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Introduction
In the approved new SI for study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface [1], one important direction is to study the evaluation on AI/ML for positioning accuracy enhancement.  The objective of the study item is as follows.
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
· Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference), and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.



This contribution discusses the evaluation on AI/ML for positioning accuracy enhancement.
Evaluation Methodology    
For evaluating baseline positioning performance, the application scenarios in Rel-16 are focus on eMBB indoor office, Umi, Uma scenarios with specific scenario parameters [2]. After further positioning enhancement in NR, the application scenarios of Rel-17 are mainly focus on commercial use cases and IIoT indoor factory (i.e. InF-HH, InF-SH, InF-SL, InF-DH and InF-DL), and the evaluation of the achievable performance is based on legacy positioning technologies with DL PRS and SRS specified in Rel-16 [3]. Refer to the application scenarios in Rel-18 positioning by AI/ML, considering that the traditional Positioning methods (timing based/angle based) is sensitive to synchronization error and NLOS environment, InF-DH with {60%, 6m, 2m} is used to evaluate the performance of AI/ML based algorithms. 
Since different AI model can lead to different simulation results, the evaluation metrics of the AI model (including complexity) should be considered as one impact factor when study the benefits (if any) of using AI for positioning. In addition, it should be noted that some specific evaluation assumptions will also cause fluctuations or even large differences of the simulation results when using the same AI model. For example, some specific AI/ML related parameters, like hyper-parameter settings, can arouse different simulation results. Besides, different setting for space consistence can also arouse fluctuations of the simulation results. Therefore, the impacting factors on the simulation shall be further studied to obtain a reliable simulation result.
Observation 1: Some specific AI/ML related parameters, like hyper-parameter settings, will arouse different simulation results.

Key Performance Indicators
In RAN1 #110bis-e meeting, the following agreement was made for evaluation of AI/ML based positioning:
	Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(e) InF scenarios, e.g., training dataset from one InF scenario (e.g., InF-DH), test dataset from a different InF scenario (e.g., InF-HH)

Agreement
For AI/ML-assisted positioning, companies report which construction is applied in their evaluation:
(a) Single-TRP construction: the input of the ML model is the channel measurement between the target UE and a single TRP, and the output of the ML model is for the same pair of UE and TRP. 
(b) Multi-TRP construction: the input of the ML model contains N sets of channel measurements between the target UE and N (N>1) TRPs, and the output of the ML model contains N sets of values, one for each of the N TRPs.
Note: For a measurement (e.g., RSTD) which is a relative value between a given TRP and a reference TRP, the TRP in “single-TRP” and “multi-TRP” refers to the given TRP only. 
Note: For single-TRP construction, companies report whether they consider same model for all TRPs or N different models for TRPs




In RAN1 #110 meeting, the following agreement was made for evaluation of AI/ML based positioning:
	Agreement
For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of model parameters”
Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
(a) Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
(b) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
(c) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.
Agreement
For AI/ML-based positioning, study impact from implementation imperfections.
Agreement
When providing evaluation results for AI/ML based positioning, participating companies are expected to describe data labelling details, including:
· Meaning of the label (e.g., UE coordinates; binary identifier of LOS/NLOS; ToA)
· Percentage of training data without label, if incomplete labeling is considered in the evaluation
· Imperfection of the ground truth labels, if any
Agreement
For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies. 



