	[bookmark: historyclause][bookmark: _Toc383764588]3GPP TSG RAN WG1 #113						
	R1-2305656

	Incheon, Korea, May 22nd – 26th, 2023
	

Agenda Item: 9.2.2.2
Source: MediaTek Inc.
Title:	Other aspects on AI/ML for CSI feedback enhancement
Document for: Discussion & Decision
[bookmark: _Ref4683067] Introduction
[bookmark: _Hlk126161272]In the study item [1] scope, it has been agreed to study CSI feedback enhancement including CSI compression and CSI prediction as representative sub use cases. In this contribution, we study spec impact, requirements, and advantage of each sub use case.
CSI Compression
Training strategies of two-sided AI/ML models
Unlike other sub use cases, where AI/ML models can be merely deployed at a single entity, CSI compression sub use case focuses on two-sided AI/ML models. The two-sided AI/ML models in CSI compression are auto-encoders (AEs) from which encoders are used by UEs and decoders are employed by NWs during the inference stage. The two-sided AI/ML models in CSI compression raise some fundamental issues. As each vendor may own its exclusive encoder or decoder depending on the vendor’s purpose, the performance of such an encoder/decoder in conjunction with other vendors’ decoder/encoder entails a big question mark. In fact, new training strategies are required to make encoders and decoders of different vendors inter-operable. To facilitate inter-operability of AI/ML models from different vendors, three types of training strategies have been focused in [2]. We cast our detailed view on these training strategies in the following.
Training type 1: Joint training at a single entity
Training type 1 aims at training a well-designed AE at a single entity (either UE or NW) during the training phase and offering the pre-trained encoder or decoder of AE to other entities upon their request in the inference phase. This training type does not offer a solution for inter-operability of encoders and decoders from different vendors, instead it bypasses the problem by guaranteeing that the encoders used by UEs and decoders used by NWs are already inter-operable (matched in structure and their performance has already been verified). Naturally such a training strategy has superior performance to all other training strategies that we will discuss shortly. Training type 1 can be pursued in two directions depending on which side (UE or NW) takes the responsibility of training.
UE-side Training type 1: As shown in Figure 1(a), in the training phase, UE takes full responsibility of training a whole AE including an encoder and a decoder. UE can leverage proprietary/public dataset and train AE in an individual forward pass (FP) and backpropagation (BP) loop. Once the training of AE is finished, UE obtains an encoder and a decoder which effectively perform compression and decompression, respectively. In the inference phase, the NW requests pre-trained decoder to establish a two-sided AI/ML model with the aid of UE. UE uploads the decoder (exchangeable part of AE) for the NW and keeps the encoder (unexchangeable part of AE). NW deploys the received decoder and uses it for decompressing the CSI feedback afterward.
NW-side Training type: As shown in Figure 1(b), in the training phase, NW takes full responsibility of training an entire AE including an encoder and a decoder. NW uses a proprietary/public dataset and trains the AE in an individual FP and BP loop. In the inference phase, UE requests pre-trained encoder for CSI compression. UE downloads the encoder (exchangeable part of AE), and NW keeps the decoder (unexchangeable part of AE). UE and NW leverage encoder and decoder to form a two-sided AI/ML model and perform CSI compression and decompression, respectively.
	[image:]
(a) UE-side training type 1
	[image:]
(b) NW-side training type 1

[bookmark: _Ref117693209]Figure 21: Illustration of training type 1 when AE is trained at UE or NW side
Whether UE or NW trains the model, finally a two-sided AI/ML model is established in which encoder has learned how to provide rich latent vectors (compressed CSI maintaining essential information) and decoder has learned how to interpret the latent vectors. Thereby, inter-operability of vendors is no longer an issue. As revealed by our companion document [3], training type 1 not only has superior performance to other types of training, but it also brings the following advantages which mainly roots in its centralized style of training:
· It does not need inter-vendor collaboration in the training phase
· It does not need inter-vendor signalling in the training phase
· BP and FP can maintain high precision for representing elements in latent vectors and gradients
· LCM is generally easier as all engineering efforts for re-training, debugging, and improving AI/ML model is centralized

Despite prominent advantages offered by training type 1 in the training phase, it has some drawbacks in the inference phase:
· The exchangeable part of AE may not be pre-tested and optimized at HW/SW architecture of the entity which uses the model trained at the other entity
· The exchangeable part of AE and processing related to it cannot be proprietary. For example, if UE trains AE, it should share information of decoder, dequantization, post-processing, and output type. If NW trains AE, it should share information of encoder, quantization, and pre-processing.
· Depending on the number and size of AI/ML models that one entity may requests from others, the inference signalling overhead can be quite high.

