP reduction approach reduces the dataset sizes proportionally for all three different input types: CIR, PDP and DP.
Observation 25	Reducing the number of active TRPs can decrease both model complexity and computational complexity of the AI/ML models.
Observation 26	Reducing the number of active TRPs does not appear to offer favorable tradeoffs between positioning accuracy and training dataset sizes when compared to the better tradeoffs achieved by time domain truncation.
Observation 27	For a dataset with both labeled and unlabeled samples, semi-supervised learning is a viable solution to utilize both labeled and unlabeled samples for training the AI/ML models. However, semi-supervised learning training requires more computational complexity than supervised learning training.
Observation 28	It is not clear that semi-supervised learning training using both labeled and unlabeled samples brings clear improvement over well-designed supervised learning training using only the limited labeled samples.
Observation 29	Different ML positioning approaches can exhibit different levels of sensitivity to labeling errors. Semi-distributed ML assisted positioning approaches exhibit lower sensitivity to labeling errors than centralized ML positioning approaches.
Observation 30	Different model inputs can affect the sensitivity of the ML models to labeling errors. For the centralized ML assisted positioning or direct positioning approaches, higher sensitivity to labeling errors is observed with CIR inputs than with PDP or DP inputs.
Observation 31	Fine-tuning is a viable technique to adapt models originally trained for a first environment to operate in a second, substantially different, environment. However, fine-tuning does not appear to provide much saving in the number of samples to reach state-of-the-art positioning accuracy when compared to training the models from scratch.
Observation 32	Once the models are fine-tuned to operate for a substantially different, new, environment, they no long perform adequately for the original environment. That is, if operation at state-of-the-art performance in multiple environments is needed, multiple sets of model weights need to be stored.
Observation 33	Centralized ML assisted or direct positioning models using PDP inputs exhibits much lower sensitive to train/test SNR drops than models using CIR inputs. - Models using PDP inputs are still usable with an SNR drop of 15 dB with 90%tile 2D positioning errors below 0.7 m. - The 90%tile 2D positioning errors of models using CIR inputs jump to >2 m with an SNR drop of 15 dB. - With an SNR drop of 30 dB, models using CIR or PDP inputs are not usable.
Observation 34	Centralized ML assisted or direct positioning models using PDP inputs exhibits much higher sensitive to train/test SNR increases than models using CIR inputs. All models become unusable with SNR increases of at least 15 dB.
Observation 35	Centralized ML assisted or direct positioning models using DP inputs are protected from train/test SNR mismatch. Even with an SNR mismatch of 30 dB, the models maintain 90%tile 2D positioning error below 0.9 m.
Observation 36	To operate at state-of-the-art performance in multiple substantially different environmental conditions (e.g., different SNRs, different random conditions, different clutter distributions), mixed dataset training is a universal and superior solution to either training multiple models from scratch or storing multiple fine-tuned models with explicit environment identification and model switching.
Observation 37	Even with small model sizes, models trained with mixed datasets can operate at state-of-the-art performance in multiple substantially different environments with no need of explicit environment identification and model switching.
Observation 38	For the alternative approach of keeping multiple models for multiple operating environments, reliability of environment identification becomes the critical point of failure.
Observation 39	To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training is superior to either training multiple models from scratch or storing multiple fine-tuned models with explicit environment identification and model switching.
Observation 40	To address model position accuracy in the presence of SNR mismatch, only one physical dataset corresponding to the 23 dBm UE power needs to be collected. Datasets corresponding to lower UE transmit powers can be synthesized on demand.
Observation 41	Model position accuracy in the presence of SNR mismatch up to 30 dB can be maintained at state-of-the-art level by training small models with multiple datasets corresponding to various operating SNRs.
Observation 42	Model position accuracy in the presence of different random condition differences (represented by 3GPP channel model random seeds) can be addressed by training small models with multiple datasets corresponding to the random condition differences (represented by 3GPP channel model random seeds).
Observation 43	Centralized ML positioning models can overcome UE timing errors.  - Models trained without any UE timing error can achieve high positioning accuracy for UE timing error STD up to 10 ns for the CIR or DP inputs. - Models trained with UE timing error STD of 25 ns can achieve high positioning accuracy for UE timing error STD up to at least 50 ns for the CIR inputs and up to at least 25 ns for the PDP or DP inputs. - Models trained with UE timing error STD of 50 ns can achieve high positioning accuracy for UE timing error STD up to at least 50 ns.