Model generalization
Considering a typical usage of AI, the input information is the channel information (e.g., the CIR for both LOS/NLOS environment) and output information can be the positioning location or measurement results (e.g., TOA, TDOA or AOA/AOD, etc), the dataset shall be generated based on TR 38.901 and the simulation assumptions agreed in RAN1 #109-e meeting. More specifically, when the evaluation scenario and the simulation configuration is determined, the channel information and the true location value or measurement results are collected as dataset for training an AI engine. 
According to the analyses above, the dataset generation method for training and testing/inference is super essential for shaping the final trained AI model, which includes its generalization ability. To improve the generalization ability, we can consider several different data combinations for training and testing/inference:
· the training dataset and the testing/inference dataset generated from one same scenario or different scenarios (InF-SH or DH, etc);
· the training dataset and the testing/inference dataset generated from one same clutter parameter or different clutter parameter (0.6, 6, 2 or 0.4, 2, 2)
On the other hand, RAN1 only agrees the input data could be generated from TS38.901 without other limitation, which assumes the channel information could be perfectly obtained. However, this could be quite questionable in reality. Even with a high qualified training device as discussed in our companion paper, the training data set, e.g., the CIR, could be impacted by the actual condition. Thus, the training CIR could be noisy, and/or incomplete; or the label (which is the location information for example) is not accurate or incomplete. 
Besides, the AI based positioning method has a lot of noise interference in the training process, which cannot be ignored, like imperfect input/output label, noisy CIR, etc. These noises will lead to inaccuracy position coordinates or measurement results. Therefore, to improve the positioning accuracy of the AI based positioning method further, RAN1 shall at least study the influence of imperfect input/output label and noisy CIR when evaluating AI based positioning method. Thus, it is worthy to study the generalization on the imperfection of the data set as well. 
Proposal 1: RAN1 shall study the generalization ability for imperfect input/output data and how to model the imperfections.
On top of the above aspects (i.e., scenario, clutter, imperfection), the formation of the input data may also generate some impact on the performance. For example, whether the input CIR information is normalized or not, since such operation may wipe out the information of large-scale fading, thus it may not be good for an AI model to extract the features thus made good inference outcome. We have observed the performance loss due to this apect as shown in Fig.6.
Proposal 2: the formation of the input data (e.g., the normalization of CIR) should be studied for AI/ML for positioning.

SNR mis-match
As shown in the section 3.1 of the updated results, the performance of using different/mis-match SNR level for training and inference. Most of the observation matches our expectations, like the high SNR for training and interference can have better performance than low SNR for training and interference, and the fine tuning could help improving the generalization performance. However, there is one observation bringing some new insights, i.e., the model trained with low SNR can perform better in high SNR level compared to using the inference data input from the same low SNR data set, as shown in following table, case 1 is worse than case 2 and case 3 is much much worse than case 4. This is somehow new because as the AI/ML model was not seen as particularly sensitive to the wireless channel feature, all it matters should be that the model is dealing with the data set. The model itself won’t care or realize the data set is from low SNR or not, it treats the input as numbers. But in our initial results, it reveals some wireless communication specific feature (e.g., SNR) could have some particular impact on the AI/ML model training/inference. 
 
	Case 
	Training 
	Interference
	Pos error (m) @90%

	1
	-10db SNR level
	-10db SNR level
	9.21

	2
	-10db SNR level
	10db SNR level
	7.52

	3
	10db SNR level
	-10db SNR level
	49.41

	4
	10db SNR level
	10db SNR level
	3.47


Observation 2: the mis-alignment of the SNR may not always degrade the performance, e.g., low SNR model may have better pos accuracy by having high SNR inference input than same low SNR inference input. 
Proposal 3: the impact of SNR to the AI/ML model training/inference should be studied more comprehensively. 
Computational complexity
According to the agreement in RAN1 #109-e and RAN1 #110 meeting, the computational complexity can be reported via the metric of floating-point operations (FLOPs), while the model complexity can be reported via the metric of “number of model parameters”. For different structure of the neural network layer, the preference on having high FLOPs (low parameter budget) or high parameter budget (then low FLOPs). For example in following two type of neural networks: dense layer and the 2D convolutional layer.
[image: ]  [image: ]
Fig. 1 – illustration of Dense layer and covoluational layer

Table 1 – FLOP vs parameter budget
	Type 
	Computational complexity (FLOP)
	Model complexity

	Dense layer
	O(MN)
	O(MN)

	Convolutional Layer
	O(KhKwCinCoHW)
	O(KhKwCinCo)


As shown in the figure, the M*N or the H*W*C are the input data size, which we can see the Dense layer has less FLOP number but larger parameter budget compared to convolutional layer, this is because the Dense layer does 1 matrix multiplication and 1 vector addition while convolution layer will reshape the input data into multiple channels and conduce the addition and multiplication. So in each channel computation, the stored parameter size could be lower but overall the computation time will increase. So we can see, there is a trade-off on the preference on computation and storage consumption. So we suggest, RAN1 should not only look into the computation aspect, but also the storage consumption aspect, which is important for evaluating whether a model could be actually applied or implemented eventually.
Proposal 4: Further study the impact of the trade-off between computational complexity and model complexity for evaluating an AI Model in Positioning.

