Page 8
Draft prETS 300 ???: Month YYYY
3GPP TSG RAN WG1 #113		 R1-2305108
Incheon, Korea, May 22nd – May 26th, 2023

[bookmark: OLE_LINK4][bookmark: OLE_LINK3]Source: 	CMCC
[bookmark: Title]Title:	Discussion on XR-specific capacity enhancements
Agenda item:	9.8.1
[bookmark: DocumentFor]Document for:	Discussion & Decision
1. [bookmark: _Toc120549591]Introduction
The last RAN1#112bis-e meeting has made great progress on the XR-specific capacity enhancements [1], including the following two objectives of the normative work in RAN1:
· Multiple CG PUSCH transmission occasions in a period of a single CG PUSCH configuration
· Dynamic indication of unused CG PUSCH occasion(s) based on UCI by the UE
Some of the agreements reached at the last meeting are listed below.
	Agreement
For TDRA design for multi-CG PUSCH, prioritize Alt-A1, Alt-B, and Alt-C2 for further downscoping and/or modification from corresponding agreement in RAN1#112.
· FFS: How to address TDD configuration issue
Agreement
For CG PUSCHs in a multi-PUSCHs CG configuration, MCS of the CG PUSCHs in the CG configuration are the same between different PUSCH occasions

Agreement
For CG PUSCHs in a multi-PUSCHs CG configuration, FDRA of the CG PUSCHs in the CG configuration are the same between different PUSCH occassions

Agreement
The UCI that provides information about unused CG PUSCH transmission occasions is defined as a “new UCI” (i.e. Alt. 1 of previous agreement).
Agreement
· With respect to PHY two-level priority, for a configured grant PUSCH configuration, the “UTO-UCI” has the same priority level as the configured grant PUSCH.
· Note: The term “UTO-UCI” refers to the “UCI that provides information about unused CG PUSCH transmission occasions” for convenience.
Agreement
The existing CG-UCI encoding and multiplexing procedures are reused for encoding the “UTO-UCI” in a configured grant PUSCH in absence or presence of other UCIs being multiplexed in the PUSCH, by applying the following adjustments:
· The “UTO-UCI” is used instead of CG-UCI in the corresponding procedures for encoding of CG-UCI and/or HARQ-ACK and/or CSI, whichever is present.
· For determining the beta-offset,
· Beta offset is configured for the “UTO-UCI” and applied when applicable.
· If UTO-UCI and HARQ-ACK is not jointly encoded, the beta offset for the “UTO-UCI” is used in the procedures instead of CG-UCI beta offset, when applicable.
· If UTO-UCI and HARQ-ACK is jointly encoded, HARQ-ACK beta offset is used in the procedures instead of CG-UCI beta offset
· FFS on sequence generation order between UTO-UCI and HARQ-ACK
· FFS on dropping rule between UTO-UCI and HARQ-ACK when joint encoding is not configured
· Note: The term “UTO-UCI” refers to the “UCI that provides information about unused CG PUSCH transmission occasions” for convenience.

