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[bookmark: _Hlk102058846]Introduction
In RAN#94-e [1], the study item for AI/ML has been approved for NR Air Interface. In this contribution, we discuss evaluation methodology, KPI and target scenarios for AI/ML beam management and provide preliminary evaluation results for AI/ML aided beam prediction.      
Discussions
Evaluation methodology
For AI/ML, need of specification enhancements should be well justified with appropriate baseline and KPIs with proper target scenarios. In addition, complex specification enhancements should be avoided unless benefits are well justified. In this section, we provide our views on evaluation methodologies including baseline, KPIs and target scenarios for AI/ML aided beam management.
Baseline 
Discussion on levels of inter-node coordination and information exchange is the most important aspect for evaluation as different levels of coordination and information exchange generally provide different levels of performance benefits. In RAN#93-e [2] and RAN#94-e [3], the following levels of inter-node coordination and information exchange were discussed during the meetings.
	0a) No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes.

0b) No collaboration framework with modified Air-Interface catering to efficient implementation-based AI/ML algorithms.

1) Inter-node assistance to improve the respective nodes’ AI/ML algorithms. This would apply to UEs getting assistance from gNBs (for training, adaptation, etc.) and vice-versa. This level does not require model exchange between network nodes. 

2) Joint ML operation between UEs and gNBs. This level requires AI/ML model instruction or exchange between network nodes.



Further in RAN1#109-e [4] the following agreement was made on the baseline performance. 
	Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.
Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  


 
It should be noted that legacy beam management with Rel-17 without AI/ML algorithms is not an appropriate baseline as implementation-based AI/ML operation is available for UE and gNB implementations. On the other hand, beam management based on exhaustive beam sweeping also not an appropriate baseline as in a practical network, exhaustive beam sweeping is not practically possible due to associated RS overhead, control signaling overhead etc. Further, the option of selecting the best beam withing Set A of beams based on the measurements of all the RSs  from Set B of beams is not an appropriate baseline as most of the time Set B size does not match with the limitations of the current specifications. However, implementation-based AI/ML algorithm (level 0a)) could be an appropriate baseline to accurately evaluate the benefits of AI/ML with specification enhancements as implementation-based AI/ML algorithm shows actual achievable performance without specification enhancements. 
Observation 1: Legacy beam management with Rel-17 without AI/ML algorithms is not an appropriate baseline as implementation-based AI/ML operation is available for UE and gNB implementations.
Observation 2: Beam management via exhaustive beam sweeping is not an appropriate baseline as such beam management approach is not practically possible.
Observation 3: Selecting the best beam within Set A of beams based on the measurements of all the RSs from Set B is not an appropriate baseline as Set B size may not align with the limitations of the current specifications.  
Proposal 1: ‘No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes’ could be an appropriate baseline to accurately evaluate the benefits of AI/ML with specification enhancements.
KPIs
In RAN1#110bis-e [4], the following agreements and working assumptions were made on possible KPI options and metrics associate with singaling and resource overhead: 
	Agreement
· The options to evaluate beam prediction accuracy (%):
· [bookmark: _Hlk131633344]Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· [bookmark: _Hlk131633356]Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· [bookmark: _Hlk131633366]Top-1/K (%) (Optional): the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Where K >1 and values can be reported by companies.

Agreement 
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam considers the following options 
· Option A, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams

Agreement 
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair considers the following options:
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Option B: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams

Working Assumption
For both BM-Case1 and BM-Case 2, the following table is adopted as working assumption for reporting the evaluation results.

Table X. Evaluation results for [BM-Case1 or BM-Case2] without model generalization for [DL Tx beam prediction or Tx-Rx beam pair prediction or Rx beam prediction]
	
	Company A
	……

	Assumptions
	Number of [beams/beam pairs] in Set A
	
	

	
	Number of [beams/beam pairs] in Set B
	
	

	
	Baseline scheme
	
	

	AI/ML model
input/output
	Model input
	
	

	
	Model output
	
	

	Data Size
	Training
	
	

	
	Testing
	
	

	AI/ML model
	[Short model description]
	
	

	
	Model complexity
	
	

	
	Computational complexity
	
	

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	
	

	
	
	[KPI B]
…
	
	

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	
	

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	
	

	
	
	[UCI report]
	
	

	
	
	[UPT]
…
	
	



To report the following in table caption: 
· Which side the model is deployed
Further info for the columns:
· Assumptions
· Number of beams/beam pairs in Set A
· Number of beams/beam pairs in Set B
· Baseline scheme, e.g., Option 1 (exhaustive beam sweeping), Option 2(based on measurements of Set B), or baseline described by companies
· Other assumptions can be added later based on agreements
· Model input: input type(s)
· Model output: output type(s), e.g., the best DL Tx and/or Rx beam ID, and/or L1-RSRPs of N beams(pairs) 
· Dataset size, both the size of training/validation dataset and the size of test dataset
· Short model description: e.g., CNN, LSTM
· Model complexity, in terms of “number of model parameters” and/or size (e.g. Mbyte)”, and 
· Computational complexity in terms of FLOPs
· Evaluation results: agreed KPIs, with AI/ML / with baseline scheme (if applicable)
Note: To report other simulation assumptions, if any.

Working assumption
· For the evaluation of the overhead for BM-Case1, further study the following two metrics for potential down selection:
· Option A: RS overhead reduction, FFS for potential down selection:
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme 
· Companies report the assumption on beam sweeping
· Option 3: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies 
· Option B: RS overhead, FFS for potential down selection:
· Option 1: RS OH = N, 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· Option 2: RS OH = N + P 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies



In addition, the following agreements were made in RAN1#111 [5]:
	Agreement
· For the evaluation of the overhead for BM-Case1, adoption the following metrics:
· RS overhead reduction, 
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Companies report the assumption on additional measurements

Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.