Evaluation results 
[image: ]
Fig.2 CDF of the Resenet-based positioning

	Pos error(m)
	50%
	67%
	80%
	90%

	ResNet
	0.29
	0.38
	0.48
	0.67

	DL-TDOA
	17
	20
	26
	32



First of all, the evaluation results presented in the contribution is based on single TRP case. 
According to the common parameters in InF scenarios in TR 38.857, the dataset is generated by per UE dropping containing 90,000 samples when the clutter parameters are selected as {60%，6m，2m} and the synchronization error between gNB and UE is equal to 0. Among them, the size of training set is specified to 80000, and the size of test set is set to 10000. Each sample in the dataset includes the correspondence between 2D location coordinates and the time domain channel impulse response (CIR) from 18 base stations to the user, and the time domain CIR is saved as a 256-length vector. Since the sample of CIR is a plural, the size of each sample matrix in the dataset is specified as 18x256x2, where 2 means the real part and the imaginary part of the CIR. Figure 1 illustrates the CDF of the Resnet-based positioning. As shown in Fig.1, the positioning accuracy can achieve about 0.67m for 90% UEs, which have a significant improvement over the DL TDOA.
For the complex analysis, we have calculated the FLOPs and model complexity for the model used in the figure, which are shown in following table.


Observation 3: At least for data set from the same large-scale and small-scale propagation parameters setting in InF-DH, the AI based positioning method could provide significant improvement comparing to DL TDOA.
Different cluter, scenario and use of fine-tuning
Based on the same simulation assumptions above, when the training dataset and the testing/inference dataset generated from different scenarios, the simulation results are shown as below. Figure 3 shown when using the model trained in DH662 to infer the data in SH, the performance degradation is dramatic. However, if we use 1k data set from SH scenario to update the model, the performance could be recovered significantly. And if the larger FT size, e.g., 2k, is used, the better recover could be achieved. 
 [image: ]
Fig.3 CDF of positioning errors in different scenarios

When the clutter parameters are selected as {60%，6m，2m} DH662 in training dataset and {40%, 2m, 2m} DH422 in testing/inference dataset, we can found that similar trend as in previous generalization performance in Fig 4, which is the performance degradation is obvious. But with 1k data set from DH442 scenario to update the model, the performance could recover significantly. Similar as above case, the larger FH size could help get better/closer performance to original clutter settings. 
[image: ]
Fig.4 CDF of positioning errors with different clutter parameter.
Similar comparison for having model trained from SH but test and/or FT with DH662 and DH422, and model trained DH422 but test and/or FT with DH662 and SH as shown in following figures.
[image: ][image: ]
Fig.5 – Test and fine-tune performance on DH662 and DH422 on model trained from SH

[image: ][image: ]
Fig.6 – Test and fine-tune performance on DH662 and SH on model trained from DH422
Hall size
In addition, we have test another generalization case, that if different coverage (deployment) has changed from 120*60 (small hall size) to 300*150 (large hall size), it can be seen that the impact of the hall size is even much more server than the previous two cases even though the 1k update model could still recover the performance .

[image: ]
Fig.7 CDF of positioning errors with different deployment (hall size) 

Observation 4:  When the training dataset is from DH662 small hall size, and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three genralzation cases are degraded severely. 
Observation 5:  When the training dataset is from DH662 small hall size, and 1k training data update and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three generalizations cases are recovered significantly. The larger FH size, the better performance could be achieved.
Proposal 5: RAN1 study the update/fine-tuning the model with limited number of data set or targeting generalization case.
normalization of the CIR
As discussed in section 2.1.1, the normalization of the CIR could also impact the inference performance. The evaluation results are given below:
[image: ]
Fig.6 CDF of positioning errors with normalized or non-normalized CIR 
Observation 6: the normalized CIR may degrade the inference performance. 

