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	Introduction
In RAN1#112b-e, agreement was reached corresponding to one use case of AI/ML for spatial-frequency domain CSI compression. Concretely, the following was agreed in RAN1#112b-e, [1].
	Agreement
For the rank >1 options under AI/ML-based CSI compression, for a given configured Max rank=K, the complexity of FLOPs is reported as the maximum FLOPs over all ranks each includes the summation of FLOPs for inference per layer if applicable, e.g.,
· Option 1-1 (rank specific): Max FLOPs over K rank specific models.
· Option 1-2 (rank common): FLOPs of the rank common model.
· Option 2-1 (layer specific and rank common): Sum of the FLOPs of K models (for the rank=K).
· Option 2-2 (layer specific and rank specific): Max of the FLOPs over K ranks, k=1,…K, each with a sum of k models.
· Option 3-1 (layer common and rank common): K * FLOPs of the common model.
· Option 3-2 (layer common and rank specific): Max of the FLOPs over K ranks, k=1,…K, each with k * FLOPs of the layer common model.
Agreement
For the rank >1 options under AI/ML-based CSI compression, the storage of memory storage/number of parameters is reported as the summation of memory storage/number of parameters over all models potentially used for any layer/rank, e.g.,
· Option 1-1 (rank specific)/Option 3-2 (layer common and rank specific): Sum of memory storage/number of parameters over all rank specific models.
· Option 1-2 (rank common): A single memory storage/number of parameters for the rank common model.
· Option 2-1 (layer specific and rank common): Sum of memory storage/number of parameters over all layer specific models.
· Option 2-2 (layer specific and rank specific): Sum of memory storage/number of parameters for the specific models over all ranks and all layers in per rank.
· Option 3-1 (layer common and rank common): A single memory storage/number of parameters for the common model.
Working assumption 
For the forms of the intermediate KPI results for the following templates:
	Table 2. Evaluation results for CSI compression with model generalization
Table 3. Evaluation results for CSI compression with model scalability, 
Table 4. Evaluation results for CSI compression of multi-vendor joint training without model generalization/scalability, 
Table 5. Evaluation results for CSI compression of separate training without model generalization/scalability, 
Table 7. Evaluation results for CSI prediction with model generalization


· The intermediate KPI results are in forms of absolute values and the gain over benchmark, e.g., in terms of “absolute value (gain over benchmark)”
· The intermediate KPI results are in forms of linear value for SGCS and dB value for NMSE

Agreement
For the evaluation of CSI compression, companies are allowed to report (by introducing an additional field in the template to describe) the specific CQI determination method(s) for AI/ML, e.g.,
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
· Option 2a-1: The CSI reconstruction part for CQI calculation at the UE same as the actual CSI reconstruction part at the NW
· Option 2a-2: The CSI reconstruction part for CQI calculation at the UE is a proxy model, which is different from the actual CSI reconstruction part at the NW
· Option 2b: CQI is calculated using two stage approach, UE derives CQI using precoded CSI-RS transmitted with a reconstructed precoder
· Option 1a: CQI is calculated based on the target CSI from the realistic channel estimation
· Option 1b: CQI is calculated based on the target CSI from the realistic channel estimation and potential adjustment
· Option 1c: CQI is calculated based on traditional codebook
· Other options if adopted, to be described by companies

Agreement
For the AI/ML based CSI prediction sub use case, if collaboration level x is reported as the benchmark, the EVM to distinguish level x and level y/z based AI/ML CSI prediction is considered from the generalization aspect.
·           E.g., collaboration level y/z based CSI prediction is modeled as the fine-tuning case or generalization Case 1, while collaboration level x based CSI prediction is modeled as generalization Case 2 or Case 3.

Agreement
For the AI/ML based CSI compression, for the submission of simulation results to the RAN1#113 meeting, for Table 1. Evaluation results for CSI compression of 1-on-1 joint training without model generalization/scalability, companies are encouraged to take the following assumptions as baseline for the calibration purpose:
· Benchmark: R16 eType II CB; 
· Others can be additionally submitted, e.g., Type I CB.
· Input/Output type: Eigenvectors of the current CSI
· Other can be additionally submitted, e.g., eigenvectors with additional past CSI, eType II-like input, raw channel matrix, etc.
· Ground-truth CSI quantization method: Float32, i.e., without quantization
· Other high resolution CSI quantization methods can be additionally submitted for comparison, e.g., R16 Type II-like method with new parameters, scalar quantization, etc.
· Rank/layer adaptation settings for rank>1: Option 3-1, i.e., layer common and rank common
· Other rank>1 options can be additionally submitted for comparison, e.g., Option 1-1/1-2/2-1/2-2/3-2.
· Quantization method: quantization-aware training (Case 2-1 or Case 2-2)
· Quantization non-aware training can be additionally submitted for comparison
· SQ and/or VQ is up to companies; companies are encouraged to provide results of various cases for comparison.
· Performance metric for intermediate KPI: SGCS
· NMSE can be additionally submitted.