In addition, the following agreements were made in RAN1#112 [6]:
	Agreement
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair is defined as
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Other options are not precluded and can be reported by companies. 
· Note: This is only for evaluation discussion 

Agreement
· For AI/ML models, which provide L1-RSRP as the model output, to evaluate the accuracy of predicted L1-RSRP, companies optionally report average (absolute value)/CDF of the predicted L1-RSRP difference, where the predicted L1-RSRP difference is defined as:
· The difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam. 



Further, in RAN1#112bis-e [7] the following agreement were made. 
	Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
·  
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· Companies report the assumption on baseline scheme
· Companies report the assumption on T1 and T2
· Other options are not precluded and can be reported by companies.

Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead (e.g., number of UCI reports and UCI payload size) and/or UCI overhead reduction for inference of AI/ML model can be reported by company. 
· UCI overhead reduction = 1- Total UCI payload size for AI/ML/Total UCI payload size of baseline.
· Companies to report detailed assumption of UCI for AI/ML and baseline, e.g., including quantization mechanism




For KPIs, the following aspects should be considered to accurately evaluate benefits for AI/ML aided beam management.
· System performance related KPIs 
· Although beam prediction accuracy related KPIs (e.g., Avg. L1-RSRP difference) provide brief information on beam selection, beam prediction accuracy related KPIs do not provide overall insights on the actual benefits related to the following aspects:
· Impact on system performance
· Obviously, a best beam with X% better L1-RSRP does not imply that system performance is enhanced with X%. The performance benefit could be smaller or larger based on channel characteristics of the selected beam. Having said that, specification enhancements should be justified based on actual system performance benefits such as throughput, but not merely based on beam related KPIs such as L1-RSRP difference.
· UE reporting overhead
· AI/ML based beam prediction can reduce required UE reporting overheads by predicting an optimized beam opposed to deciding an optimized beam based on UE reporting. As beam prediction related KPIs only show L1-RSRP difference or beam selection accuracy, there’s no way to reflect the reduction in the UE reporting overhead. 
· UE throughput considering RS overhead reduction 
· For system performance related KPIs, Avg. and 5% UE throughput should be used for evaluation. Other KPIs such as RS overhead reduction does not provide actual insight. For example, Y% RS overhead reduction does not mean Y% performance gain and the actual performance can be worse if the gain from RS overhead reduction is smaller than the performance loss from beam selection.
· Beam information related KPIs
· As discussed, beam information related KPI is not a measure to evaluate actual performance benefits from AI/ML based beam prediction, however, beam information related KPI can be used as a temporal measure to have an insight as beam information related KPI requires less computational overhead for evaluation. As shown in the above, three options for evaluating beam prediction accuracy were agreed in RAN1#110bis-e [7].
· Average L1-RSRP difference of Top-1 predicted beam
· Difference between estimated L1-RSRP and actual L1-RSRP could be a good option to identify potential benefits of AI/ML aided beam prediction in addition to the approved options for beam prediction accuracy. However, as the main objective of beam prediction is to identify the Top-1 or the Top-K beams based on beam quality, KPIs related to the difference between the estimated L1-RSRP and actual L1-RSRPs of the same beams should not get priority over beam ranking based KPIs (e.g., Top-1 (%), Top-K/1 (%), Top-1/K (%)). 
· Definition of Top-1 genie-aided Tx beam and Tx-Rx beam pair
· In RAN1#110bis-e [8], two options were agreed for the definition of Top-1 genie-aided beam/beam pair. Option A is to consider all Tx and Rx beams, but Option B is to consider only specific Rx beam(s). Further, in RAN1#112 [6], for beam pair selection, it was agreed to use Option A as the main definition of Top-1 genie aided beam pair. Other options are not precluded and can be reported by companies. It is worth to note that, for option 2, if the genie aided beam is from specific Rx beam(s), evaluated metrics such as beam accuracy does not reflect actual benefits from AI/ML based beam prediction and misleads interpretation of evaluation metric for AI/ML based beam prediction. Therefore, considering Option A for both beam and beam pair selection is more appropriate. 
 
[bookmark: _Hlk131777768]Observation 4: Beam information related KPI is not a measure to evaluate actual performance benefits from AI/ML based beam prediction, however, beam information related KPI can be used as a temporal measure to have an insight as beam information related KPI requires less computational overhead for evaluation.
Observation 5: Specification enhancements should be justified based on actual system performance benefits such as throughputs not based on beam related KPIs such as L1-RSRP difference.
[bookmark: _Hlk131777776]Observation 6: Option B (specific Rx beam) does not reflect actual benefits from AI/ML based beam prediction and misleads interpretation of evaluation metric for AI/ML based beam prediction. 
Observation 7: KPIs related to comparing L1-RSRP difference with predicted L1-RSRP difference does not reflect the main focus of beam predictions, i.e., to select the Top-1 or Top-K best beams.
[bookmark: _Hlk131777786]Proposal 2: Support system performance related KPIs as mandatory KPIs.
· Support Avg. and 5% UE throughput for system performance KPIs.
Proposal 3: KPIs related to the difference between the estimated L1-RSRP and actual L1-RSRPs of the same beams get lower priority over beam ranking based KPIs (e.g., Top-1 (%), Top-K/1 (%), Top-1/K (%)).
Proposal 4: Support beam information related KPIs as optional for temporal measures.
· Support average L1-RSRP difference of Top-1 predicted beam in addition to the agreed options for beam prediction accuracy (%).
Proposal 5: For the definition of Top-1 genie-aided beam/beam pair, consider Option A, i.e., the Top-1 genie-aided Tx beam/beam pair is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams/beam pairs. 
Evaluation scenarios
Selection of beam pattern types
In RAN1#110bis-e [8], the following agreement was made for spatial/temporal domain beam prediction:
	Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 



Based on the agreement in RAN1#110bis-e [8], the following agreement was made in RAN1#111 [5], 
	Agreement
· Companies report the pattern of Set B.
· Further study the performance with different patterns of set B(s) for fixed Set B (Option 1) and different pre-configured/pre-known patterns of Set B(s) (Option 2A and 2B). 