In our view, due to less AI/ML model switching demand for UE compared to NW, it is reasonable to prioritize type 1-training at NW, where NW can offer the proper AI/ML models to UEs upon request. However, given the heterogenous computational budget of UE devices, a single AI/ML model at NW does not guarantee any inference latency or even feasibility of deployment (in term of storage) for all potential UE devices. In this regard, training type 1 shall not be regarded as a mean for NW to store and offer a universal AI/ML model for all UEs. A reasonable choice is that NW offers a range of AI/ML models to be selected by UEs based on their budget. We also believe training type 1 should not preclude the opportunity of having optimized AI/ML models for specific UE devices. For example, based on demography of UE vendors and UE devices, NW may decide to offer an optimized pre-tested AI/ML model, called “UE-dedicated”, for some UE devices to enhance latency and throughput of transmissions. UE-dedicated AI/ML models stand in opposite to “UE-non-dedicated” AI/ML models which are not tailored for a set of specific UE devices.
On the other hand, NW may use different CSI-RS port configurations which can prohibit one AI/ML model from working well in all possible scenarios. In this regard, even if we ignore the challenges regarding the heterogenous capabilities of UE devices, it is still very unlikely that NW offers one model for all possible cases. This motivates further categorization of AI/ML models at NW side. In overall, all possible options ahead of NW in offering/storing AI/ML models obtained through training type 1 are shown in Figure 22. It should be noted the “mixed” option in this figure is the mixture of UE-dedicated and UE-non-dedicated AI/ML models at NW.
[image:]
[bookmark: _Ref134386568]Figure 22: Categorization of AI/ML model(s) offered by NW in training type 1
Therefore, as opposed to the proposal 2-1-1 in [8], keeping one AI/ML model at NW should not be regarded as one of the main attributes of training type 1.
Keeping a single universal AI/ML model at NW for training type 1 should be deprioritized.
Further categorize NW-side training type 1 based on the number of available AI/ML models and their target UE devices.
Training type 2: Joint training at different entities
Training type 2 is introduced to avoid the model exchange issues in the training type 1 which breaks the proprietariness of AE and entails possible large signalling overhead in the inference phase. In training type 2, UE vendors participate with their encoders, and NW vendors participate with their decoders in a training session. UE and NW vendors jointly collaborate to train AEs. While the training is done jointly, each entity does not exchange any part of its AI/ML model and instead it exchanges other necessary information including latent vectors and gradient vectors to complete an FP and BP loop across two or more entities. Figure 23 shows the procedure of type 2 training for a single encoder and a single decoder pair, and it shows the signalling among encoder and decoder which completes the FP and BP loop across two different entities (i.e., UE and NW). Simply put, a shared dataset is used by both encoder (at UE) and decoder (at NW) for training purpose. The encoder generates the latent vectors and passes them to the decoder for CSI reconstruction. The reconstructed CSI samples will be compared to the target/label CSI samples, and loss will be calculated. The gradient of loss w.r.t. parameters will propagate through the decoder, and the decoder’s parameter will be updated accordingly. The decoder then will pass the gradient vector on its input layer to the encoder, and the encoder will resume BP and updating learnable parameters. While the encoder and decoder are proprietary, the applicable quantization/dequantization as well as format/precision of gradient vectors, latent vectors, and CSI samples may need to be aligned.

[image:]
[bookmark: _Ref117700055]Figure 23: Illustration of training type 2 for a single encoder and single decoder

Unlike training type 1, in training type 2, the UE and NW are not necessarily aware of detailed or type of AI/ML model structure used at the other side, and the structure of encoder and decoder may not match in type, number of layers, complexity, computational requirement, etc. For example, encoder may leverage a simple convolutional neural network (CNN) while decoder may use transformer (TF) as its core architecture. This architecture mismatch results a performance degradation compared to training type 1 where the training entity is implicitly responsible to train a matched architecture of encoder and decoder in its AE. In our companion contribution [3], our evaluation shows that the encoder/decoder mismatch will cause 2.23% performance loss for UE and 2.26% performance loss for NW. Despite this performance degradation, training type 2 has three prominent advantages:
· Maintains the proprietariness of encoders and decoders
· Naturally serves as performance upper-bound to training type 3
· Much less signalling (over the air interface) overhead in the inference phase
Extension to single-encoder multi-decoder setting
The extension of training type 2 to single-encoder multi-decoder setting is pretty straightforward as the single UE (encoder) can coordinate the training/updating its parameters and triggering different decoders in a Round-Robbin fashion or at the same time. We note that if the UE divides the training session into multiple sub-sessions and sequentially assigns each sub-session for exposing itself to only one of NWs (decoders), it finally will be biased toward the last decoder which has been exposed to.
Extension to multi-encoder single-decoder setting
Extension of training type 2 to multi-encoder single-decoder scenario requires more provisions depending on data ownership and inter-vendor learning/update schedule. From data ownership point of view, two cases can be imagined, common/shared dataset and UE-specific datasets. With common dataset, all UEs and the NW have access to the same CSI samples to generate the latent vectors and calculate CSI reconstruction loss. Using UE-specific datasets, each UE vendor does not share its CSI sample with other UE vendors, and it may share the CSI sample (with desired type, e.g., eigenvectors or raw CSI) with the NW to make NW able to calculate the CSI reconstruction loss. In this sense, if vendors use UE-specific datasets, the type of target CSI (shared with NW) should be aligned among UE vendors.
[bookmark: _Hlk118465786]From learning/update scheduling perspective, three major cases with different levels of coordination can be implemented: i) concurrent update scheduling, ii) alternating update scheduling, and iii) sequential update scheduling.
Concurrent update scheduling: In this case, for each parameters’ update at UEs’ encoders and NW’s decoder, a batch (minibatch) of CSI data samples can flow through encoders and the decoder. As the CSI samples in the batches are shared with the NW, NW is able to calculate the joint loss accumulated from all CSI reconstructions and initiate BP. The procedure is shown in Figure 24.

[image:]
[bookmark: _Ref117764901]Figure 24: Concurrent update scheduling in multi-encoder single-decoder setting for training type 2

Alternating update scheduling: Coordinating concurrent update may not be feasible due to alignment in size of batch, defining an appropriate joint loss, etc. In this case, UE vendors can individually trigger FP and BP using a batch or multiple batches of their specific CSI samples in an alternating pattern to maintain the fairness of their exposure to the common decoder. This training style is shown in Figure 25, where one parameters’ update (FP and BP) using a batch at UE vendor A is followed by a parameters’ update at UE vendor B, and these alternating updates last till the end of the training session. However, the inter-vendor synchronization is required at the UE side to not interfere parameter updates of each other.

[image:]
[bookmark: _Ref117765679]Figure 25: Alternating update scheduling in multi-encoder single-decoder setting for training type 2
Sequential update scheduling: If concurrent or alternating update scheduling among UE vendors is not reachable/preferred, the training session can be divided into multiple sub-sessions during each of which one UE vendor uses its dataset (shared or specific) for training purpose as shown in Figure 26. While the synchronization requirement is almost rectified in this case, NW vendor needs additional provisions to maintain its performance with the UE vendors which it has been exposed to them during initial sub-sessions.