[bookmark: _Ref30491904][bookmark: _Ref30492156][bookmark: _Ref30491838]In this contribution document, we further discuss our views on the evaluation methodology for CSI feedback.

Performance of Joint training of AI/ML-based CSI-Feedback 
In RAN#109-e [2], we have agreed on parameters of EVM (also specified in appendix 10.1) which are used for generation of simulated training data and evaluation of the model. In this section we present the results for application of the AI/ML based model and compare its performance with respect to Type-II code word.
Simulation assumption: 
· We simulate users using the proposed EVM, [2] (appendix 10.1) with 32 and 4 antennas at the eNB and the UE. 
· We have assumed that a single two-sided model ( for UE-side and  for NW-side) is jointly trained using the training dataset. The  and  parts are already deployed at the UE-side and NW-side respectively.
· We have simulated the model in 2400 drops and each drop we have simulated 300 UEs with bandwidth of 10MHz and 13 sub-bands. The data of the first 2300 drops are used as the training and validation dataset. 
· We have used the samples of the last 85 drops (Total of 25500 samples) exclusively for testing.
We have further assumed:
· Single layer transmission, Rank to be equal to 1.
· We have simulated a scenario with feedback rate of 272bits for both eTypeII and AI/ML based feedback.
· We have simulated for two cases when the samples are generated from UMA.
· The CSI-feedback encoder and decoder each had 7 transformer blocks.

The results of the simulation along with more details about the model structure and data sizes has been added to the template excel-sheet. The following table shows the summary of the intermediate KPI.
Table 1. AI/ML Intermediate KPI Performance.
	Test Set
	Model
	# of feedback
	SGCS UMA

	AI/ML Model
	-transformer
	272 bits
	87.5

	Type2. Rel16
	--
	272 bits
	86.8


As can be seen in both cases AI/ML outperformed Type2 transmission.
AI/ML-based CSI feedback models, trained using joint training scheme, leads to better performance compared to the performance of eType II.  
Performance comparison for different layers  
In this section we compare the performance of using AI/ML model for feeding back the precoder associated to the first or second layer. 
We use the same setup of Section 2 to generate training and test samples except that we include both rank-1 and rank-2 cases. We train two separate models, one for transmission of the first and one for transmission of the second layer: 
Table 2. Intermediate KPI Performance for AI/ML based feedback for different layers.
	Test Set
	Model
	# of feedback
	Trained for 
	Tested on 

	
	
	
	
	Layer-1 precoder
	Layer-2 precoder

	AI/ML Model
	-transformer 
	272 bits
	Layer-1 precoder  
	87.5
	--

	AI/ML Model
	-transformer 
	272 bits
	Layer-2 precoder
	--
	77.1

	Type2. Rel16
	--
	272 bits
	--
	86.8
	76.1



The performance of AI/ML-based CSI feedback models is higher than Type-2 Rel. 16 codebook design, for both the first and second layers.
The performance of AI/ML-based CSI feedback models is higher for layer-1 precoder compared to layer-2 precoder but the gains with respect to Type-2 Rel. 16 are almost the same.
Performance comparison of different quantization schemes
In this section we aim to investigate the effect of using different quantization schemes. We use the same setup of Section 2 to generate training and test samples. We compare the result of the following three models. All models have seven transformer blocks in their encoder and decoder.
Scheme-1 (Both VQ and SQ) – CSI-feedback bits are generated after concatenation of 256 bits generated using Vector Quantizer and the next 32 bits are generated using Scaler Quantizer. 
Note: how we should partition the total available feedback bits between the SQ and VQ is a hyper-parameter that can be tuned.
Scheme-2 only SQ: CSI-feedback bits are generated using Scaler Quantizer.
Scheme-3 only VQ: Feedback rate of 288 bits, where all bits are generated using Vector Quantizer.
Figure-1 shows the high-level block diagram for Scheme-1 in which the CSI-feedback is based on both SQ and VQ quantizer.
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NN BLock-3
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Figure 1: CSI-feedback encoder with both VQ and SQ
All models are trained using quantization-aware joint training.  The results are presented in Table 3.
Table 3. Effect of different quantization schemes
	Test Set
	Model
	Quantization Scheme
	# of feedback
	SGCS UMA