Based on the agreed options for selecting Set B beams/beam pairs, we provide the following analysis.
Table 1. Analysis of different types of patterns for Set B
	     Set B Type

Quality 
Metric

	Fixed Set B
(Type #1)
	Set B following a set of preconfigured patterns
(Type #2)
	Set B is randomly changed among preconfigured patterns
(Type #3)
	Set B is randomly changed among Set A (all beam pairs)
(Type #4)

	Performance
	3
	2
	1
	1

	Flexibility of inference input
	0
	1
	2
	3

	Range of inputs required for training
	3
(small range is better)
	2
	1
	0


Score ranges from 0 (worst/lowest) to 3 (best/highest)
· Performance
· According to the evaluation results, fixed set B (Type #1) shows better performance than variable patterns including fixed preconfigured patterns (Type #2), randomly changed preconfigured patterns (Type #3) and randomly changed patterns among Set A (Type #4).
· Flexibility of inference input
· In the sense of flexibility, Type #4 provides best flexibility as any of beams can be used as input for inference input as any of beams can be used as input. On the other hand, Type #2 and Type #3 require some limitation as inputs are limited to a set of beams (Set B). Among all the types, Type #1 provides worst flexibility as inference input is always fixed and there could be inference performance degradation when any beam information of fixed Set B is not available. 
· Range of inputs required for training
· For range of inputs required for training, Type #1 is best as Type #1 requires data sets only for the fixed Set B. This means that the amount of data acquisition needed for training/inference of Type #1 is lower. Type #2 and Type #3 require relatively large amount of data acquisition for training/inference as multiple data sets preconfigured or randomly selected among Set B should be used. Type #4 requires largest amount of data acquisition as Type #4 utilizes whole Set #A for training and inference.
[bookmark: _Hlk131777803]Observation 8: For different beam pattern type, each beam pattern type has its own pros and cons for performance, flexibility of inference input and range of inputs required for training. 
[bookmark: _Hlk131777813]Proposal 6: Further study benefits of various beam pattern types.

Furthermore, the following agreements were made in RAN1#112 [6], for the case of variable Set B (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference).
	Agreement
· For the evaluation of Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), further study the following options as AI/ML model inputs 
· Alt 2: Implicit information of Tx beam ID and/or Rx beam ID
· E.g., measurements of Set B of beams together with default values (e.g. 0) for the beams not in Set B are used as AI inputs in a certain order/ matrix/ vector. 
· Detailed assumption can be reported by companies.
· Alt 3: Tx beam ID and/or Rx beam ID is used as inputs of AI/ML explicitly 
· Note: Specification impact can be discussed separately.  

Agreement
· Additionally study the following option on the selection of Set B of beams (pairs) (for Option 2: Set B is variable) 
· Opt D: Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g. Top-K beams(pairs) of Set C
· Companies report the number of pre-configured patterns used in the evaluation for Option 2: Set B is variable if applicable (e.g. Opt A and Opt B)



For the evaluation of Option 2, two alternatives, implicit information and explicit Tx/Rx beam IDs were agreed as AI/ML model inputs. As an AI/ML model implicitly identifies Tx/Rx beam IDs (e.g., based on an order of RSRP value), explicit beam IDs may not be needed as AI/ML model inputs. Instead, implicit information with default values can be used to indicate that a corresponding beam information is not available. However, an efficient procedure for supporting Option 2 may be different for specification impact. For example, instead of reporting RSRP values for every beams and beam pairs, reporting explicit beam IDs and corresponding RSRP values can be more efficient. Given the situation, specification impact should be carefully discussed considering number of beams to be reported and required overheads for reporting corresponding RSRP values. 
[bookmark: _Hlk131777825]Observation 9: Alt 2 (implicit information of Tx beam ID and/or Rx beam ID) can be applied for evaluation of Option 2: Set B is variable. 
Observation 10: For specification impact, an efficient procedure for supporting Option 2: Set B is variable can be different considering number of beams to be reported and required overheads for reporting corresponding RSRP values. 
[bookmark: _Hlk131777835]Proposal 7: For evaluation, Alt 2 (implicit information) can be used. However, specification impact to support Option 2 should be further discussed considering reporting information overheads. 

Selecting a subset of measured beams (Set C) as Set B (Option D) can help to reduce the reporting overhead while maintaining beam prediction accuracy only when a proper subset selection method is used. For example, as shown in our simulation results in Section 3.1.3, Top-1 beam prediction accuracy see a marginal drop between reporting all 16 measured beams (Case 6-1 at 74.48%) and reporting best 8 beams out of 16 beams (Case 9-1 at 68.74). However, if a randomly selected 8 beams are reported (Case 9-2), the Top-1 beam prediction accuracy drops to 51.6%. Therefore, applying a proper beam subset selection procedure and an efficient reporting mechanism of the selected subset is crucial to get the advantage of Option D. Otherwise, utilization of Option D with inefficiently selected beam subset for Set B can degrade AI/ML beam prediction performance. 
[bookmark: _Hlk131777856]Observation 11: Option D, i.e., selecting Set B out of measured beams (Set C), can be beneficial as Set B can be selected in a way for minimizing performance loss with reduced reporting overhead.
Observation 12: Performance of Option D, i.e., Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), can vary depending on beam subset selection methods. 
[bookmark: _Hlk131777868]Proposal 8: Consider Option D, i.e., selecting Set B out of measured beams (Set C), to identify performance benefits and corresponding potential specification enhancements. 
Proposal 9: Identify potential methods for selecting Set B out of measured beams (Set C) and evaluate benefits of the identified Set B selection methods to decide an optimized Set B selection method. 