[image:]
[bookmark: _Ref117766811]Figure 26: Alternating update scheduling in multi-encoder single-decoder setting for training type 2
Discuss feasibility of synchronization/alignment required for different update scheduling in training type 2.
[bookmark: _Hlk118471965]Another possible issue in multi-encoder setting is unintentional bias created by a UE-vendor such as excessive size of its dataset compared to the others, abnormal statistics of some datasets, unfair loss functions, etc. For example, consider NW is using MSE function and dataset from a certain UE has samples with large values. Probably, NW will be tempted to minimize loss function with focusing on large-valued samples and give up on the rest. As another example consider the case where one UE bombards NW with its excessively large dataset. If the underlying distribution of those CSI samples is different from CSI samples of other UEs, the NW again trains a decoder that may not properly work for UEs with smaller datasets. As such, even if the UE vendors leverage UE-specific datasets, sharing information on training-related parameters such as size of datasets, statistics of datasets, training loss, update schedule, etc. is helpful to assure UE vendors about fairness of training sessions they are involved into.
In brief, the major advantage of training type 2 is enhancing the performance of unmatched encoder-decoder pair (as a single AE) in the inference phase by exposing them to each other in the training phase. The costs of this enhancement are frequent inter-vendor information exchange (e.g., latent vectors and gradient vectors) and the need for possible inter-vendor coordination.
Training type 3: Sequential separate training
Training type 3 relaxes the coordination requirements of training type 2 by offering a sequential separate training at UE and NW sides. In this training type, either NWs’ decoders or UEs’ encoders will be trained first, and then other parties will train their corresponding part of AEs accordingly. Based on possible order of training, the training type 3 has two categories: UE-first separate training and NW-first separate training. A simple implementation of sequential separate training is described in the following for the most general setting where multiple encoders (at UEs) and multiple decoders (at NWs) are trained in a single training session.
UE-first separate training: An example implementation of UE-first separate training may entail the following steps in order:
Step 1: Each UE leverages training type 1 to train an AE
Step 2: Each UE uses its trained encoder on an alignment dataset and generates latent vectors
Step 3: UEs provide compound datasets including CSI samples and corresponding latent vectors to NWs
Step 4: NWs collect compound datasets from all UEs and train their decoders.

NW-first separate training: An example implementation of NW-first separate training may entail the following steps in order:
Step 1: Each NW leverages training type I to train an AE
Step 2: Each NW uses its trained encoder on an alignment dataset and generates latent vectors
Step 3: NWs provide compound datasets including CSI samples and corresponding latent vectors to UEs
Step 4: UEs collect compound datasets from all NWs and train their encoders.
In our companion contribution [3], we have evaluated training type 3 including both UE-first and NW-first cases. In general, our results confirm the natural performance degradation of training type 3 compared to training 1 and training type 2. We also identified the risk of pairing unmatched encoder and decoders are higher in the training type 3, and between UE-first and NW-first separate training, this risk is higher for NW-first training. How to avoid such a degradation from unmatched pairs is a challenge that need information other than training inputs/outputs, i.e., latent vectors and CSI samples. Information such as encoders’/decoders’ types and complexity can be useful for the parties come second in the training order.
Comparison of different training strategies
[bookmark: _Hlk131669478]Per proposal 3-1-1 in [7], we have provided a comprehensive comparison between different training strategies as shown in Table 21.
[bookmark: _Ref131669663]Table 21: Comparison between different training strategies
	Training Type 1

	Pros:
· Guaranteed performance
· Isolated engineering
· No scalability issues
· User privacy
	Cons:
· No device-specific optimization
· Latency is not guaranteed
· Model cannot be kept proprietary
· Model transfer overhead

	Training Type 2

	Pros:
· Better performance compared to type 3
· Good perf at scale
· Proprietary models
· UE/NW can keep one model
· Per device optimization
· User privacy
	Cons:
· Synchronization
· Shared data/private data scheduling
· Frequent info exchange in BP/FP
· Backward compatibility
· Non-isolated engineering efforts

	Type 3

	Pros:
· Isolated engineering
· One-time info exchange
· Makes cell/area-specific designs easier
· Proprietary models
· Per device optimization
	Cons:
· Scalability (low perf at scale)
· Lower perf compared to other types
· Model update flexibility

While Table 21 enumerates all the disadvantages of the training strategies, in what follows, we point out the most challenging barriers ahead of practical implementation of each strategy.
· Training type 1: As this training strategy relies on partial/full model transfer, it is inevitable to reveal AI/ML model’s structure and it cannot maintain proprietariness of AI/ML models. Also, the designed model by one party is not optimized for the other parties. Finally, the design, development, and maintenance burden of AI/ML model is on the shoulder of one party (either UE or NW).
· Training type 2: The training type has strict requirements on the collaboration of UE and NW vendors to establish a training session. It also suffers from backward compatibility issue. For example, if a new device is introduced to the market, all vendors need to gather up to jointly retrain their encoders and decoders in presence of the new device (new AI/ML model).
· Training type 3: While training type 3 relaxes the previous problems, it suffers from the scalability issue. As shown in our companion contribution [4], pairing more than one encoder/decoder to a common decoder/encoder causes significant performance loss.
Quantization
Quantization on CSI feedback
As shown in Figure 27, quantization is an indispensable step of CSI compression, where the quantizer module first converts the (latent) output of the encoder into a bitstream at the UE side, and later the de-quantizer module will translates back the bitstream into the latent input of the decoder at the NW side. However, two-sidedness of the quantization, its natural non-differentiability, and abondance of quantization techniques bring unique challenges to the CSI compression sub use case, necessitating extensive study to identify scalable, accurate, and yet simple quantization technique which fit the budget of NW/UE and tolerate multi-vendor wireless ecosystem.
[image:]
[bookmark: _Ref127377021]Figure 27: Quantization framework in CSI compression
The goal of this contribution is to study and identify effective quantization methods for CSI compression and further analyse the requirements and spec impacts of each. To do so, we first numerate the major features that distinguish quantization methods, including training-awareness, learnability, and mapping (from latent to quantization space).
Training awareness
Training-aware indicates whether the quantization has been exposed to the encoder and decoder parts of AI/ML model in the training stage or not. This awareness is particularly helpful as exposure of the quantization to the AI/ML model helps it to compensate the inflicting error of quantization and adjust its parameters accordingly. This further avoids possible CSI reconstruction accuracy mismatch in the training and inference stages.