Mis-SNR
As agreed in last meeting that, RAN1 will look into some other generalization aspect including the SNR mis-match. In the following update simulation results, the 10db SNR level and -10db SNR level are selected for representative high and low SNR level, respectively. Other simulation setting is InF-DH 662 aligned. 
	Case
	SNR definition
	Meaning/criteria

	1
	
	Average SNR over whole data set

	2
	
	Average SNR per TRP to all UEs;

	3
	
	Average SNR per UE to all TRPs

	4
	
	Average SNR per UE-BS link


To clarify, there is not much alignment on the SNR definiation used for the simulation and based on our analysis, there could be 4 cases as shown in following table. As in our simulation, the case 1 is applied. 

[image: ]
Fig.7 CDF of positioning errors with different SNR level

[image: ]
Fig.8 CDF of positioning errors with different SNR level (2)

The detailed statistic settings are updated in tables in following section on summary of the evaluation results. Based on the interference outcome, generalization results, and also the fine-tuning results, we have some of the following observations: 
· The fine-tuning is beneficial on improving the generalization performance;
· For same set for training and inference, high SNR level performs better
e.g., -10db model for -10db inference will have larger pos error than 10db model for 10db inference
· For different set for training and inference, low SNR level might be better
e.g., 10db model for -10db inference will have much larger pos error than -10db model for 10db inference
· Unlike the other generalization aspect, the mis-alignment of the SNR may not always degrade the performance. 
e.g., -10db model for -10db inference will have larger pos error than -10db model for 10db inference
Possible reason: the low SNR level data set could have larger/wider range of channel characteristic than the high SNR level data set; so that it can “recognize” larger number of channels from different range of SNR which can provide better performance in generalization.
Observation 7: for the evaluated SNR case, the low SNR data trained model could performs better in generalization.  

Label error
In last meeting, the label error related evaluation has agreed as following:
Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]

So following the agreement, we are trying to check the impact of the labelling error to our used AI/ML model. As shown in following figure. We applied the L=0.5, 1,2,4, and we can see the performance is degraded as the error goes larger, which is expected. However, the loss at 90% overall is still acceptable since the degraded performance is still within the usage range, such degradation is not going exponentially as the error goes larger, for example, the increased the error size is still in the level of L. So it’s fair to say the AI/ML is not sensitive to label error. 
[image: ]
Fig.9 the impact of labelling error
Observation 8: for the evaluated label error case, AI/ML direct positioning is not sensitive to label error.  

Updated results (CIR post processing: Signature transform)
As commonly used the CIR as input as large dimension like Nt=256, several results from companies show that a certain level of reduction from 256 to 32,16 etc could have positioning accuracy reduction. But most of the proposed method is simply to pick/select a portion of the full 256 samples, like the first N’t or strongest N’t, which holds the possibility to leave the important information used for positioning purpose, e.g., if the N’t is small, the first N’t may not hold the real first path. 
In this section, we introduce a new CIR post processing method, which called “signature transform” or “log signature transform” over the CIR. The target is to keep the useful information from the CIR and extract them as “signatures” to be used in the model training. 
The log signature transform is the mapping from a path to the logarithm of its signature. The signature of a path, which was originally introduced [4], can be seen as a collection of features extracted from the path by iterated integrals. The signature provides a well summary of the path and has meaningful interpretations from the geometrical or statistical point of view. The log signature, i.e., the logarithm of the signature, is a lossless compression of the signature, providing the same amount of information with fewer features. The key points to using log signature transform as a feature extraction are constructing a suitable path (continuous mapping) and doing necessary augmentation from the collected raw discrete time series. For the purpose of positioning, the path constructed by cumulative sum of energy (CSE) of the CIR and time augmentation are proposed, with the benefit of keeping the vital information for positioning. The log signature transform is applied to the constructed path to obtain features for subsequent AI/ML model training and inference. The basic procedure is shown in following figure:
[image: ]
Fig. 10 illustration of log-signature transform based processing over CIR
Among the procedure, most importantly, the specifically constructed time-augmented CSE path of each CIR keeps the critical information (power and time) for the positioning purpose and becomes suitable for feature derivation. Then the features of the path signature and log signature are obtained. With closed-form expressions of these features, the superior knowledge of filtering the necessary features can be derived before feeding into an AI model for learning and inference. Experiments in show that the proposed method can drastically reduce the input data size and model complexity and without accuracy reduction or achieve better positioning accuracy with a simple AI/ML model (like MLP) compared with CIR-based AI/ML models.  
Using simple AI/ML model, MLP