Whether Set B is a subset of Set A or not.
· Set B is a subset of Set A
· As using same beamwidth for all channels and signals is a general implementation within a frequency range, using a subset of Set A as Set B is a reasonable option if Set A and Set B are utilized in a same frequency range. This is especially beneficial when Set A and Set B are in an identical frequency range. However, it is difficult to use a subset of Set A considering different beamwidths in different frequency ranges.
[image: ]
Figure 1. Example of ‘Set B is a subset of Set A’ for BM-Case1
· Set A and Set B are different
· As discussed, utilizing different beams is not a general option for different FRs. However, it is difficult to apply Alt.1 considering different beamwidths in different frequency ranges. In addition, it should be noted that utilization of wide beam information from a low frequency range has great potential as a low frequency range is more reliable and utilization of wide beam requires much less time and frequency resources for beam management. In our view, association between different frequency ranges should be supported for both between FR1 and FR2-1 and between FR2-1 and FR2-2. 

[bookmark: _Hlk131777886][bookmark: _Hlk111143983]Observation 13: As using same beamwidth for all channels and signals is a general implementation within a frequency range, using a subset of Set A as Set B is a reasonable option if Set A and Set B are utilized in a same frequency range. 
Observation 14: It is difficult to use a subset of Set A considering different beamwidths for beam management between different frequency ranges.
Observation 15: Utilization of wide beam information from a low frequency range has great potential as a low frequency range is more reliable and utilization of wide beam requires much less time and frequency resources for beam management.
[bookmark: _Hlk131777901]Proposal 10: Support ‘Set B is a subset of Set A’ when Set A and Set B are utilized in a same frequency range for both temporal/spatial domain prediction.
Proposal 11: Support ‘Set A and Set B are different’ when Set A and Set B are utilized in different frequency ranges for both temporal/spatial domain prediction.
Proposal 12: AI/ML based beam management based on association between different frequency ranges should be supported for both between FR1 and FR2-1 and between FR2-1 and FR2-2.

Impact of quantization errors associated with RSRP reporting 
In RAN1#112 [6], following agreements were made on the impact of measurement and quantization errors associated with L1-RSRP measurement used for AI/ML model training and model inference.
	Agreement
· Further study the impact of quantization error of inputed L1-RSRP (for training and inference) for AI/ML model for beam management. 
· Existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) is the starting point for evaluation at least for network-sided model.

Agreement
· Further study on whether/how to evaluate the performance impact with L1-RSRP measurement accuracy. 




In RAN1#112bis-e [7], the following observation was made based on the simulation results presented by several companies. 
	Observation
· At least for BM-Case1 for inference of DL Tx beam with L1-RSRPs of all beams in Set B, existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) causes [a minor loss x%~y%, if applicable] in beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B.



Based on our evaluation results presented in detail in Section 3.2, we observe a 1.5% difference in Top-1 beam prediction accuracy between Case 1 where all the beams are quantized with 1 dB step size, and Case 3 where the beam with the highest L1-RSRP is quantized with 1 dB step size and differential L1-RSRP of the remaining beams (15 beams in the evaluation) are quantized with 2 dB steps size. 

[bookmark: _Hlk131777915]Observation 16: Beam prediction accuracy marginally improves when the quantization step size used for beam measurement and reporting is further reduced.  

It is worth to note that UE can only report L1-RSRP of up to maximum of 4 beams according to the current specifications. To support accurate AI/ML based model inference, measuring and reporting beam measurements of more than 4 beams can be essential. For example, as shown in Section 3.1.3, our simulation results show that when the number of reported beams is dropped from 16 (Case 6-1) to 4 (Case 9-3), Top-1 beam prediction accuracy drops from 74.48% to 59.95%. 
According to the current specifications, a UE reports the CRI and the L1-RSRP of a best beam with highest L1-RSRP in a configured RS resource set. In addition, the UE can report up to 3 more CRIs and corresponding differential L1-RSRPs [9, clause 5.2.1.4.3]. The L1-RSRP of the best beam is reported with 1 dB quantization using 7 bits, and the differential L1-RSRPs of additional 3 beams are reported with 2 dB quantization using 4 bits. This gives the maximum L1-RSRP reporting overhead of 19 bits. If the identical procedure is extended to report a higher number of beams (e.g., 8 beams or 16 beams) that are required for AI/ML model inference/training, the required beam reporting overhead is significantly increases (e.g., 7 + 7 x 4 = 35 bits for 8 beams and 7 + 15 x 4 = 67 bits for 16 beams). Therefore, alternative methods, that can report more beams (e.g., 16 beams) with high accuracy and low reporting overhead, are required to support efficient beam reporting for AI/ML model training/inference. Based on the discussion and the evaluation results, we make the following observations and the proposals.   

[bookmark: _Hlk131777928]Observation 17: According to the current specifications, UE can only report L1-RSRP of up to maximum of 4 beams. 
Observation 18: If L1-RSRP reporting mechanism in the current specification is extended to report beam measurements of many beams, reporting overhead is significantly increased. 
[bookmark: _Hlk131777937]Proposal 13: Consider alternative beam reporting methods that can report L1-RSRP of more beams with minimized reporting overhead to support AI/ML based beam predictions. 
Proposal 14: Identify and evaluate performance of potential beam reporting methods that can support large number of beams with minimized reporting overhead increment. 

Impact of measurement errors
In RAN1#112bis-e [7], modelling relative L1-RSRP measurement error was extensively discussed. The focus was to capture the impact of measurement errors due to baseband and/or RF impairments on the AI/ML beam/beam pair predictions. Two models; additive Gaussian noise with 95% of the density function withing the measurement accuracy range, and unformly distributed noise, were identified as feasible options. While it is important to understand the impact of measurement errors on the beam prediction accuracy, there are many evaluation scenarios and cases are on the table. Given the limited time for the SI, evaluating the impact of measurement errors by considering one of the identified error models can be optionally considered. 