	[image:]
(a) Training-non-aware quantization

	[image:]
(b) Training-aware quantization

[bookmark: _Ref127377888]Figure 28: Illustration of the difference between training-aware and training-non-aware quantization
As shown in Figure 28(a), in a training-non-aware (TNA) approach, the training stage happens in the absence of the quantization, while the quantization method will be later deployed between the encoder and decoder of AI/ML model in the inference stage. Therefore, the sudden introduction of quantization may deteriorate the overall performance of AI /ML model. As shown in Figure 28(b), in training-aware (TA) approach, the quantization will be presented in the training stage, avoiding any mismatch between training and inference stages. As evaluation results in our companion contribution [4] show, training awareness improves the overall performance of AI/ML models for CSI compression by 6.5%. Thereby, we propose to prioritize TA quantization methods.
Quantization (including quantizer and dequantizer modules) is a non-differentiable function by nature. Therefore, some provisions required to perform backpropagation in its presence. There are some techniques to rectify non-differentiability of quantization function such as artificial gradient, approximation of quantization in FP, approximation of quantization in BP, etc. However, pros and cons of each method are not well-studied. Also, it is not clear whether a general alignment is required among the techniques being used at NW (dequantizer) and UE (quantizer) for training awareness.
 Study alignment requirement and influence of different training awareness techniques for enabling backpropagation between quantizers and dequantizers.
[bookmark: _Hlk127379376]Nevertheless, any training awareness technique which is adopted by NW can highly impact the BP at UE’s encoder if training type 2 is applied. As an example, let us assume during training type 2, NW applies a dequantizer and does not treat its BP behavior at all. In this case, while decoder can perform BP without any problem, encoder fails to do it. As another example, let us assume NW injects a large constant gradient for the sake of making BP able to go through dequantizer. Such an action highly de-stabilizes the training of the UE’s encoder. As such, we believe the NW should inform UE about the training awareness technique used for its dequantizer at least for training type 2.
Learnability
Another aspect of quantization schemes is learnability of their parameters/configurations. Learnability implies whether the quantization parameters/configurations will change in the course of training stage. Thereby, it is a unique feature of TA quantization methods. An example of non-learnable (NL) quantization is a fixed uniform quantization whose intervals and levels remain unchanged during the training stage. An example of learnable quantizer is a uniform quantizer whose levels and range will be adjusted in the course of training stage.
Mapping/Codeword assignment
Regardless of training awareness and learnability, any quantization method aims at discretizing the feasible space of the encoder’s output and mapping an entire sub-space into a single representative point (a.k.a. codeword). How to generate a codeword for each sub-space is another point of classification. There are two major approaches, “vector quantization (VQ)” and “scalar quantization (SQ)”. In the SQ, each element on the latent output will be mapped to a new discretized element, and the final codeword will be a vector of all individually discretized elements. In the VQ, however, there is unique mapping from multiple/all elements on latent output to multiple/all elements of discretized/quantization space. VQ also suffers from two problems. First, the codebook design for VQ is computationally expensive, and its complexity will increase with the dimension of its input. Second, the number of CSI samples in the training dataset should exceed the number of representative points in the codebook which is simply . Therefore, for a high accuracy and large feedback overhead, the number of required CSI samples grows to an unpragmatic number, which hinders us to design a codebook that can handle the entire latent output together. To address these issues, it is inevitable to break down the latent vectors to smaller segments. With the aid of segmentation, a codebook will be designed for each segment as shown in Figure 29. In the inference stage, the same segmentation approach will be applied to the latent, and a codeword will be assigned to each segment. The final codeword will be the concatenation of all codewords of segments.
[image:]
[bookmark: _Ref127396938][bookmark: _Ref127396926]Figure 29: General framework of designing a VQ
In our companion contribution [4], it is shown that segmentation harms the performance of VQ, and the SQ methods may outperform VQ as they do not suffer from the aforementioned issue. Also, VQ is very sensitive to any changes in AI/ML model. Thereby, we believe if VQ is used for quantization of latent space, it should be aligned at UE and NW sides. Also, we could not find any advantage for VQ over SQ even though VQ needs more computational and alignment efforts, and its performance is not very promising.
On classification of different quantization methods
[image:]
[bookmark: _Ref127397635]Figure 210: Classification of different quantization methods
We believe the training awareness, learnability, and mapping (codeword assignment) provide a comprehensive description of any quantization method. These three aspects can be used for classifying various approaches in quantizing the latent space as shown in Figure 210.
Quantization on input/ground-truth CSI
Data collection stage comes with a huge overhead, mainly due to sending bulky CSI reports. To facilitate the data collection, it is inevitable to quantize CSI samples. It has been shown in [4], the quantization can significantly reduce the overhead of data collection with negligible impact on the accuracy of the AI/ML model. In [4], we have shown it is feasible to compress the training dataset 10 times with only 3.1% performance degradation compared to non-quantized (ideal) dataset. We have also shown incorporating few ideal CSI samples for finetuning reduces the performance gap caused by dataset quantization. However, it is still unclear to us which entity is responsible for configuring quantization and whether configuration changes per sample or remains unchanged for the entire data collection period.
 Discuss the quantization of CSI sample for data collection in the following aspects:
· Decisioning entity about configuration
· Incorporation of non-quantized CSI for possible finetuning
· Quantizable information (CSI samples and assistant information)
· Configuration granularity (per sample or per dataset)
Life Cycle Management
Life cycle management (LCM) includes the crucial steps of using the best CSI compression solution at any moment. LCM mainly consists of model training, model deployment, and monitoring. In this section, we go over to the main steps of LCM.
Data collection for model training
UE-side data collection
UE is the first and only entity to perform RF measurements and calculate CSI samples based on CSI-RS configuration. It is then up to UE to decide about CSI type, possible quantization, and applicable pre-processing before sending data to its server. One question to ask is whether any enhancement on CSI-RS is required for UE-side data collection or not. In our view, modification/enhancement of CSI-RS need to be studies to reveal its potential benefit in getting high-resolution CSI samples for training and monitoring purposes.
NW-side data collection
NW-side data collection relies on sending the UE-side measured CSI samples back to NW. NW can use two options in this regard: i) NW’s server collects CSI samples from UEs’ servers; and ii) NW collects CSI samples from UE devices using air interface. The former option does not rely on 3gpp signalling and does not need to be discussed here. The latter option, however, uses 3gpp signalling on air interface and should be discussed. The main issues with this option are two-fold.
First, in NW-side data collection, it is natural that NW establishes the data collection procedure. However, with disregarding UE’s capabilities, computational power, and storage budget, this procedure may inflict a huge burden on UEs. Also, UEs’ specs vary on both device and vendor basis. Therefore, we believe even in a NW-centric data collection framework, UE should provide NW with a range of possible options for various aspects of the data collection procedures including but not limited to types of input CSI, types of assistant information, quantization parameters, periodicity of data collection, and maximum amount of data collected per period.
 For NW-side data collection, while NW is main entity in establishing data collection procedure, UE should provide NW with a range of possible options for configurations of the data collection procedure including but not limited to:
· Types of input CSI
· Types of assistant information
· Quantization parameters
· Periodicity of data collection
· Maximum amount of data collected per period