In this contribution, we will further discuss the design of multi-PUSCHs CG and the UCI used to indicate unused CG PUSCH occasion(s).
2. Discussion
2.1 Multiple transmission occasions per CG period
In the last RAN1#112bis-e meeting, the discussions on the design of multi-PUSCHs CG mainly focus on the TDRA determination of CG PUSCHs, the configuration parameters including MCS and FDRA of CG PUSCHs, and the determination of HARQ process IDs associated to CG PUSCHs. In this section, we will further discuss the following issues.
2.1.1 TDRA determination of CG PUSCHs
For TDRA determination of CG PUSCHs associated to multi-PUSCHs CG, the last meeting agreed to prioritize Alt-A1, Alt-B, and Alt-C2 for further downscoping and/or modification.
For Alt-A1, the TDRA determination of multiple CG PUSCHs follows the time domain resource mapping of Type A repetition, where N consecutive slots are allocated for the transmission of N consecutive PUSCHs, and the same symbol allocation is applied across the N slots, as the example illustrated in Figure 1. However, this approach is based on the repetition framework, which is not suitable for multiple CG PUSCHs design, and how to interpret the PUSCH aggregation factor needs further clarification.
[image:]
Figure 1. TDRA determination of CG PUSCHs in Alt-A1
For Alt-B, the TDRA determination of multiple CG PUSCHs is based on NR-U framework, where N consecutive slots are allocated within a CG period and M consecutive PUSCH transmission occasions with same duration are allocated within each slot. A SLIV is determined from TDRA table and used for the first PUSCH per CG period. The remaining PUSCHs in a slot have the same length and PUSCH mapping type, and are appended following the previous allocations without any gap. Then the same SLIV and PUSCH mapping type repeat over N consecutive slots. An example is provided in Figure 2.
[image:]
Figure 2. TDRA determination of CG PUSCHs in Alt-B
For Alt-C2, the TDRA determination of multiple CG PUSCHs is based on Rel-17 single DCI scheduling multiple PUSCHs, where each PUSCH in a CG period can have a separate SLIV, mapping type and the parameter extendedK2-r17 that indicates the slot where UE shall transmit the corresponding PUSCH. In this way, the multiple PUSCH transmission occasions can be non-consecutive PUSCHs and/or in non-consecutive slots, as shown in Figure 3. Obviously, Alt-C2 provides the most flexibility to the configuration of multiple PUSCH occasions in a CG period. However, the benefit of configuring different SLIV sizes for multiple PUSCH occasions is not clear to us, and the configuration of same SLIV sizes for multiple PUSCH occasions may facilitate the recycling of unused resources by the UE.
[image:]
Figure 3. TDRA determination of CG PUSCHs in Alt-C2
Besides, in the scenario of TDD transmission with typical DL/UL slot configurations, e.g., DDDSU, the UL slots are non-consecutive in most cases. Therefore, to transmit the XR video traffic with large frame sizes in the TDD scenario, it should be proposed to allocate multiple non-consecutive slots within a CG period. As illustrated in Figure 4, there are 3 non-consecutive CG slots allocated within a period of a single CG configuration.
As mentioned before, Alt-C2 could allocate multiple PUSCH occasions in non-consecutive slots, which fits with TDD configuration. While for Alt-B, the current specification only allows the allocation of multiple consecutive slots within a CG period. Therefore, to adapt the TDD DL/UL slot configurations, both Alt-B with modifications to adapt TDD configurations and Alt-C2 could be considered. The specification impact of these alternatives can be compared to make down-selection.
[image:]
Figure 4. Illustration of multiple non-consecutive CG-PUSCH slots allocated in a CG period
Proposal 1. For determination of the time domain resource allocation of CG PUSCHs associated to a multi-PUSCHs CG, one of the following alternatives can be supported:
· Alt-B with modifications to configure N PUSCH occasions in non-consecutive slots within a CG period
· Alt-C2 for TDRA determination of multi-PUSCHs CG.
2.1.2 HARQ process ID determination associated to PUSCHs
For determination of HARQ process IDs associated to PUSCHs in multi-PUSCHs CG, the UE implementation-based approaches were down-prioritized and the following agreement was made in the last meeting.
	Agreement
From RAN1 perspective, for determination of HARQ process Ids associated to PUSCHs in multi-PUSCHs CG assuming one TB per PUSCH:
· The HARQ process ID for the first configured/valid PUSCH in a period is determined based on the legacy CG procedure when cg-RetransmissionTimer is not configured, and applying the following formula, whichever is applicable
· HARQ Process ID = [floor(X*(CURRENT_symbol – offset1) / periodicity) + offset2] modulo nrofHARQ-Processes
· HARQ Process ID = [floor(X*(CURRENT_symbol – offset1) / periodicity) + offset2] modulo nrofHARQ-Processes + harq-ProcID-Offset2
· FFS whether in formulas above X is outside or inside floor operation, i.e.
· HARQ Process ID = [X*floor((CURRENT_symbol – offset1) / periodicity) + offset2] modulo nrofHARQ-Processes
· HARQ Process ID = [X*floor((CURRENT_symbol – offset1) / periodicity) + offset2] modulo nrofHARQ-Processes + harq-ProcID-Offset2
· (Working Assumption) The HARQ process ID of the remaining configured/valid CG PUSCHs in the period is determined by incrementing the HARQ process ID of the preceding PUSCH in the period by Y with module operation with nrofHARQ-Processes or module operation with (nrofHARQ-Processes + harq-ProcID-Offset2), whichever applicable.
· FFS whether X=1 or X= the number of configured PUSCHs in the CG period
· FFS whether Y =1 or a value larger than 1, e.g. Y=2.
· FFS: If Y>1, Y is determined based on RRC
· FFS whether Offset 1= 0 or can be a non-zero value.
· FFS: If offset1 is non-zero, how offset1 is determined (i.e., based on RRC)
· FFS whether Offset 2= 0 or can be a non-zero value.
· FFS: If offset2 is non-zero, how offset2 is determined (i.e., based on RRC or dynamically)
· Note1: The equations will be updated accordingly when FFSs are clarified, e.g., if X=1, remove X; if Y=1, remove Y; if non-zero offset1 or Offset 2 is not supported, remove offset 1 or Offset 2.
· Note2: A configured CG PUSCH is invalid if the CG PUSCH is dropped due to collision with DL symbol(s) indicated by tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated or SSB.