[bookmark: _Hlk134731347]Observation 19: While it is important to understand the impact of measurement errors on the beam prediction accuracy, there are many evaluation scenarios and cases are on the table.
Proposal 15: Given the limited time for the SI, evaluating the impact of measurement errors by considering one of the identified error models can be optionally considered.

In addition, whether to consider different measurement accuracy ranges for DL Tx beam pair predictions and DL Tx beam predictions (e.g., ±3 dB and ±6 dB for beam measurements associated with DL Tx beam prediction and beam pair predictions respectively) was extensively discussed in RAN1#112bis-e [10]. We failed to identify reasonable motivations for applying different measurement accuracy as per the following aspects. 

· L1-RSRP measurement requirement
In 38.133 [11], L1-RSRP relative accuracy for FR1 and FR2 is defined respectively. For example, in section 10, the following tables for FR1 and FR2 are provided:

Table 2. CSI-RS based L1-RSRP relative accuracy in FR1
	Accuracy
	Conditions

	Normal condition
	Extreme condition
	CSI-RS Ês/Iot Note 2
	Io Note 1 range

	
	
	
	NR operating band groups Note 4
	Minimum Io
	Maximum Io

	dB
	dB
	dB
	
	dBm / SCSCSI-RS
	dBm/BWChannel
	dBm/BWChannel

	
	
	
	
	SCSCSI-RS = 15 kHz
	SCSCSI-RS = 30 kHz
	SCSCSI-RS = 60 kHz
	
	

	±3
	±4
	³-3dB
	NR_FDD_FR1_A, NR_TDD_FR1_A,
NR_SDL_FR1_A
	-121
	-118
	-115
	N/A
	-50

	
	
	
	NR_FDD_FR1_B
	-120.5
	-117.5
	-114.5
	N/A
	-50

	
	
	
	NR_TDD_FR1_C
	-120
	-117
	-114
	N/A
	-50

	
	
	
	NR_FDD_FR1_D, NR_TDD_FR1_D
	-119.5
	-116.5
	-113.5
	N/A
	-50

	
	
	
	NR_FDD_FR1_E, NR_TDD_FR1_E
	-119
	-116
	-113
	N/A
	-50

	
	
	
	NR_FDD_FR1_G
	-118
	-115
	-112
	N/A
	-50

	
	
	
	NR_FDD_FR1_H
	-117.5
	-114.5
	-111.5
	N/A
	-50

	NOTE 1:   Io is assumed to have constant EPRE across the bandwidth.
NOTE 2:   The parameter CSI-RS Ês/Iot is the minimum CSI-RS Ês/Iot of the pair of CSI-RS resources to which the requirement applies.
NOTE 3:   Void
NOTE 4:   NR operating band groups in FR1 are as defined in clause 3.5.2.



Table 3. SSB based L1-RSRP relative accuracy in FR2
	Accuracy
	Conditions

	Normal condition
	Extreme condition
	SSB Ês/Iot
	Io Note 1 range

	
	
	
	Minimum Io
	Maximum Io

	dB
	dB
	dB
	dBm / SCSSSB Note 3
	dBm/BWChannel

	
	
	
	SCSSSB = 120kHz
	SCSSSB = 240kHz
	

	±6.5
	±9.5
	≥-3
	Same value as SSB_RP in Table B.2.4.1-2, according to UE Power class, operating band and angle of arrival
	-50

	NOTE 1:   Io specified at the Reference point, and assumed to have constant EPRE across the bandwidth.
NOTE 2:   The parameter SSB Ês/Iot is the minimum SSB Ês/Iot of the pair of SSBs to which the requirement applies.
NOTE 3:   Values based on Refsens and EIS spherical coverage as defined in clauses 7.3.2 and 7.3.4 of TS 38.101-2 [19]. Applicable side condition selected depending on angle of arrival.
NOTE 4:   In the test cases, the SSB Ês/Iot and related parameters may need to be adjusted to ensure Ês/Iot at UE baseband is above the value defined in this table.

	
	
	
	
	
	



As shown in the above, relative accuracy requirement in FR2 is 3dB or more higher than the relative accuracy requirement in FR1. In RAN1#112bis-e, it was argued that this difference is mainly from the Rx beam changes. However, the difference is mainly due to different testing methods. For example, while measurements for FR1 test procedure are done via the wired antenna connector, measurements for FR2 test procedure are done Over The Air (OTA). In addition, while UE has an almost isotropic coverage with 0dB antenna gain in the wired condition, a spherical grid is used for OTA measurements testing in FR2 and CDFs are used to describe Rx sensitivity (EIS) and Tx/Rx directional properties of the antenna system. In summary, the difference between the FR1 requirement and the FR2 requirement is mainly due to the different measurement methods for FR1 and FR2. 