Second, using air interface for data collection comes with significant overhead which consequently harms network throughput and latency. While the quantization can relax this issue to some extent, we believe the issue can be re-solved if NW itself does RF measurement and CSI estimation. Given promising generalization capability of AI/ML model over carrier frequency as shown in 9.2.2.1, NW can rely on SRS to measure CSI in the uplink. We also believe for the sake of avoiding any performance gap, NW should have the option of using finetuning with actual downlink CSI. In this regard, CSI-RS-based data collection should not be precluded for NW-side data collection.
To relax the overhead of using air interface for NW-side data collection, NW can use SRS for CSI estimation. Usage of CSI-RS-based CSI can be limited to finetuning purposes.
Model management
It has already been agreed that UE and NW have access to a set of AI/ML models each of which are associated with an ID and a range of representative information. However, there is no agreement what those representative attributes are. In brief, NW can take a monitoring action based on detecting a monitoring event or inspecting the representative information of candidate AI/ML models. NW then is able to inform UE about the ID of suitable AI/ML model that fits current RF environment or configuration. If no suitable AI/ML model is found among possible AI/ML models, NW may decide to initiate fallback to non-AI/ML-based solution as well. So far, little progress has been made in detailing such a procedure, and we had just a consensus on the overall concept. Also, all efforts have focused on monitoring the AI/ML models that are currently being used by UE and NW. It is not discussed how to monitor the performance of other candidate AI/ML models which are not being used at the moment of monitoring. Then, the question is how UE and NW can identify the best candidate AI/ML model if a monitoring event is detected.
 Discuss methods and apparatus for monitoring AI/ML models other than the one which is already being used by UE and NW.
Model monitoring
Model monitoring aims at tracking the changes of RF environment and AI/ML model effectiveness in CSI compression to adopt the best possible solution at any situation. While the decisioning entity in taking a monitoring action is NW, monitoring entity can be either UE or NW. To do this task, NW and UE may rely on statistics of input/output CSI, intermediate KPIs, and system-level indicators (eventual KPIs).
General framework
In general model monitoring entity can be either UE or NW, where monitoring entity only has the role to identify/report an event and request for subsequent action. In our view, while UE can detect a monitoring event, NW side is the final decisioning entity.
UE-side monitoring
UE-side monitoring comprises two parts: event detection and assisting NW. For event detection, UE may use L1 physical signaling to report to NW about model failure/malfunctioning using one of the schemes wich will be discussed later in this section. L1 signaling is pretty fast and can aware NW about failure in timely manner. However, L1 containers are too small to carry detailed information about CSI samples, drift distribution, etc. RRC signals can be used to transfer such data upon NW request. NW may decide to request more info from UE or decide to directly fallback to non-AI/ML method.
 For UE-side monitoring, UE can use L1-based signaling for event detection and RRC signal for assisting NW for subsequent actions if needed.
NW-side monitoring
In NW-side monitoring, NW may not report the event detection to UE separately; it can directly request UE information which may be needed for possible monitoring action. NW also may configure UE to receive such monitoring-related information in both periodic and aperiodic manner. Periodic reports are received to persistently monitor whether AI/ML model is performing well, and aperiodic for the case of monitoring event detection. NW can configure UE about the periodicity of reports and types of included information.
 For NW-side monitoring, study spec impact of periodic (non-event-triggered) and aperiodic (event-triggered) monitoring separately.
Input/output-based model monitoring
It is natural that any changes in RF environment will be reflected in input CSI, and as there is a unique mapping between input CSI and output CSI, such changes will flow through output CSI as well. Therefore, it is possible for UE and NW to identify monitoring events based on input CSI and output CSI, respectively. For the UE-side input-based model monitoring, UE is able to inspect statistics of input CSI samples like range, variance, distance to anchor points, etc. and compare to that of the training scenario and identify possible discrepancy. NW can similarly monitor the discrepancy between statistics of output CSI in training and inference stages of an AI/ML model for detecting a monitoring event. It has been already shown such statistics (at least for input CSI) is able to identify monitoring events [6]. This monitoring method inflicts no spec impact w.r.t. what already is introduced for general monitoring purposes. Also, the monitoring mechanism only resides at the UE or NW. It neither necessitates AI/ML model disclosure of any party nor imposes large overhead of exchanging raw input/output CSI, making it an amenable candidate for practical implementation. However, accuracy of these methods is questionable and need to be further studied.
[bookmark: _Hlk127439863]Intermediate-KPI-based model monitoring
The effectiveness of an AI/ML model for CSI compression cannot be better measured than monitoring the intermediate KPIs, such as GCS, SGCS, MSE, and NMSE. It is essentially the most accurate monitoring method to identify a monitoring event or compare a set of candidate AI/ML models. The intermediate-KPI-based monitoring can be either performed by UE or NW as described in what follows.
UE-side intermediate-KPI-based model monitoring
In UE-side intermediate-KPI-based model monitoring, UE is the first entity to measure the intermediate KPI. UE will later inform NW about monitoring events and intermediate KPIs to take possible monitoring actions. Such an approach can be implemented through two alternatives as shown in Figure 211.
	[image:]
(a) UE-side monitoring - Alternative 1
	[image:]
(b) UE-side monitoring - Alternative 2