	Scheme-1
	-transformer
	Both SQ and VQ
	256 bits VQ 
+ 32 SQ bits
	88.5

	Scheme-2
	-transformer
	SQ 
	288 bits
	84.4

	Scheme-3
	-transformer
	VQ
	288 bits
	88.2



The performance of AI/ML-based CSI feedback models based on VQ outperforms the model based on SQ.  
The performance of AI/ML-based CSI feedback models using both SQ and VQ to construct the feedback bits outperforms the model based on only VQ and only SQ.  
Proposal 1 [bookmark: _Toc134627438][bookmark: _Toc134782528][bookmark: _Toc134854925]Study the benefit/complexity associated with use of both SQ and VQ for generation of the CSI-feedback bits.
Performance of UE-First Separate training of AI/ML-based CSI-Feedback 
In this section we aim to investigate whether separate training of the UE-side and the NW-side may result in any performance loss.
We have considered the following settings:
1- Joint training of  where:
a. UE-side  structure with 5 Residual blocks 
b. NW-side  structure with 5 Residual blocks 
2- Joint training of  where:
a. UE-side  structure with 3 Transformer blocks 
b. NW-side  structure with 3 Transformer blocks 
3- Separate training of  where:
a. UE-side structure with 5 Residual blocks 
b. UE-side nominal decoder structure has 5 Residual blocks 
c. NW-side  structure with 15 Residual blocks 
4- Separate training of  where:
a. UE-side  structure with 3 Transformer blocks
b. UE-side nominal decoder structure has 3 Transformer blocks 
c. NW-side  structure with 15 Residual blocks 
Table 4. Effect of separate training
	Test Set
	Model
	Short Desc.
	SGCS UMA

	AI/ML Model

	Case-1
	Joint Training,
Enc: 5 Res. Block
Dec: 5 Res. Block
	84.7

	
	Case-2
	Joint Training,
Enc: Transformer
Dec: Transformer
	85.1

	
	Case-3
	Separate Training,
Enc: 5 Res. Block
Dec: 15 Res. Block
	84.4

	
	Case-4
	Separate Training,
Enc: Transformer
Dec: 15 Res. Block
	82.1

	Type2. Rel16
	--
	---
	81.3



We can have several observations based on the above results:
1- Even in case of model-mismatch (between the NW-side actual decoder part and the structure of UE-side nominal decoder), the AI/ML method outperforms the conventional Type2. Rel16 results.
2- Mismatch between the structure of the “UE-side nominal decoder” and the “actual decoder” at the NW-side results in a degradation in performance.
3- If the structure of the “UE-side nominal decoder” and the “actual decoder” at the NW-side are very different it leads to higher degradations. For example, comparing Case-4 and Case-2 shows using Res.Net block instead of Transformer block leads to more significant degradation.
Gain of case-2: (85.1-81.3) =3.8   
Gain of case-4: (82.1-81.3) =0.8 
In this example, we loss (3.8-0.8)/3.8=78% of the gain compared to the matched structure. 

[bookmark: _Toc127544819]AI/ML-based CSI feedback models, trained using joint or separate training scheme, leads to better performance compared to the performance of eType II.  
The performance of the AI/ML-based CSI feedback models trained using separate training method degrades when there is mismatch between the structure of the “NW-side actual” and the “UE-side nominal” decoder model.
The performance degradation of AI/ML-based CSI feedback models trained using separate training is more significant if there is more considerable difference between the structure of the “NW-side actual” and the “UE-side nominal” decoder model. In one simulation, the degradation could be up to 78% of the gain.
Proposal 2 [bookmark: _Toc131343194][bookmark: _Toc131367334][bookmark: _Toc131429724][bookmark: _Toc131429764][bookmark: _Toc131498215][bookmark: _Toc131523607][bookmark: _Toc131588361][bookmark: _Toc131588420][bookmark: _Toc131588473][bookmark: _Toc131753031][bookmark: _Toc131780590][bookmark: _Toc134627439][bookmark: _Toc134782529][bookmark: _Toc134854926]Study mechanisms to reduce performance degradation due to difference between the structure of the “NW-side actual” and “the UE-side nominal” decoder model for separate training methods.
[bookmark: _Ref131364499]Performance of Multivendor Separate training of AI/ML-based CSI-Feedback 
In this section we aim to investigate separate training when we have multiple vendors at the UE-side and a single vendor at the NW-side. 
To better simulate the case of multiple UE vendors, we can consider:
a- Differences between the structure of the encoder models of different UE vendors
b- Differences between the structure of the “UE-side nominal decoder” and the “actual decoder” at the NW-side
c- Differences between the training data available at different UE-vendors 