· Rx beam switching
In addition, it was argued that beam measurements will be made with different Rx beams more often compared to measurements for DL Tx beam predictions. In our view, number of Rx beam switching for Tx beam prediction should be identical or even higher than number of Rx beam switching for Tx beam pair prediction. 
· P1 procedure (Tx/Rx beam selection)
· In a conventional beam management procedure, P1 procedure which supports both Tx/Rx beam sweeping should be supported initially to identify a best pair of Tx beam and Rx beam. The situation does not change for AI/ML based predicition if there’s no prior information for prediction. However, the difference between Tx beam prediction and Tx beam pair prediction is that Tx beam pair prediction utilizes all RSRP information of potential combianations and predicts future best Tx beam pairs and/or corresponding RSRPs while Tx beam prediction only utilizes RSRP information of best combinations for each Tx beam to predict future best Tx beam and corresponding RSRPs regardless of Rx beam.
· P2 procedure (Tx beam change)
· P2 procedure is to find a best Tx beam by utilizing identified best Rx beams. For P2 procedure, there’s no big difference between Tx beam prediction and Tx beam pair prediction. However, there could be potential benefits for utiolizing optimized Rx beam based on prediction of AI/ML model for each Tx beam if the UE is capable of. 
· P3 procedure (Rx beam change)
· P3 procedure is to find a best Rx beam by utilizing an identified best Tx beam. For Tx beam pair prediction, RS transmissions with repetition to identify the best Rx beam can be less frequent as AI/ML model can predict the best Rx beam without measurement. 
[bookmark: _Hlk134795707]
[bookmark: _Hlk134731356]Observation 20: The difference between the FR1 requirement and the FR2 requirement is mainly due to the different measurement methods for FR1 and FR2.
Observation 21: Number of Rx beam switching for DL Tx beam prediction should be identical or even higher than number of Rx beam switching for DL Tx beam pair prediction.
[bookmark: _Hlk134731361][bookmark: _Hlk134795833]Proposal 16: Identical L1-RSRP measurement error is applied to both DL Tx beam prediction and DL Tx beam pair prediction. 

Evaluation assumptions
This section provides our views on evaluation assumptions based on the agreed evaluation assumptions.
· Traffic model
· For beam information related KPIs, no traffic model is needed to be defined as UE is measuring reference signals not decoding actual PDSCHs.
· For system performance related KPIs, FTP traffic should be used to reflect practical traffics for the evaluation. 
· For FTP traffic model, FTP model 1 is not an appropriate option as FTP model generates a new UE for each packet. In this case, successful spatial/temporal domain beam prediction is not possible due to lack of the information. Between FTP model 2 and 3, FTP model 3 according to a Poisson process with arrival rate λ is preferred.
· UE distribution
· For full buffer traffic (if supported), 10 UEs per sector/cell was agreed. For FTP traffic, if number of UEs is increased and small number of packets arrive for each UE, then it is difficult to efficiently evaluate benefits from AI/ML based beam prediction. Given the situation, it is preferred to keep the same number of UEs per cell with the number for full buffer traffic with 50% and 70% RUs.
[bookmark: _Hlk134795844][bookmark: _Hlk131777948]Proposal 17: For traffic model, support the following evaluation assumptions:
· For beam information related KPIs, no traffic model is needed to be defined as UE is only measuring reference signals not decoding actual PDSCHs.
· For system performance related KPIs, FTP traffic should be used to reflect practical traffics for the evaluation. 
· For FTP traffic model, FTP model 3 is preferred as generating a new UE for each packet (FTP model 1) is not appropriate for evaluating benefits from AI/ML based beam prediction. 
[bookmark: _Hlk134795853]Proposal 18: For UE distribution, support the following evaluation assumption:
· For FTP traffic model, 10 UEs per cell/sector with 50% and 70% RUs is preferred. 

Evaluation for LCM/Model monitoring
The model monitoring is an essential functionality to support proper use of AI/ML models for beam management. To this end, in RAN1#112 [6] the following agreement was made on performance metric(s) of AI/ML model monitoring for BM-Case1 and BM-Case 2 under the companion AI 9.2.3.2. 
	Agreement
Regarding the performance metric(s) of AI/ML model monitoring for BM-Case1 and BM-Case2, study the following alternatives (including feasibility/necessity) with potential down-selection:
· Alt.1: Beam prediction accuracy related KPIs, e.g., Top-K/1 beam prediction accuracy
· Alt.2: Link quality related KPIs, e.g., throughput, L1-RSRP, L1-SINR, hypothetical BLER
· Alt.3: Performance metric based on input/output data distribution of AI/ML 
· Alt.4: The L1-RSRP difference evaluated by comparing measured RSRP and predicted RSRP 
· Other alternatives are not precluded
· Note: At least the performance and spec impact should be considered



In RAN1#112bis-e [10], the feasibility of these 4 alternative performance metric(s) were discussed. While Alt1 and Alt 2 were identified as feasible by most of the companies, feasibility of Alt 3 and Alt 4 are yet to be discussed. Further for Alt 4, there were some concerns about the definition of L1-RSRP difference. 
For Alt 4, the difference between the measured L1-RSRP and the predicted L1-RSRP of the same beam must be defined as the ‘L1-RSRP difference’. The definition agreed in RAN1#112, for ‘predicted L1-RSRP difference’ i.e., the difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam’ was to evaluate the accuracy of predicted L1-RSRP. Having said that, the model monitoring and LCM must be done based on real-time measurements performed (e.g., L1-RSRP measured by the UE). Therefore, the definition of ‘predicted L1-RSRP difference’ is not valid for model monitoring and LCM. Further, L1-RSRP difference is a good figure to indicate the validity of an AI/ML model for beam predictions, thus it can be considered as a feasible alternative for model monitoring and LCM along with Alt 1 and Alt 2. Having said that, feasibility of Alt 3 can be further studied.  
[bookmark: _Hlk134795894]Proposal 19: In Alt 4, ‘L1-RSRP difference’ of a beam is the difference between the measured L1-RSRP (e.g., by the UE) and the predicted L1-RSRP of the same beam using AI/ML model.
Proposal 20: At least Alt1, Alt2, and Alt 4 can be considered for model monitoring and LCM. 
It is also worth to note that, one metric alone out of the listed alternatives can fail to determine the validity/invalidity of a model. For example, a model that provides relatively low beam prediction accuracy related KPIs (e.g., Top-1 beam prediction accuracy) may still provide sufficient throughput. To overcome this issue, a combination of alternatives may be considered for model monitoring. 
[bookmark: _Hlk134795926]Observation 22: One metric alone out of the identified alternative metric(s) can fail to determine the validity/invalidity of a model.
[bookmark: _Hlk134795915]Proposal 21: Use a combination of metrics for the LCM and model monitoring.
Evaluation results
Spatial Prediction
In this section, we provide evaluation results of spatial beam prediction based on partial RSRP measurements. Out of 64 Tx beams between each UE and serving gNB, only 50%/25% of the RSRP measurements are assumed to be available for input to the AIML model. The AIML model outputs the predicted best beam index, in particular, the probabilities of each beam being the best Tx beam.  
UE Dropping Generalization
A ResNet AIML model is trained for spatial beam prediction in two UE dropping scenarios in UMa environment:
· Scenario #1: 100% Outdoor UEs (UE Speed: 3 km/h)
· Scenario #2: 20% Outdoor UE and 80% Indoor UEs (UE Speed: 3 km/h)