There are several FFS issues in the above formula and the analysis is provided as the following:
· Offset 1:
In the formula of the HARQ process ID for the first configured/valid PUSCH in a period, considering the impacts of jitter on starting HARQ process ID, the parameter offset1 is proposed to make the formula flexible enough to cater current and future XR traffic models. Since jitter is modeled as a random variable which follows truncated Gaussian distribution, it’s not clear how to determine offset1 based on the dynamic jitter, especially considering that offset1 configured by RRC signaling may not match the random dynamic jitter. So we support to use the default value, i.e., offset1 = 0.
· Offset 2:
According to the agreement, if offset2 is a non-zero value, whether it is determined by RRC or dynamic signaling needs further discussion. During discussions in the last RAN1 meeting, one motivation to support dynamic indication of offset2 is to skip the unused PUSCH occasion(s) in the previous CG period to achieve not increasing the HARQ process ID over unused PUSCH occasion(s). However, this dynamic based offset2 indication may increase the complexity of HARQ process ID determination and depends on the correct detection of UCI. Furthermore, the benefit of adopting this offset2 needs further verification. We provide an example of HARQ process ID determination in Figure 5, where nrofHARQ-Processes = 4, harq-ProcID-Offset2 = 0, and the number of configured PUSCHs in a CG period is 4. As observed in Figure 5, the gap between CG PUSCH occasions using the same HARQ process ID does not always become larger by adopting different values of offset2, compared to the case of using offset2 = 0. If offset2 is determined by RRC signaling, a non-zero value will not provide additional gain compared with a zero value since the HARQ process ID has been different between adjacent TOs when offset2 is equal to zero. Hence, we support to set offset2 = 0 for simplicity.
· X and Y:
While for the HARQ process ID of the remaining configured/valid CG PUSCHs in the period, the parameter Y is proposed to avoid the collision of HARQ process ID for different CG PUSCHs in consecutive periods. In fact, the values of X and Y should be determined together, e.g., if X=1, Y can be larger than 1, else if X>1, how to determine the value of Y is still not clear. From our point of view, it’s more straightforward to configure X = the number of configured PUSCHs in the CG period than to use Y>1.
Based on the above analysis, we support to apply the following formula for the HARQ process ID for the first configured/valid PUSCH in a period:
· HARQ Process ID = [floor(X×CURRENT_symbol / periodicity)] modulo nrofHARQ-Processes
· HARQ Process ID = [floor(X×CURRENT_symbol / periodicity)] modulo nrofHARQ-Processes + harq-ProcID-Offset2
where X equals the number of configured PUSCHs in a CG period and thus X = 4 for the example in Figure 5.
For the remaining PUSCHs in the CG period:
· HARQ Process ID = (increment the HARQ process ID of the preceding PUSCH in the period) modulo nrofHARQ-Processes
· HARQ Process ID = (increment the HARQ process ID of the preceding PUSCH in the period) modulo nrofHARQ-Processes + harq-ProcID-Offset2
[image:]Figure 5. HARQ process IDs associated to PUSCHs in multi-PUSCHs CG with nrofHARQ-Processes = 4 and harq-ProcID-Offset2 = 0
Proposal 2. Support the following approach for determination of HARQ process IDs associated to PUSCHs in multi-PUSCHs CG.
· For the first configured/valid PUSCH in a CG period:
· HARQ Process ID = [floor(X×CURRENT_symbol / periodicity)] modulo nrofHARQ-Processes, where X equals the number of configured PUSCHs in a CG period;
· HARQ Process ID = [floor(X×CURRENT_symbol / periodicity)] modulo nrofHARQ-Processes + harq-ProcID-Offset2, where X equals the number of configured PUSCHs in a CG period.
· For the remaining PUSCHs in the CG period:
· HARQ Process ID = (increment the HARQ process ID of the preceding PUSCH in the period) modulo nrofHARQ-Processes;
· [bookmark: _GoBack]HARQ Process ID = (increment the HARQ process ID of the preceding PUSCH in the period) modulo nrofHARQ-Processes + harq-ProcID-Offset2.
2.2 Indication of unused transmission occasions
In the last RAN1#112bis-e meeting, the discussions on the dynamic indication of unused CG PUSCH occasion(s) mainly focus on the UCI transmission occasions, the information provided by the UCI, the UCI type, and the beta offset used in encoding and multiplexing procedures, etc. In this contribution, we will further discuss the information provided by the UCI and UCI overriding mechanism in the following sections.
2.2.1 The information provided by the UCI
Regarding the information provided by the UCI, the last meeting agreed to use bitmap because it gives more flexibility for the indication of consecutive/non-consecutive unused CG PUSCH occasion(s).
	Agreement
For dynamic indication of unused CG PUSCH transmission occasion(s) based on a UCI, the indicated “unused” CG PUSCH TO(s), if any, by the UCI in a CG PUSCH for a CG configuration
· can be consecutive or non-consecutive CG PUSCH TO(s) in time domain [in one CG period]
· FFS whether/how the unused TO(s) can be associated to multiple CG configuration.
Note: FFSs and further details in corresponding agreement in RAN1#112 for the selected option are remained for further discussion
Note: Above corresponds to Option 2 (w.r.t. agreement in RAN1#112)