Proposal 3 [bookmark: _Toc131343195][bookmark: _Toc131367335][bookmark: _Toc131429725][bookmark: _Toc131429765][bookmark: _Toc131498216][bookmark: _Toc131523608][bookmark: _Toc131588362][bookmark: _Toc131588421][bookmark: _Toc131588474][bookmark: _Toc131753032][bookmark: _Toc131780591][bookmark: _Toc134627440][bookmark: _Toc134782530][bookmark: _Toc134854927]To study the performance of Multivendor separate training, consider different model structures and also datasets with different statistics for different vendors.
In this study we simulate a scenario with two UE-vendors. To have datasets with different statistics, we have assumed that vendor-A uses the dataset collected from environment with mostly O2I UE, and for vendor-B the dataset is collected from an environment with UEs which are mostly LOS.
To have a more complete study we further consider two cases. 
· In the first case, we assume that the model structure of the Vendor A, Vendor B and the Decoder part are all based on Residual blocks but with different number of layers.
· In the second case, we wanted to have scenario with more variations among the assumptions that different vendors have on the model structure. Therefore, we have assumed that the UE-vendor A uses transformer block while UE-vendor B and the NW uses Residual blocks. 
The following is the summary of the two-cases:
1- Case-1:
a. UE-side Vendor A:  
i. Encoder structure with 5 Residual blocks 
ii. UE-side nominal Decoder structure has 5 Residual blocks 
iii. Dataset set of UEs with O2I link type
b. UE-side Vendor B:  
i. Encoder structure with 3 Residual blocks 
ii. UE-side nominal Decoder structure has 3 Residual blocks 
iii. Dataset set of UEs with LOS link type
c. NW-side:  
i. Decoder structure with 15 Residual blocks 
ii. Combination of data received from vendors A and B
2- Case-2: 
a. UE-side Vendor A:  
i. Encoder structure with 3 Transformer blocks 
ii. UE-side nominal Decoder structure has 3 Transformer blocks 
iii. Dataset set of UEs with O2I link type
b. UE-side Vendor B:  
i. Encoder structure with 3 Residual blocks 
ii. UE-side nominal Decoder structure has 3 Residual blocks 
iii. Dataset set of UEs with LOS link type
c. NW-side:  
i. Decoder structure with 15 Residual blocks 
ii. Combination of data received from vendors A and B
To show the possible degradation due to model mismatch, dataset mismatch and also sperate training , we have simulated both cases, we are evaluating the SGCS for Type2-Rel16, Joint- training and also sperate training cases. The results are presented in Table 5.
Table 5. Simulation results for Multi-vendor separate training
	