[bookmark: _Ref127440059]Figure 211: Illustration of two different alternatives for UE-side monitoring
Alternative 1: As shown in Figure 211(a), NW can send its decoder to the UE. Thereafter, UE can access to the entire AI/ML autoencoder model and measure intermediate KPIs upon estimating input CSI.
Alternative 2: As shown in Figure 211(b), NW can send output CSI to the UE. The UE can measure intermediate KPIs as it has access to both input and output CSI samples.
Both alternatives come with significant shortcomings. In Alternative 1, NW must disclose its AI/ML model, making it impossible to maintain any proprietary AI/ML model at the NW side. Also, the NW’s AI/ML model is not designed w.r.t. UE’s capabilities and budgets. UE may struggle in handling NW’s AI/ML model due to excessive complexity. It may also go through the re-compiling, pruning, and quantization of AI/ML model as well to finally deploy the full AI/ML autoencoder model. Alternative 2 does not suffer from such issues. However, it comes with large airtime overhead in the downlink as the output CSI with equal overhead of input CSI should be sent to the UE.
NW-side intermediate-KPI-based model monitoring
In NW-side intermediate-KPI-based model monitoring, NW is the first entity to measure the intermediate KPIs with the help of UE. NW will use an intermediate KPI as a point of judgement to take possible monitoring actions. Such an approach can be implemented through two alternatives as shown in Figure 212.
	[image:]
(a) NW-side monitoring - Alternative 1
	[image:]
(b) NW-side monitoring - Alternative 2

[bookmark: _Ref127440343]Figure 212: Illustration of two different alternatives for NW-side monitoring
[bookmark: _Hlk127442628]Alternative 1: As shown in Figure 212(a), UE can send its encoder to the NW. Thereafter, UE can access to the entire AI/ML autoencoder model. For the sake of monitoring, UE will send input CSI to the NW, and NW measures intermediate KPIs upon receiving input CSI and calculating output CSI.
Alternative 2: As shown in Figure 212 (b), UE will send latent output of its AI/ML model in conjugation with input CSI to the NW. Having access to input CSI, NW can measure intermediate KPIs upon calculating output CSI.
Both alternatives, however, suffer from large airtime overhead imposed by exchanging input CSI. Also, Alternative 1 mandates disclosure of AI/ML model at UE which is not appealing for UE vendors.
UE/NW-side proxy-based monitoring
A promising alternative to previous intermediated-KPI-based monitoring is proxy-based monitoring where one party discloses a proxy AI/ML model instead of its actual model. Proxy AI/ML model can be used for constructing a proxy AI/ML autoencoder which results an intermediate KPI which is drifted from the actual one. The proxy AI/ML model is much simpler than the actual one and it does not necessarily bear the same structure type. The core idea is that any changes which can be captured by actual intermediate KPI, it can be captured by the drifted intermediate KPI as well. Our companion contribution [4] has shown the feasibility of detecting monitoring events by drifted KPI. The UE/NW-side proxy-based monitoring is made possible through the alternatives shown in Figure 213.
	[image:]
(a) Proxy-based monitoring - Alternative 1
	[image:]
(b) Proxy-based monitoring - Alternative 2

[bookmark: _Ref127442583]Figure 213: Illustration of two different alternatives for proxy-based monitoring
Alternative 1: As shown in Figure 213 (a), NW can send a proxy AI/ML model for UE to enable forming a proxy AI/ML autoencoder model. Upon measuring the input CSI, UE is able to obtain the drifted KPI and share this information with NW if a monitoring event is detected.
Alternative 2: As shown in Figure 213 (b), UE can send a proxy AI/ML model for NW to enable forming a proxy AI/ML autoencoder model. Thereafter, UE will send input CSI for the sake of monitoring purposes, and NW will calculate the drifted KPI for possible monitoring actions.
While these approaches secure proprietariness of AI/ML models at both parties, the second alternative comes with large airtime overhead due to input CSI transmission. However, this is not the case for Alternative 1. In overall, Alternative 1 neither discloses the AI/ML model nor imposes large airtime overhead. It is indeed the best possible solution among all six alternatives for intermediate-KPI-based monitoring.
 Prioritize UE-side (Alternative 1) proxy-based model monitoring as the initial monitoring method for tracking intermediate KPI.
System-level model monitoring
The system-level indicators/eventual KPIs, such as throughput, spectral efficiency, ACK/NACK rate, and BLER can also detect the monitoring events, e.g., when an AI/ML model falls short in handing underlying RF environment and configurations. These indicators, however, bear the effects of both AI/ML model and RF environment which are impossible to be distinguished. As such, variation in system-level indicators cannot be regarded as the single point of decisioning for detection of monitoring events.
 System-level indicators cannot be regarded as the single point of decisioning for detection of monitoring events.
Multi-stage model monitoring
We believe none of the aforementioned monitoring methods can individually offer an efficient monitoring tool in terms of overhead, accuracy, and proprietariness. Instead, it would be more pragmatic to adopt a multi-stage monitoring approach where a low-overhead low-accuracy method triggers a more accurate intermediate-KPI based solution with higher overhead as shown in Figure 214. Such an approach comes effective in terms of overhead, accuracy, and proprietariness of AI/ML models at all parties.
[image:]
[bookmark: _Ref127444758]Figure 214: Multi-stage model monitoring
 Study multi-stage monitoring approach where a low-overhead low-accuracy method triggers a more accurate intermediate-KPI based solution with higher overhead.
Monitoring generalized AI/ML models
In our discussion about model monitoring, the monitoring actions mainly focus on performing an action on entire model upon detecting a monitoring event. This idea causes a dilemma for generalized AI/ML models, especially those generalized over input, output, and latent dimensions. In such cases, a monitoring action can deprive UE from all generalized scenarios/configs only because AI/ML model fails in the current scenario/config. In such a case, it is possible, changing the input, latent, or output preparation for the AI/ML model fixes the issues. We believe model monitoring should also incorporate signaling and frameworks that can keep a fixed AI/ML model while changing other preparation steps on input, latent, and output as shown in Figure 215.
 Study signalling and ID assignment procedure for AI/ML models generalized over multiple input, output, and latent dimensions.