Agreement
The UTO-UCI provides a bitmap where a bit corresponds to a TO within a time duration/range. The bit indicates whether the TO is “unused”.
· FFS: Details including time duration/range
Note: The term “UTO-UCI” refers to the “UCI that provides information about unused CG PUSCH transmission occasions” for convenience.

One issue that needs discussion first is whether the UTO-UCI is applied to a single CG configuration or multiple CG configurations. Although multiple CG configurations can be used to handle different UL streams of XR traffic, it seems unnecessary to apply UTO-UCI to multiple CG configurations because the packet sizes of UL pose/control and audio/data traffic are relatively constant. From this perspective, the UTO-UCI should focus on the indication of unused CG PUSCH TOs for a single CG configuration. Regarding the definition of time duration/range, considering one XR frame packet is usually transmitted within a CG period and it may be not feasible for a UE to predict the usage of CG PUSCH TOs in the next CG period, the duration/range should be equal to one CG period.
Based on the above assumption, where one UTO-UCI is only used to indicate a TO within one CG period for a single CG configuration, the following two alternatives of UCI content can be considered.
· Alt. 1: constant-length UCI: The UCI bitmap length equals the number of configured PUSCH occasions in a CG period and a bit corresponds to one configured PUSCH occasion within a CG period. An example of this solution is provided in Figure 6.
· Alt. 2: variable-length UCI: The UCI bitmap length equals the number of configured PUSCH occasions from the current PUSCH occasion to the last PUSCH in the CG period. Here, the current PUSCH occasion refers to the CG PUSCH including this UCI. Figure 7 gives an example of this variable-length solution. Compared to Alt. 1, the variable-length UCI in Alt. 2 has less signaling overhead.
[image:]Figure 6. Illustration of the constant-length UCI solution
[image:]
Figure 7. Illustration of the variable-length UCI solution
Proposal 3. Considering the following two options for determine the bit-length of UTO-UCI:
· Option 1: The bit-length of each UTO-UCI on each valid CG PUSCH is equal to the number of configured PUSCH TOs in one CG period;
· Option 2: The bit-length of each UTO-UCI on each valid CG PUSCH is equal to the number of configured PUSCH TOs from the current PUSCH TO to the last PUSCH TO in a CG period.
2.2.2 UCI overriding
Regarding the UTO-UCI transmission occasion, the following agreement was made in the last meeting.
	Agreement
· Option 1: For a CG PUSCH configuration, the UTO-UCI is included in every CG PUSCH that is transmitted (that is Option 1 in corresponding agreement in RAN1#112)
· FFS details
· Note: The term “UTO-UCI” refers to the “UCI that provides information about unused CG PUSCH transmission occasions” for convenience.