The input of the model is a fixed set of RSRP measurements (fixed set B)

We consider the following cases for evaluation:
· Case 1-1: Training on data from Scenario #1 and Testing on Data from Scenario #1
· Case 1-2: Training on data from Scenario #2 and Testing on Data from Scenario #1
· Case 1-3: Training on a mixed set of data from Scenario #1 and Scenario #2 and Testing on Data from Scenario # 1
· Case 2-1: Training on data from Scenario #2 and Testing on Data from Scenario #2
· Case 2-2: Training on data from Scenario #1 and Testing on Data from Scenario #2
· Case 2-3: Training on a mixed set of data from Scenario #1 and Scenario #2 and Testing on Data from Scenario #2

The following table summarizes the accuracy results.

Table 2: Spatial Prediction Accuracy of AIML-based Classification (UE Dropping Generalization, Set B Size = 32)
	Case
	Top-1 Accuracy
	Top-3/1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy

	Case 1-1
	89.21%
	98.95%
	99.76%
	99.48%

	Case 1-2
	85.05%
	98.81%
	99.81%
	98.48%

	Case 1-3
	89.12%
	99.21%
	99.83%
	99.00%

	Case 2-1
	87.19%
	98.98%
	99.69%
	98.88%

	Case 2-2
	80.12%
	96.05%
	98.19%
	97.76%

	Case 2-3
	86.93%
	99.02%
	99.60%
	98.93%



Table 3: Spatial Prediction Accuracy of AIML-based Classification (UE Dropping Generalization, Set B Size = 16)
	Case
	Top-1 Accuracy
	Top-3/1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy

	Case 1-1
	78.40%
	95.19%
	97.93%
	96.71%

	Case 1-2
	67.76%
	91.79%
	96.38%
	93.93%

	Case 1-3
	77.64%
	95.31%
	97.69%
	96.26%

	Case 2-1
	72.90%
	95.19%
	98.17%
	97.02%

	Case 2-2
	62.07%
	86.86%
	92.52%
	90.86%

	Case 2-3
	72.71%
	94.76%
	98.12%
	96.62%



[bookmark: _Hlk131768478][bookmark: _Hlk131777962]Observation 23: Training an AIML model for a certain environment (e.g., UMa) and a certain UE dropping scenario for inference on a different UE dropping scenario results in degradation in Top-1 accuracy by 4%-11%.
Observation 24: Training an AIML model for a certain environment (e.g., UMa) and a mixed data set from different UE dropping scenarios can be generalized for different UE dropping scenarios for each UE dropping scenario with unnoticeable accuracy losses.
In addition, Figures 2-a and 2-d provide prediction accuracy within an error margin in dB when testing with UE dropping Scenarios #1 and #2, respectively. Based on the error margin, the best beam selected by AIML model was counted as misdetection only when the RSRP of the selected beam differs from the optimal beam obtained from actual RSRP values by a value greater than the error margin. 
[image: ] [image: ]
	(a)
	(b)
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Figure 2: Accuracy of spatial beam prediction with error margin for Scenario#1 and Scenario #2
Beam Pattern Generalization
[bookmark: _Hlk134709070]A ResNet AIML model is trained for spatial beam prediction for multiple beam patterns in UMa environment with mixed UE dropping (i.e., examples come from Scenario#1 and Scenario# 2). We consider a set B of reported RSRP measurements consisting of 32 Tx beams, which is a subset of set A consisting of 64 Tx beams. We consider the following beam patterns for set B:

· Pattern #1Azimuth Angles
Elevation Angles

Beam is member of set A and set B

Beam is member of set A


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



· Pattern #2: Compliment of Pattern #1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



· Pattern #3: Random Pattern (Pattern of available/missing RSRP measurements differ per training/testing example, but the missing ratio is fixed) 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Figure 3. Beam patterns of Set B for 32 Tx beams

The input of the model is a set of RSRP measurements according to one of the patterns. We consider the following cases for evaluation:
· Case 3-1: Training on data from Pattern #1 and Testing on Data from Pattern #1
· Case 3-2: Training on data from Pattern #2 and Testing on Data from Pattern #1
· Case 3-3: Training on a mixed set of data from Pattern #1 and Pattern #2 and Testing on Data from Pattern # 1
· Case 3-4: Training on data from Pattern #3 and Testing on Data from Pattern #1
· Case 4-1: Training on data from Pattern #2 and Testing on Data from Pattern #2
· Case 4-2: Training on data from Pattern #1 and Testing on Data from Pattern #2
· Case 4-3: Training on a mixed set of data from Pattern #1 and Pattern #2 and Testing on Data from Pattern # 2
· Case 4-4: Training on data from Pattern #3 and Testing on Data from Pattern #2
· Case 5: Training on data from Pattern #3 and Testing on Data from a mixed set of data from Pattern #1 and Pattern #2

The following table summarizes the accuracy results.  