	
	SGCS
Type2. Rel16
	SGCS
joint training
	SGCS
Separate training

	Case 1
	UE-Vendor A
	81.3
	84.7
	84.4

	
	UE-Vendor B
	91.8
	94.2
	93.4

	Case 2
	UE-Vendor A
	81.3
	85.1
	81.5

	
	UE-Vendor B
	91.8
	94.2
	93.0



As with separate training scheme, AI/ML-based CSI feedback models with multi-vendor separate training have better performance compared to the performance of Rel.16-eType II.
Multi-vendor separate training, experience performance loss compared to joint-training. The degradation is more significant when there is a mismatch between the model/data of different vendors. For example, the performance of Separate training for case-2 UE-vendorA is much less than the joint-training (it is almost as low as Rel.16-eType II.)
Proposal 4 [bookmark: _Toc131367336][bookmark: _Toc131429726][bookmark: _Toc131429766][bookmark: _Toc131498217][bookmark: _Toc131523609][bookmark: _Toc131588363][bookmark: _Toc131588422][bookmark: _Toc131588475][bookmark: _Toc131753033][bookmark: _Toc131780592][bookmark: _Toc134627441][bookmark: _Toc134782531][bookmark: _Toc134854928]In multivendor separate training case, study mechanisms to reduce the degradation due to the difference between the model structures and the training datasets at different vendors.
Iterative separate training for recovering the model and dataset mismatch loss 
As we have seen in the previous sections, the mismatch between the datasets and the model structures between different vendors result in degradation of the performance of the separate training. 
One possible explanation is that the “encoder” at the UE-side is designed based on the “UE-side nominal decoder” at the UE-side but the actual decoding is happening using the “actual decoder” at the NW-side which might have different structure or trained to match to another training dataset as well (coming from another vendor).
One approach to improve the performance of the separate training would be to try to change the “UE-side nominal decoder” to have a better match with the “actual decoder” at the NW-side.  
Of course, sharing the “actual decoder” with the UE-side would be the easiest way to remove this mismatch. This scheme, though, may not be desirable in case that the UE and NW-sides does not want to share their models.
As an alternative, after training of the “actual decoder” at the NW-side	, the NW-side can transmit a set of samples back to the UE-side. Each sample in this set shows “the input” and the “output” (not the expected output) of the “actual decoder” at the NW-side. The UE uses this dataset to retrain the “UE-side nominal decoder” such that it is a better match to the “actual decoder” at the NW-side. At the next step, the UE retrain the “encoder” using the retrained “UE-side nominal decoder”. This way, the UE generates samples which are a better match to the “actual decoder” at the NW-side. This process can be repeated.
The summary of “iterative separate training” is as the following:
1- UE-side trains the two models, encoder and UE-side nominal decoder, jointly. 
Training data is the set of where  and  represent the input of the encoder and the “expected output” of the “nominal decoder”, respectively. 
2- Each UE-side transmits set of samples of the form  to the NW-side where  and  represent the “input” and the “expected output” of the “nominal decoder”, respectively; and is determined as the output of the encoder, i.e., . 
3- The NW-side uses the samples received from all UE-sides to train its “decoder”.
4- The NW-side sends samples to each UE-side representing the “input” and “output” of the “decoder”, i.e., where  are similar to the samples of “Set1” and .
Note that  is the output of the decoder not the expected output of the decoder.
5- Each UE-side retrains its respective “UE-side nominal decoder” using the received samples from the NW-side (or all samples received from all NW-sides in case there are multiple NW-sides)
6- Each UE-side retrains the “encoder” based on its updated “UE-side nominal decoder” (with frozen weights).
7- The process can be stopped, or each UE-side can send another set of samples representing the input and expected output of the UE-side nominal decoder to the NW-side and repeat the process.
This process in one iteration can be viewed in the following high-level diagram for a simple example of one-UE side and one gNB-side in one iteration:
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In fact, using steps 4-5, the UE can adapt its nominal decoder model to be a better representative of the actual decoder model (without knowing its actual structure). This will help better training of the encoder and improved performance.
Three important notes regarding “iterative separate training”:
Note-1: We wanted to emphasize that “iterative separate training” is different from the cases of simultaneous (case-1) or sequential (case-2) joint-training that we have previously discussed (‘Proposal 3.2.1’ in FL’s summary, R1-2301940). In joint training, the NW-side and UE-sides are trained at the same time, and the exchanged data are gradients-based. In “iterative separate training”, however, the UE and the NW-sides are trained separately, and the exchanged data are samples.
Note-2: Different iterations explained can be executed completely offline (similar to the original Type-3) on two cloud-nodes without extra over-the-air data exchange.
Note-3: There is no need for access to the new data in different iterations. It is the same dataset “D” (and its latent representations) that is used in all the steps. 
To see the performance of the “iterative separate training”, we have used this scheme on the above two cases. The results are reported in Table 6.
Table 6. Simulation results for Multi-vendor cases with iterative separate training
	
	
	SGCS
Type2. Rel16
	SSGC
joint training
	SGCS
Separate training
	SGCS
Iterative Separate training