[image:]
[bookmark: _Ref131673081]Figure 215: Illustration of model monitoring for preparation steps on input, latent, and output

Inference-related Spec Impact
CQI determination
In the RAN1#112 meeting, the following agreement about CQI determination has been achieved.
	Agreement
In CSI compression using two-sided model use case, further study the following options for CQI determination in CSI report, if CQI in CSI report is configured.
· Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment
· Option 1c: CQI is calculated based on legacy codebook
· Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
· Note: CSI reconstruction part at the UE can be different comparing to the actual CSI reconstruction part used at the NW.
· Option 2b: CQI is calculated using two stage approach, UE derive CQI using precoded CSI-RS transmitted with a reconstructed precoder.
· Other options are not precluded
· Note1: feasibility of different options should be evaluated
· Note2: Gap analyses between the UE side CQI calculation results and the NW side results, as well as the impact on the scheduling performance should be evaluated
· Note3: Complexity of CQI calculation needs to be evaluated, including the computing complexity and potential RS/signaling overhead

Option 2 relies on existing of NW’s decoder at the UE and ignores all the efforts have been made so far to maintain proprietiness of NW’s AI/ML model. As such, we suggest to study option 1, “CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation” as the starting point.
 Prioritize option 1, “CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation” as the starting point.
Per option 1c, UE devices must measure CQI twice based on realistic CSI and legacy codebook which impose additional computations to UEs. As such, we believe other two options, i.e., options 1a and 1b, are more efficient solutions for CQI calculation. Per option 1a, UE measures CQI based on realistic CSI which is different from recovered CSI at NW. Such misalignment between target and recovered CSI results an inevitable discrepancy between CQI measured by UE and NW. Current NWs are already equipped with CQI adjustment mechanism to compensates effects such as CSI aging. Therefore, even if UE does not adjust the CQI, NW may apply adjustment. The option 1b, however, explicitly emphasize on such adjustment, where CQI is measured from target CSI and adjusted subsequently. In our view, the adjustment can be drawn through one of the following methods: i) UE receives assistant signaling from NW about its observed CQI; ii) UE reports measured CQI to NW and later receives information on how to adjust its CQI measurement. We believe as CQI can be reported as a part of AI/ML CSI feedback, the latter option is more feasible and brings less signaling requirement. In brief, we believe options 1a and 1b are more practical to calculate CQI.
 Prioritize option 1a and option 1b for CQI calculation.
CSI Prediction
Potential Specification Impact
[bookmark: _Hlk127196894]In the last RAN1 meeting, time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement. Although the potential specification impact has been deferred until RAN1#112b-e, we still provide our ideas in this document.
Several alternatives to handle CSI prediction exists and each would have their own specification impact. Since it is decided to apply the CSI prediction on the UE side, it is important to decide on how the CSI feedback to NW is executed:
· Option 1: UE only feedback one instance CSI. In this case, on example is that NW configures the UE with a prediction target of X milliseconds in the future (which is likely to be subject to UE capability). Then UE can use the following mechanism to compress the predicted CSI:
· Existing codebook: The UE may feedback PMI/RI/CQI information using pre-Rel18 codebook (e.g., Rel-16 e-Type II codebook) to minimize the specification impact.
· AI/ML assistance: The UE may compress the raw CSI channel using an AI/ML-based CSI compression approach. The spatial-frequency domain CSI compression can be used in this scenario.