Observation 44	Centralized ML positioning models can overcome uncorrelated network synchronization errors. In fact, network synchronization errors can be used as a type of data augmentation during training to enhanced trained model performance. - Models trained without any network synchronization error can achieve high positioning accuracy for network synchronization error STD up to 10 ns. - Models trained with network synchronization error STD of 25 ns can achieve high positioning accuracy for network synchronization error STD up to at least 50 ns.
Observation 45	For AI/ML assisted positioning approaches (e.g., Case 3a), model monitoring metrics can be accurately and reliably provided by the conventional positioning methods (e.g., residual loss).
Observation 46	For AI/ML assisted positioning approaches, model monitoring leveraging conventional positioning method incurs negligible cost in terms of: signaling overhead, complexity, latency, and power consumption for obtaining a model monitoring sample.
Observation 47	For a direct positioning ML model, self-model monitoring can be performed if the model was trained with data augmentation techniques. Otherwise, model monitoring generally requires collecting new ground truth samples during model operation.
Observation 48	For both direct and AI/ML assisted positioning methods, self-model monitoring method does not require ground truth label and has no signaling overhead. The complexity, power consumption, and latency for obtaining one model monitoring sample are equal to one round of model inference.
Observation 49	Initial evaluation results indicate that model monitoring can be effectively performed based on inspecting statistical metrics of the datasets.
Observation 50	Initial investigations on auto-encoder assisted model monitoring demonstrates that the scheme is effective.


Based on the discussion in the previous sections we propose the following:
Proposal 1	For 3GPP AI/ML for PHY SI discussion, companies shall report nominal computational complexity values based on HLO representations (and not accelerator-optimized computational complexity values). Otherwise, the reported computation complexity value cannot be included for a fair cross-company comparison.
Proposal 2	To further 3GPP discussion and preparation of observations/conclusions for the technical report, three model size classes are defined for the positioning use case as follows: - Small models: < 1 M model parameters - Medium-size models: 1 – 8 M model parameters - Large models: > 8 M model parameters
Proposal 3	To further 3GPP discussion and preparation of observations/conclusions for the technical report, four train dataset size classes are defined as follows: - Small datasets: density ~1.39 UE/m2 - Medium-size datasets: density ~2.79 UE/m2 - Large datasets: density ~5.56 UE/m2  - Very large datasets: >6.94 UE/m2
Proposal 4	For AI/ML based positioning, do not support multi-port PDP as model input. Single-port PDP as in existing specification is sufficient.
Proposal 5	For the evaluation of AI/ML based positioning method, model input size for one sample of DP is calculated as the following.
(a)	If using bitmap to indicate the timing of the N't paths: (N'TRP * Nt) bits, where a length Nt bitmap is used to report DP for a link.
(b)	If directly indicating path timing of the N't paths: (N'TRP * Nt' * Bt ) bits, where Bt is the number bits to represent the timing value of a detected path.
Proposal 6	For the evaluation of AI/ML based positioning method, model input size for one sample of CIR or PDP is calculated as the following, if sub-sampling is not applied.
(a)	For CIR: (N'TRP * Nport * Nt * 2 * Breal,CIR ) bits, where Breal,CIR is the number of bits to represent a real value for CIR.
(b)	For PDP: (N'TRP * 1 * Nt * Breal,PDP ) bits, where Breal,PDP is the number of bits to represent a real value for path power.
Proposal 7	For the evaluation of AI/ML based positioning method, model input size for one sample of CIR or PDP is calculated as the following, if sub-sampling is applied.
(a)	If using bitmap to indicate the timing of the N't paths: For CIR: (N'TRP * Nt + N'TRP * Nport * N't * 2 * Breal,CIR) bits, where Breal,CIR is the number of bits to represent a real value for CIR. For PDP: (N'TRP * Nt + N'TRP * 1 * N't * Breal,PDP ) bits, where Breal,PDP is the number of bits to represent a real value for path power.
(b)	If directly indicating path timing of the N't paths: For CIR: (N'TRP * Nport * N't * (Bt + 2 * Breal,CIR )) bits, where Breal,CIR is the number of bits to represent a real value for CIR.  For PDP: (N'TRP * 1 * N't * (Bt + Breal,PDP )) bits, where Breal,PDP is the number of bits to represent a real value for path power.
Proposal 8	Capture in TR 38.843 that: For AI/ML assisted positioning, model monitoring metrics can be reliably provided by the conventional positioning methods.
Proposal 9	Capture in TR 38.843 that: For both direct and AI/ML assisted positioning methods, self-model monitoring is a candidate solution for model monitoring.
Proposal 10	Further investigate the model monitoring method based on statistical metrics of the datasets.
Proposal 11	Model drift monitoring without a labelled dataset should be further investigated.
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