	Case 1
	UE-1
	81.3
	84.7
	84.4
	85.4

	
	UE-2
	91.8
	94.2
	93.4
	94.1

	Case 2
	UE-1
	81.3
	85.1
	81.5
	84.3

	
	UE-2
	91.8
	94.2
	93.0
	93.9


Iterative separate training recovers the loss due to mismatch between different vendors. For example, the performance of UE-1 Case-2 is back to 84.3% (from 81.5%) after application of iterative separate training. 
 In some cases, the updated-decoder (using iterative separate training) surpass the performance of initial joint-training, e.g., UE-1 Case-1. It might be due to the availability of more data and the fact that the “actual decoder” at the NW-side is a more complex model that the “UE-side nominal decoder”. 
We note that, assuming the existence of a complex decoder and enough training samples we would expect the performance of the joint-training will be the upper-bound
Note that:
1- here we describe the method when we have multiple UE vendors and single NW-side-vendor and when we have used UE-first scheme.  Similar “iterative separate training” can be used also for the NW-first case, multiple UE-side and multiple NW-side as well.
2- The gain that we observe is not only due to having more training data, but also because that the “UE-side nominal decoder” is a better representative of the “actual decoder” at the NW-side and therefore the “encoder” can be better trained.
Proposal 5 [bookmark: _Toc131523610][bookmark: _Toc131588364][bookmark: _Toc131588423][bookmark: _Toc131588476][bookmark: _Toc131753034][bookmark: _Toc131780593][bookmark: _Toc134627442][bookmark: _Toc134782532][bookmark: _Toc134854929][bookmark: _Toc131367337][bookmark: _Toc131429727][bookmark: _Toc131429767][bookmark: _Toc131498218]Study the performance gains of, and the extra training costs incurred by, “iterative separate training” as a potential method to improve the performance of cases with mismatch between different sides.
Comparing different monitoring schemes for AI/ML-based CSI-Feedback 
In RAN1#112b-e, we have discussed the methodology for performance analysis of different monitoring schemes. 
Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, the model monitoring methodology is considered as:
· Step1: Generate test dataset including K test samples
· FFS how to obtain the K test samples
· Step2: For each of K test samples, a bias factor of monitored intermediate KPI () is calculated as a function of , where  is the actual intermediate KPI, and  is the genie-aided intermediate KPI.
· Step3: Calculate the statistical result of the  over K test samples which represents the monitoring accuracy performance.
· Note:  is introduced for the evaluation and comparison purpose; it may not be available in the real network.
· Note: the complexity, overhead and latency of the monitoring scheme are reported by companies. FFS how to evaluate latency.

Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression,  is in forms of
· Option 1: Gap between  and , i.e. ; 
· Monitoring accuracy is the percentage of the samples for which , where  is a threshold of the intermediate KPI gap.
· Option 2: Binary state where  and  have different relationships to their threshold(s), i.e., , where  can be same or different from 
· Monitoring accuracy is the percentage of the samples for which .
· FFS other metrics: Misdetection, False alarm, etc.
· FFS the values of , , .
· FFS whether/how to evaluate the monitoring metrics for Rank>1

Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, for Step2 of the model monitoring methodology, the per sample  is considered for
· Case 1: NW side monitoring of intermediate KPI, where the monitoring accuracy is evaluated for a given ground-truth CSI format (e.g., quantized ground-truth CSI with 8 bits scalar, R16 eType II-like method, etc.) or SRS measurements, where
·  is calculated with the output CSI at the NW side and the given ground-truth CSI format or SRS measurements.
·  is calculated with output CSI (as for ) and the ground-truth CSI of Float32.
· Note: if Float32 is used for , the monitoring accuracy is 100% if  and  are based on the same CSI sample. 
· Case 2: UE side monitoring of intermediate KPI with a proxy model, where the monitoring accuracy is evaluated for the output of the proxy model at UE:
· Case 2-1: the proxy model is a proxy CSI reconstruction part, and  is calculated based on the inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI.
· Note: if the proxy CSI reconstruction model is the same as the actual CSI reconstruction model at the NW, the monitoring accuracy is 100%
· Case 2-2: the proxy model directly outputs intermediate KPI ()
·  is calculated with the output CSI at the NW side and the same ground-truth CSI.
· FFS how to train the proxy model and the resulting monitoring performance, to be reported by companies.
· FFS whether/how to evaluate the generalization performance of the proxy model.
· Case 3: others are not precluded
How to generate samples:
One FFS on the evaluation schemes is on how to generate the K samples. In fact, as we want to determine the performance of the monitoring schemes we should include samples which results in “low KPI” and “high KPI” and then we evaluate if the monitoring scheme can determine them correctly or not.
Therefore, along samples with the same distribution of the training data, the test dataset should include samples possibly derived from other distributions. Additionally, to reduce the number of required test samples, we believe samples can be generated in different time slots to have low correlations. 
Proposal 6 [bookmark: _Toc134627443][bookmark: _Toc134782533][bookmark: _Toc134854930]The “K” test samples should include samples:
· [bookmark: _Toc134627444][bookmark: _Toc134782534][bookmark: _Toc134854931]Drawn from the same scenario/configuration that the model is designed (trained), and
· [bookmark: _Toc134627445][bookmark: _Toc134782535][bookmark: _Toc134854932]Also samples drawn from scenarios other than the ones used for training of the model.
Proposal 7 [bookmark: _Toc134627446][bookmark: _Toc134782536][bookmark: _Toc134854933]For the CSI feedback compression use case, samples of the test dataset do not need to have time-dependency. 
Evaluation metric:
With the current definition of   in option-2, i.e.,

We are adding the following two terms:


Such definition, in fact, is giving the same weight to both events which might have different consequences and different cost for the system.
For example, Miss-detection that an AI/ML model is working unsatisfactory may result in lower throughput in some users, but False-alarm may only result to some overhead or unnecessary fallback to the legacy scheme without throughput degradation.
So, we suggest to evaluate/to report the Miss-detection-rate and False-alarm-rate separately when evaluating different monitoring schemes.
Proposal 8 [bookmark: _Toc134627447][bookmark: _Toc134782537][bookmark: _Toc134854934]For a model monitoring scheme, the consequence/cost associated with miss-detection and false-alarm event are not the same. Therefore, we suggest companies to report evaluate/report the Miss-detection-rate and False-alarm-rate separately when evaluating different monitoring schemes.
As one example, we have used 	Case 2-1 to evaluate the performance of the following two different schemes. In both schemes we have assumed  for illustration. The  is also based on the case-2 of the agreement, i.e., calculated with the output CSI at the NW side and the same ground-truth CSI.
· Scheme A: In this case, we have assumed that the model is trained using “UE-first type 3” training and the proxy model is assumed to be the “nominal decoder” derived by the UE.

· Scheme B: In this case, we have assumed that the model is trained using “UE-first iterative type 3” training and the proxy model is assumed to be the “updated nominal decoder” derived by the UE.
For this example we generate the test dataset having 3k samples generated from different UE link types of O2I, LOS and NLOS each 1K samples. Note that, in this example, the model initially trained only using samples from UEs of O2I link-type.  
The results are presented in the Table 7. 
Table 7. Simulation results for different monitoring schemes
	
	
	Miss-detection
	False-alarm
	Option-2 

	Scheme A
	Use of “UE-side nominal encoder”
	29.0
	0.5
	29.5

	Scheme B
	Use of “updated UE-side nominal encoder”
	10.4
	2.6
	13



Both UE-based schemes, especially Scheme B (“updated UE-side nominal decoder”), achieves acceptable performance compared to the Genie-aided method, with much less overhead. 
Scheme B (based on “updated UE-side nominal decoder”) significantly improves the miss-detection rate at the expense of small degradation on False-alarm. 
Proposal 9 [bookmark: _Toc131429740][bookmark: _Toc131429780][bookmark: _Toc131498230][bookmark: _Toc131523622][bookmark: _Toc131588376][bookmark: _Toc131588435][bookmark: _Toc131588488][bookmark: _Toc131753046][bookmark: _Toc131780605][bookmark: _Toc134627448][bookmark: _Toc134782538][bookmark: _Toc134854935]Study the performance of “UE-based” model monitoring with proxy model selected as the “UE-side nominal decoder” or “updated UE-side nominal decoder”
Proposal 10 [bookmark: _Toc134627449][bookmark: _Toc134782539][bookmark: _Toc134854936]Study mechanism to improve the performance of the UE-side model monitoring by improving the accuracy of the proxy model, for example by applying training methods like “Iterative separate Training”.
Selection of threshold values
Another important point on evaluation of the performance of the model monitoring is on how to select the threshold. 
As selection of the threshold could be application dependent, and to have a more complete view on the performance of a “model monitoring scheme”, we can test the scheme for different threshold values. Then, instead of comparing the miss-detection/false alarm for only one threshold we can use ROC curve and its associated AUC (Area under the curve) to determine which scheme is better.
For example, we evaluated miss-detection and false alarm when we have changed threshold values from 0.5 to 0.99, and plotted the ROC curve. Note that in this figure True-positive-rate Miss-detection-rate. The result is depicted in Figure 2.
[image: A picture containing text, screenshot, line, diagram