According to the above agreement, UE will always transmit UTO-UCI when the UL XR video frame is transmitted on any CG PUSCH occasion. This provides the possibility for UE to update the transmitted UTO-UCI. Considering traffic changes caused by additional data generated from the application layer, the usage of CG PUSCH occasions may change. In addition, if the pre-indicated used CG PUSCH TO becomes invalid due to collision with a dynamic grant, UE also needs to modify the used CG PUSCH TOs. So, it is necessary to introduce a UTO-UCI overriding mechanism, which allows UE to re-send UTO-UCI to override the indication of the unused CG PUSCH occasions in previous UTO-UCI.
Figure 8 provides an example of UTO-UCI overriding solutions, where 6 PUSCH occasions are allocated within a CG period, and it is assumed that UTO-UCI bit value “1” means “used” and bit value “0” means “unused”. As shown in this figure, the XR frame packet arrives before the first PUSCH occasion in the CG period. Assume UE estimates that 3 PUSCH occasions will be used to transmit this XR frame packet at first according to the packet size and CG configuration parameters, thus the last 3 PUSCH occasions are assumed to be “unused”. Motivated by the traffic changes coming from the application layer, the following two alternatives of the UCI overriding mechanism can be considered.
· Alt. 1: Unused convert to used: UE first sends a UTO-UCI that provides a bitmap “1 1 1 0 0 0” to indicate the last 3 CG PUSCH occasions are “unused”. Then if there is additional data generated from the application layer, assuming UE needs to use one more CG PUSCH occasion to transmit the additional data, then UE will re-send a UTO-UCI on the second UCI transmission occasion, which provides a bitmap “1 1 1 1 0 0” to toggle the corresponding bits of the unused CG PUSCH occasions provided in the previous UTO-UCI. However, this solution has an obvious drawback, that is, if UE provides “1 1 1 0 0 0” first, gNB may recycle the fourth PUSCH.
· Alt. 2: Used convert to unused: To avoid the issue existing in Alt. 1, maybe UE could first over-estimate the PUSCH occasions that will be used to transmit the XR frame packet. Correspondingly, UE first sends a UTO-UCI that provides a bitmap “1 1 1 1 1 1” to indicate all the CG PUSCH occasions are “used”. When UE is more certain that 4 CG PUSCH occasions will be used and no additional data will be generated from its application later, then UE sends “1 1 1 1 0 0” to toggle the corresponding bits of the unused CG PUSCH occasions provided in the previous UTO-UCI in second UCI transmission occasion. Compared with Alt. 1, this alternative can ensure that gNB correctly receives the used CG PUSCHs.
It should be indicated that the example shown in Figure 8 uses the constant-length UCI bitmap. Actually, both the constant-length and variable-length UCI bitmaps can be adopted in the UTO-UCI overriding mechanism.
[image:]
Figure 8. Illustration of the UTO-UCI overriding mechanism
Proposal 4. Support to introduce a UTO-UCI overriding mechanism, which allows UE to transmit later UTO-UCI to override the indication of the unused CG PUSCH occasions in previous UTO-UCI.
3. Conclusions
In this contribution, the XR enhancements related to capacity are discussed from two aspects, including the design of multi-PUSCHs CG and the UCI used to indicate unused CG PUSCH occasion(s), and the following proposals are made.
Proposal 1. For determination of the time domain resource allocation of CG PUSCHs associated to a multi-PUSCHs CG, one of the following alternatives can be supported:
· Alt-B with modifications to configure N PUSCH occasions in non-consecutive slots within a CG period
· Alt-C2 for TDRA determination of multi-PUSCHs CG.
Proposal 2. Support the following approach for determination of HARQ process IDs associated to PUSCHs in multi-PUSCHs CG.
· For the first configured/valid PUSCH in a CG period:
· HARQ Process ID = [floor(X×CURRENT_symbol / periodicity)] modulo nrofHARQ-Processes, where X equals the number of configured PUSCHs in a CG period;
· HARQ Process ID = [floor(X×CURRENT_symbol / periodicity)] modulo nrofHARQ-Processes + harq-ProcID-Offset2, where X equals the number of configured PUSCHs in a CG period.
· For the remaining PUSCHs in the CG period:
· HARQ Process ID = (increment the HARQ process ID of the preceding PUSCH in the period) modulo nrofHARQ-Processes;
· HARQ Process ID = (increment the HARQ process ID of the preceding PUSCH in the period) modulo nrofHARQ-Processes + harq-ProcID-Offset2.
Proposal 3. Considering the following two options for determine the bit-length of UTO-UCI:
· Option 1: The bit-length of each UTO-UCI on each valid CG PUSCH is equal to the number of configured PUSCH TOs in one CG period;
· Option 2: The bit-length of each UTO-UCI on each valid CG PUSCH is equal to the number of configured PUSCH TOs from the current PUSCH TO to the last PUSCH TO in a CG period.
Proposal 4. Support to introduce a UTO-UCI overriding mechanism, which allows UE to transmit later UTO-UCI to override the indication of the unused CG PUSCH occasions in previous UTO-UCI.
4. References
[1] [bookmark: _Ref28170][bookmark: _Ref4321][bookmark: _Ref6671378][bookmark: _Ref100139785]Chairman’s notes, RAN1#112bis-e, April 17th - April 26th, 2023.
image5.emf
PUSCH