[image: ]
Fig.11 comparison of CIR-based and SIG based in MLP
It’s clear that the SIG based positioning achieves better performance than the CIR based one when using the MLP (in case of 2 layers, 4 layers and 6 layers).
Observation 9: SIG based input could adopt better (e.g., 7~8 times better in pos accuracy) with simple AI/ML model (e.g., MLP) than CIR based input.
Using ResNet
[image: ]
Fig.12 comparison of CIR-based and SIG based in ResNet

[image: ]
Fig.13 illustration of complexity reduction and Data size reduction
It shows that the pos accuracy when using ResNet for both input type are comparable but the used input data size and the complexity are quite different, in which the SIG based input type reduced with 98% in both aspects. 
Observation 10: the SIG-based input could drastically reduce the input data size and the complexity (e.g., with 98% reduction) without accuracy loss (e.g., even with 1% improvement).
Summary of the evaluation results:
Table X. Evaluation results for AI/ML model deployed on UE-side or network-side, Resnet 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	80000
	10000
	76K
	9.5M
	0.67

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	76K
	9.5M
	1.72

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH422
	18000
	2000
	76K
	9.5M
	18.8

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	SH
	18000
	2000
	76K
	9.5M
	22.4

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662 small Hall
	DH662 large Hall
	18000
	2000
	76K
	9.5M
	113.4

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662(original  CIR)
	DH662(normalized  CIR)
	18000
	2000
	76K
	9.5M
	2.79

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	SH
	18000
	2000
	76K
	9.5M
	0.37

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH662
	18000
	2000
	76K
	9.5M
	1.32

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH422
	18000
	2000
	76K
	9.5M
	22.4

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	DH422
	18000
	2000
	76K
	9.5M
	1.48

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	DH662
	18000
	2000
	76K
	9.5M
	18.8

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	SH
	18000
	2000
	76K
	9.5M
	4.96

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(SNR=10dB)
	DH662(SNR=10dB)
	18000
	2000
	76K
	9.5M
	3.47

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(SNR=
-10dB)
	DH662(SNR=-10dB)
	18000
	2000
	76K
	9.5M
	9.21

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(SNR=10dB)
	DH662(SNR=-10dB)
	18000
	2000
	76K
	9.5M
	49.41

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(SNR=
-10dB)
	DH662(SNR=10dB)
	18000
	2000
	76K
	9.5M
	7.52

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(Label error, L=0.5)
	DH662
	18000
	2000
	76K
	9.5M
	2.13

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(Label error, L=1)
	DH662
	18000
	2000
	76K
	9.5M
	2.54

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(Label error, L=2)
	DH662
	18000
	2000
	76K
	9.5M
	3.84

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(Label error, L=4)
	DH662
	18000
	2000
	76K
	9.5M
	5.80

	SIG 
With
18*6
	2D-coordinates
	2D-coordinates
	DH662(normalized  CIR)
	DH662(normalized  CIR)
	18000
	2000
	74K
	0.21M
	3.13

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662(normalized  CIR)
	DH662(normalized  CIR)
	18000
	2000
	76K
	9.5M
	3.18



Table X. Evaluation results for AI/ML model deployed on UE-side or network-side, MLP 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	932K
	1.86M
	36.23(2 layer)

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	952K
	1.91M
	35.35 (4 layer)

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	972K
	1.94M
	34.23 (6 layer)

	SIG 
With
18*6
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	21.2K
	42.2K
	5.24(2 layer)

	SIG 
With
18*6
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	41..2K
	82.3K
	4.20 (4 layer)