Description automatically generated]
[bookmark: _Ref131503271]Figure 2: ROC curves for different monitoring schemes
Scheme B (“updated UE-side nominal decoder”) has the benefit of better performance compared to the scheme A (“UE-side nominal decoder”). Note that Scheme B needs extra data exchange during only during the training phase but no extra overhead during the monitoring phase.
Proposal 11 [bookmark: _Toc131429741][bookmark: _Toc131429781][bookmark: _Toc131498231][bookmark: _Toc131523623][bookmark: _Toc131588377][bookmark: _Toc131588436][bookmark: _Toc131588489][bookmark: _Toc131753047][bookmark: _Toc131780606][bookmark: _Toc134627450][bookmark: _Toc134782540][bookmark: _Toc134854937] Use ROC curves and associated AUC values to compare the performance of different monitoring schemes over different threshold values. 
Conclusions
This contribution addressed AI/ML-based CSI feedback enhancements. We have the following observations and proposals:
1. AI/ML-based CSI feedback models, trained using joint training scheme, leads to better performance compared to the performance of eType II.  
The performance of AI/ML-based CSI feedback models is higher than Type-2 Rel. 16 codebook design, for both the first and second layers.
The performance of AI/ML-based CSI feedback models is higher for layer-1 precoder compared to layer-2 precoder but the gains with respect to Type-2 Rel. 16 are almost the same.
The performance of AI/ML-based CSI feedback models based on VQ outperforms the model based on SQ.  
The performance of AI/ML-based CSI feedback models using both SQ and VQ to construct the feedback bits outperforms the model based on only VQ and only SQ.  
Proposal 1	Study the benefit/complexity associated with use of both SQ and VQ for generation of the CSI-feedback bits.
AI/ML-based CSI feedback models, trained using joint or separate training scheme, leads to better performance compared to the performance of eType II.  
The performance of the AI/ML-based CSI feedback models trained using separate training method degrades when there is mismatch between the structure of the “NW-side actual” and the “UE-side nominal” decoder model.
The performance degradation of AI/ML-based CSI feedback models trained using separate training is more significant if there is more considerable difference between the structure of the “NW-side actual” and the “UE-side nominal” decoder model. In one simulation, the degradation could be up to 78% of the gain.
Proposal 2		Study mechanisms to reduce performance degradation due to difference between the structure of the “NW-side actual” and “the UE-side nominal” decoder model for separate training methods.
Proposal 3		To study the performance of Multivendor separate training, consider different model structures and also datasets with different statistics for different vendors.
As with separate training scheme, AI/ML-based CSI feedback models with multi-vendor separate training have better performance compared to the performance of Rel.16-eType II.
Multi-vendor separate training, experience performance loss compared to joint-training. The degradation is more significant when there is a mismatch between the model/data of different vendors. For example, the performance of Separate training for case-2 UE-vendorA is much less than the joint-training (it is almost as low as Rel.16-eType II.)
Proposal 4		In multivendor separate training case, study mechanisms to reduce the degradation due to the difference between the model structures and the training datasets at different vendors.
Iterative separate training recovers the loss due to mismatch between different vendors. For example, the performance of UE-1 Case-2 is back to 84.3% (from 81.5%) after application of iterative separate training. 
 In some cases, the updated-decoder (using iterative separate training) surpass the performance of initial joint-training, e.g., UE-1 Case-1. It might be due to the availability of more data and the fact that the “actual decoder” at the NW-side is a more complex model that the “UE-side nominal decoder”. 
We note that, assuming the existence of a complex decoder and enough training samples we would expect the performance of the joint-training will be the upper-bound
Proposal 5	Study the performance gains of, and the extra training costs incurred by, “iterative separate training” as a potential method to improve the performance of cases with mismatch between different sides.
Proposal 6	The “K” test samples should include samples:
o	Drawn from the same scenario/configuration that the model is designed (trained), and 
o	Also samples drawn from scenarios other than the ones used for training of the model.
Proposal 7	For the CSI feedback compression use case, samples of the test dataset do not need to have time-dependency.
Proposal 8	For a model monitoring scheme, the consequence/cost associated with miss-detection and false-alarm event are not the same. Therefore, we suggest companies to report evaluate/report the Miss-detection-rate and False-alarm-rate separately when evaluating different monitoring schemes.
Both UE-based schemes, especially Scheme B (“updated UE-side nominal decoder”), achieves acceptable performance compared to the Genie-aided method, with much less overhead. 
Scheme B (based on “updated UE-side nominal decoder”) significantly improves the miss-detection rate at the expense of small degradation on False-alarm. 
Proposal 9	Study the performance of “UE-based” model monitoring with proxy model selected as the “UE-side nominal decoder” or “updated UE-side nominal decoder”
Proposal 10	 Study mechanism to improve the performance of the UE-side model monitoring by improving the accuracy of the proxy model, for example by applying training methods like “Iterative separate Training”.
Scheme B (“updated UE-side nominal decoder”) has the benefit of better performance compared to the scheme A (“UE-side nominal decoder”). Note that Scheme B needs extra data exchange during only during the training phase but no extra overhead during the monitoring phase.
Proposal 11 	Use ROC curves and associated AUC values to compare the performance of different monitoring schemes over different threshold values.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]
Appendix 1
[bookmark: _Ref111220018]Simulation assumptions
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	FR1 2GHz 

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	Companies need to report which option(s) are used between
-          32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ


	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)


	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz, 30kHz for 4GHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	FFS

	MIMO layers
	For all evaluation, companies to provide the assumption on the maximum MU layers (e.g. 8 or 12)

	Overhead
	Only CSI-feedback overhead

	Traffic model
	Full Buffer

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)
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