1

PUSCH

2

PUSCH

1

PUSCH

2

PUSCH

3

PUSCH

4

PUSCH

1

PUSCH

2

PUSCH

3

…

slot

CG

period

HPID=0

HPID=1

HPID=2

HPID=3

HPID=0

HPID=1

HPID=0

HPID=1

HPID=2

…

t

offset2 =2

offset2 = 0

unused

CG

PUSCH

HPID=0

HPID=1

HPID=2

HPID=3

HPID=0

HPID=1

HPID=2

HPID=3

HPID=0

HPID=1

HPID=2

HPID=3

…

case 1

:

case 2:

case 1: X = 4, Y = 1, offset1 = 0, offset2 = 0

case 2:

X = 4, Y = 1, offset1 = 0,

offset2 = the number of unused PUSCH occasion(s) in the previous CG period

image6.emf
2

nd

 UCI

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

t

a CG period = 15ms

D

D

D

S

U

...

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

t

D

D

D

S

U

...

Packet arrival

XR traffic periodicity = 16.67ms

1

st

 UCI

gNB

UE

D

D

D

S

U

D

D

D

S

U

Packet arrival

D

D

D

S

U

D

D

D

S

U

1

1

st

 UCI

bitmap:

1

1

1

0

0

where 1: used, 0: unused

1

1

1

1

0

0

PUSCH

PUSCH

2

nd

 UCI

bitmap:

Alt. 1:

constant-length

4

th

 UCI

3

rd

 UCI

1

3

rd

UCI

bitmap:

1

1

1

0

0

1

1

1

1

0

0

4

th

 UCI

bitmap:

PUSCH

PUSCH

PUSCH

PUSCH

image7.emf
2

nd

 UCI

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

t

a CG period = 15ms

D

D

D

S

U

...

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

t

D

D

D

S

U

...

Packet arrival

XR traffic periodicity = 16.67ms

1

st

 UCI

gNB

UE

D

D

D

S

U

D

D

D

S

U

Packet arrival

D

D

D

S

U

D

D

D

S

U

PUSCH

PUSCH

4

th

 UCI

3

rd

 UCI

PUSCH

PUSCH

PUSCH

PUSCH

where 1: used, 0: unused

1

1

1

1

0

0

1

1

1

0

0

Alt. 2: variable-length

1

st

 UCI

bitmap:

2

nd

 UCI

bitmap:

3

rd

UCI

bitmap:

1

1

0

0

1

0

0

4

th

 UCI

bitmap:

image8.emf
UCI

overriding

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

t

a CG period = 15ms

D

D

D

S

U

...

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

D

D

D

S

U

t

D

D

D

S

U

...

Packet arrival

XR traffic periodicity = 16.67ms

UCI

gNB

UE

D

D

D

S

U

D

D

D

S

U

Packet arrival

D

D

D

S

U

D

D

D

S

U

1

1

st

 UCI

bitmap:

1

1

0

0

0

where 1: used, 0: unused

1

1

1

1

0

0

PUSCH

PUSCH

overriding

2

nd

 UCI

bitmap:

1

1

1

1

1

1

1

1

1

1

0

0

overriding

Alt. 1: unused

?

used

Alt. 2: used?unused

1

st

 UCI

bitmap:

2

nd

 UCI

bitmap:

image1.png
a CG period

PUSCHl S:3I L= PUSCHl S:3I L=
| S| S|
< > >
slot slot

image2.png
a CG period

PUSCHs

PUSCHs

slot

slot

image3.png
a CG period

PUSCHI1 PUSCH

l -
slot ' slot

slot

image4.jpeg
‘ a CG period | a CG period |
| |

DDDSUDDDSUDDDSUDDDSUDDDSUDDDSUDDDSUDDDSUDDDSU t

3 non-consecutive CG-PUSCH slots allocated in a CG period