	SIG 
With
18*6
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	61.2K
	0.123M
	4.17 (6 layer)




Table X. Evaluation results for AI/ML model deployed on UE-side or network-side, Resnet
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH422
	DH422
	18000
	1000
	2000
	76K
	9.5M
	3.38

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH422
	DH422
	18000
	2000
	2000
	76K
	9.5M
	2.27

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	SH
	SH
	18000
	1000
	2000
	76K
	9.5M
	6.08

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	SH
	SH
	18000
	2000
	2000
	76K
	9.5M
	4.68

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662 small Hall
	DH662 large Hall
	DH662 large Hall
	18000
	2000
	2000
	76K
	9.5M
	20.72

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH662
	DH662
	18000
	1000
	2000
	76K
	9.5M
	3.38

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH662
	DH662
	18000
	2000
	2000
	76K
	9.5M
	2.27

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH422
	DH422
	18000
	1000
	2000
	76K
	9.5M
	0.70

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH422
	DH422
	18000
	2000
	2000
	76K
	9.5M
	0.58

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	DH662
	DH662
	18000
	1000
	2000
	76K
	9.5M
	6.08

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	DH662
	DH662
	18000
	2000
	2000
	76K
	9.5M
	4.68

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	SH
	SH
	18000
	1000
	2000
	76K
	9.5M
	3.32

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	SH
	SH
	18000
	2000
	2000
	76K
	9.5M
	2.85

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(SNR=10dB)
	DH662
(SNR=
-10dB)
	DH662
(SNR=
-10dB)
	18000
	1000
	2000
	76K
	9.5M
	18.21

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(SNR=10dB)
	DH662
(SNR=
-10dB)
	DH662
(SNR=
-10dB)
	18000
	2000
	2000
	76K
	9.5M
	14.77

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(SNR=-10dB)
	DH662
(SNR=
10dB)
	DH662
(SNR=
10dB)
	18000
	1000
	2000
	76K
	9.5M
	6.43

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
(SNR=-10dB)
	DH662
(SNR=
10dB)
	DH662
(SNR=
10dB)
	18000
	2000
	2000
	76K
	9.5M
	6.31



Conclusion
This contribution discusses the evaluation on AI/ML for positioning accuracy enhancement. Observations and proposals are summarized as follows: 
Observation 1: Some specific AI/ML related parameters, like hyper-parameter settings, will arouse different simulation results.
Proposal 1: RAN1 shall study the generalization ability for imperfect input/output data and how to model the imperfections.

Proposal 2: the formation of the input data (e.g., the normalization of CIR) should be studied for AI/ML for positioning.
Observation 2: the mis-alignment of the SNR may not always degrade the performance, e.g., low SNR model may have better pos accuracy by having high SNR inference input than same low SNR inference input. 
Proposal 3: the impact of SNR to the AI/ML model training/inference should be studied more comprehensively. 
Observation 3: At least for data set from the same large-scale and small-scale propagation parameters setting in InF-DH, the AI based positioning method could provide significant improvement comparing to DL TDOA.

Observation 4:  When the training dataset is from DH662 small hall size, and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three genralzation cases are degraded severely. 
Observation 5:  When the training dataset is from DH662 small hall size, and 1k training data update and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three generalizations cases are recovered significantly. The larger FH size, the better performance could be achieved.
Proposal 4: Further study the impact of the trade-off between computational complexity and model complexity for evaluating an AI Model in Positioning.
Proposal 5: RAN1 study the update/fine-tuning the model with limited number of data set or targeting generalization case.
Observation 6: the normalized CIR may degrade the inference performance. 
Observation 7: for the evaluated SNR case, the low SNR data trained model could performs better in generalization.  
Observation 8: for the evaluated label error case, AI/ML direct positioning is not sensitive to label error.  
Observation 9: SIG based input could adopt better (e.g., 7~8 times better in pos accuracy) with simple AI/ML model (e.g., MLP) than CIR based input.
Observation 10: the SIG-based input could drastically reduce the input data size and the complexity (e.g., with 98% reduction) without accuracy loss (e.g., even with 1% improvement).
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