· Option 2: UE feedback multiple instances of future CSI. In this case, we need to take the time domain fluctuations into account. Then UE can use the following mechanism to compress the predicted CSI:
· Existing codebook: The UE may feedback the PMI/RI/CQI information using Rel-18 codebook (with Doppler domain information) to minimize the specification impact. Although the Rel-18 codebook is still developed in the Rel-18 MIMO agenda, it can be considered as an optional baseline scheme.
· AI/ML assistance: The UE may compress the raw CSI channel using an AI/ML-based CSI compression approach. The temporal-spatial-frequency domain CSI compression can be used in this scenario.
 For AI/ML-based CSI prediction, discuss the potential specification impact of CSI feedback mechanism. Codebook-based feedback can be used as a baseline (legacy codebook or Rel-18 codebook), but AI/ML-based CSI compression is not precluded.
Potential Procedure
In this section, we proposed the potential procedure of CSI prediction. This procedure supports the periodic CSI-RS, semi-persistent CSI-RS, and aperiodic CSI-RS configuration. Before moving on the detailed procedure, the configuration of observation window and prediction window need to be clarified. Figure 31 shows the illustration of observation window and prediction window, which are composed of the number of CSI-RS instances and the time interval. It should be noted that the observation interval and the prediction interval can be different. For example, the observation interval is 4 slots in the figure, and the prediction interval is 1 slot. The number of observation instances and prediction instances are selected from a set of specified numbers, e.g., {4, 6, 8, 10, 15} samples. In addition, the observation interval and prediction interval are also selected from a set of specified numbers, e.g., {1, 4, 5} slots. These values can be configured by NW or feedback by UE itself.
[image:]
[bookmark: _Ref127481684]Figure 31: Illustration of observation window and prediction window
In addition to the signalling exchange between the UE side and the base station (BS) side, the AI cloud server is also included to handle more complex operations, such as model training and fine-tuning. The AI cloud servers can be deployed by the UE vendors or chipset vendors, depending on the implementation of different companies.
Figure 32 shows the potential procedure of AI/ML-based CSI prediction. The whole process includes the training and the inference stages, and is divided into ten steps:
1 UE reports the maximum prediction length (e.g., 20 slots) based on its own capability. If the value is 0, it means no CSI prediction algorithm or corresponding AI/ML model in the UE side. If NW receives a zero value, it will not trigger the CSI prediction process.
2 In RRC connected mode, NW configures the observation windows and prediction windows that UE can provide in the CSI feedback. The NW may determine the parameters according to the environment.
3 UE may decide whether to do the CSI prediction based on the following indicators:
· CSI-RS periodicity (Ex. Not trigger CSI prediction in long CSI-RS periodicity, i.e., period > 8 slots)
· UE velocity (Ex. Not trigger CSI prediction in low-speed scenario, i.e., UE speed < 20km/h)
4 UE updates the observation window and the prediction window to AI cloud server based on BS configurations.
5 In training stage: UE collect the training data, then transfer the training dataset to the AI cloud server. Or AI loud server can collect data by itself, so UE only needs to give an activation signal instead of transmitting a large amount of data
6 In training stage: Model training or fine-tuning process is conducted in the AI cloud server.
7 AI cloud server deliver the trained model to the UE (the format can be the ONNX format). Then UE stores the AI/ML model corresponding to the configured observation window and prediction window. If the memory size in the UE is sufficient, the UE can store many models of different observation/prediction window sets. It can avoid frequent retraining of the model.
8 UE feedback an indicator (e.g., 1-bit) to show whether UE has the capability to perform the CSI prediction process.
· If the indicator is 0: UE decline the request for the CSI prediction (the conditions are unsuitable or unworthy of UE to do CSI prediction, i.e., the UE speed is too low)
· If the indicator is 1: UE has the capability to do the CSI prediction
9 BS then configure the signalling to UE to activate/deactivate/modify (fine-tuning) the AI/ML model of CSI prediction.
10 After UE receives the signalling, it provides the corresponding action:
· Active: Run the CSI prediction in inference stage and provide the results in next CSI feedback period
· Deactivate: Stop the AI/ML-based CSI prediction
· Modify: Re-collect the data and send it to AI cloud server for model fine-tuning
[image:]
[bookmark: _Ref127198240]Figure 32: Procedure of AI/ML-based CSI prediction
In this procedure, we can observe that it needs the data collection and model transfer between the UE and the AI cloud server. Therefore, a unified interface is needed between them. The LCM related discussion can be left for the high-level discussion. In this section, we can focus on the potential specification impact of the procedure.
 For AI/ML-based CSI prediction, discuss the potential specification impact of the signalling between UE and NW.
Conclusion
In summary, based on the above discussion, we have the following proposals:
1. Keeping a single universal AI/ML model at NW for training type 1 should be deprioritized.
Further categorize NW-side training type 1 based on the number of available AI/ML models and their target UE devices.
Discuss feasibility of synchronization/alignment required for different update scheduling in training type 2.
 Study alignment requirement and influence of different training awareness techniques for enabling backpropagation between quantizers and dequantizers.
 Discuss the quantization of CSI sample for data collection in the following aspects:
· Decisioning entity about configuration
· Incorporation of non-quantized CSI for possible finetuning
· Quantizable information (CSI samples and assistant information)
· Configuration granularity (per sample or per dataset)

 For NW-side data collection, while NW is main entity in establishing data collection procedure, UE should provide NW with a range of possible options for configurations of the data collection procedure including but not limited to:
· Types of input CSI
· Types of assistant information
· Quantization parameters
· Periodicity of data collection
· Maximum amount of data collected per period

To relax the overhead of using air interface for NW-side data collection, NW can use SRS for CSI estimation. Usage of CSI-RS-based CSI can be limited to finetuning purposes.
 Discuss methods and apparatus for monitoring AI/ML models other than the one which is already being used by UE and NW.
For UE-side monitoring, UE can use L1-based signaling for event detection and RRC signal for assisting NW for subsequent actions if needed.
 For NW-side monitoring, study spec impact of periodic (non-event-triggered) and aperiodic (event-triggered) monitoring separately.
Prioritize UE-side (Alternative 1) proxy-based model monitoring as the initial monitoring method for tracking intermediate KPI.
System-level indicators cannot be regarded as the single point of decisioning for detection of monitoring events.
 Study multi-stage monitoring approach where a low-overhead low-accuracy method triggers a more accurate intermediate-KPI based solution with higher overhead.
 Study signalling and ID assignment procedure for AI/ML models generalized over multiple input, output, and latent dimensions.
 Prioritize option 1, “CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation” as the starting point.
 Prioritize option 1a and option 1b for CQI calculation.
For AI/ML-based CSI prediction, discuss the potential specification impact of CSI feedback mechanism. Codebook-based feedback can be used as a baseline (legacy codebook or Rel-18 codebook), but AI/ML-based CSI compression is not precluded.
For AI/ML-based CSI prediction, discuss the potential specification impact of the signalling between UE and NW.
References
[1] [bookmark: _Ref127361231]RP-213599, Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface
[2] [bookmark: _Ref127363302]R1-2210753, “Summary#7 of [110bis-e-R18-AI/ML-02]”, Moderator (Huawei), Oct. 2022.
[3] [bookmark: _Ref127363319]R1-2212227, “Evaluation on AI/ML for CSI feedback enhancement”, MediaTek Inc., TSG-RAN WG1 Meeting #111, Toulouse, France, Nov. 2022.
[4] [bookmark: _Ref127378248]R1-2303336, “Evaluation on AI/ML for CSI feedback enhancement”, MediaTek Inc., TSG-RAN WG1 Meeting #112 bis-e, e-Meeting, April. 2023.
[5] [bookmark: _Ref127405055]R1-2210886, “Discussion on AI/ML for CSI feedback enhancement”, Huawei, TSG-RAN WG1 Meeting #111, Toulouse, France, Nov. 2022.
[6] [bookmark: _Ref127439282]R1-2212109, “Other aspects on AI/ML for CSI feedback enhancement”, Qualcomm Incorporated, TSG-RAN WG1 Meeting #111, Toulouse, France, Nov. 2022.
[7] [bookmark: _Ref131668978]R1-2301913, “Summary #4 on other aspects of AI/ML for CSI enhancement,” Moderator (Apple), RAN WG1 Meeting #112, Athens, Greece, Feb.-Mar. 2023.
[8] [bookmark: _Ref134386942]R1-2303983, “Summary #5 on other aspects of AI/ML for CSI enhancement,” Moderator (Apple), RAN WG1 Meeting #112bis-3, e-Meeting, April 2023.
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image1.png

image2.png