Table 4: Spatial Prediction Accuracy of AIML-based Classification (Beam Pattern Generalization, Set B Size = 32)
	Case
	Top-1 Accuracy
	Top-3/1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy

	Case 3-1
	84.17%
	98.19%
	99.45%
	97.98%

	Case 3-2
	7.83%
	16.88%
	24.62%
	20.00%

	Case 3-3
	85.02%
	98.26%
	99.43%
	97.79%

	Case 3-4
	87.02%
	98.82%
	99.74%
	99.17%

	Case 4-1
	85.10%
	98.71%
	99.62%
	98.19%

	Case 4-2
	12.40%
	27.02%
	36.62%
	31.69%

	Case 4-3
	84.78%
	98.36%
	99.38%
	97.69%

	Case 4-4
	86.05%
	98.83%
	99.76%
	99.17%

	Case 5
	86.95%
	98.79%
	99.69%
	99.26%



Furthermore, we consider a set B of reported RSRP measurements consisting of 16 Tx beams, which a subset of set A consisting of 64 Tx beams. We consider the following beam patterns for set B:

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


· Pattern #4Azimuth Angles
Elevation Angles

Beam is member of set A and set B

Beam is member of set A



· Pattern #5: Shifted Version of Pattern #4
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


· Pattern #6: Random Pattern (Pattern of available/missing RSRP measurements differ per training/testing example, but the number of input RSRPs is fixed)




Figure 4. Beam patterns of Set B for 16 Tx beams

The input of the model is a set of RSRP measurements according to one of the patterns. We consider the following cases for evaluation:
· Case 6-1: Training on data from Pattern #4 and Testing on Data from Pattern #4
· Case 6-2: Training on data from Pattern #5 and Testing on Data from Pattern #4
· Case 6-3: Training on a mixed set of data from Pattern #4 and Pattern #5 and Testing on Data from Pattern # 4
· Case 6-4: Training on data from Pattern #6 and Testing on Data from Pattern #4
· Case 7-1: Training on data from Pattern #5 and Testing on Data from Pattern #5
· Case 7-2: Training on data from Pattern #4 and Testing on Data from Pattern #5
· Case 7-3: Training on a mixed set of data from Pattern #4 and Pattern #5 and Testing on Data from Pattern # 5
· Case 7-4: Training on data from Pattern #6 and Testing on Data from Pattern #5
· Case 8: Training on data from Pattern #6 and Testing on Data from a mixed set of data from Pattern #4 and Pattern #5

The following table summarizes the accuracy results.  

Table 5: Spatial Prediction Accuracy of AIML-based Classification (Beam Pattern Generalization, Set B Size = 16)
	Case
	Top-1 Accuracy
	Top-3/1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy

	Case 6-1
	74.48%
	94.02%
	97.52%
	95.24%

	Case 6-2
	4.38%
	10.40%
	15.57%
	20.33%

	Case 6-3
	72.64%
	93.24%
	96.40%
	95.12%

	Case 6-4
	69.81%
	94.12%
	97.74%
	95.93%

	Case 7-1
	75.29%
	94.81%
	97.64%
	96.21%

	Case 7-2
	1.19%
	3.83%
	5.95%
	5.29%

	Case 7-3
	72.21%
	93.38%
	97.05%
	95.55%

	Case 7-4
	70.71%
	94.60%
	98.02%
	96.76%

	Case 8
	69.62%
	93.90%
	97.81%
	96.36%



[bookmark: _Hlk134795955][bookmark: _Hlk131777977]Observation 25: Training an AIML model with different beam patterns or random beam patterns can help obtain a model that generalizes over multiple beam patterns without significant degradation in prediction accuracy. 
Impact of Set B Selection
We consider the spatial beam prediction for multiple cases of reported RSRP measurements selection (i.e., set B selection) when the reported RSRP measurements are subset of the total RSRP measurements (i.e., set B is a subset of set C). For a UMa environment with mixed UE dropping (i.e., examples come from Scenario#1 and Scenario# 2 of UE dropping), We consider a set C of RSRP measurements consisting of 16 Tx beams, following the pattern shown below (i.e., Pattern #4), which a subset of set A consisting of 64 Tx beams. 
Pattern #4Azimuth Angles
Elevation Angles

Beam is member of set A and set C

Beam is member of set A


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Pattern #7
Beam is member of set A and set C

Beam is member of set A


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Figure 5. Beam patterns of Set B for Uniformly selected 16 and 8 Tx beams
We consider multiple cases for selecting reported RSRP measurements for set B:
· Case 6-1: Size of set B = Size of set C = 16 following Pattern #4
· Case 9-1: Size of set B = 8, where the members of set B are selected as the best 8 beams from set C
· Case 9-2: Size of set B = 8, where the members of set B are selected randomly from set C
· Case 9-1: Size of set B = 4, where the members of set B are selected as the best 4 beams from set C
· Case 9-2: Size of set B = 4, where the members of set B are selected randomly from set C
· Case 10: Size of set B = Size of set C = 8 following Pattern #7

Table 6: Spatial Prediction Accuracy of AIML-based Classification (Set B Selection)
	Case
	Size of Set C
	Size of Set B
	Set B Selection
	Top-1 Accuracy
	Top-3/1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy

	Case 6-1
	16
	16
	All in set C
	74.48%
	94.02%
	97.52%
	95.24%

	Case 9-1
	16
	8
	Best in set C
	68.74%
	90.17%
	94.69%
	93.81%

	Case 9-2
	16
	8
	Randomly from set C
	51.60%
	80.21%
	89.07%
	84.07%

	Case 9-3
	16
	4
	Best in set C
	59.95%
	86.50%
	92.86%
	89.29%

	Case 9-4
	16
	4
	Randomly from set C
	28.10%
	54.02%
	66.86%
	58.67%

	Case 10
	8
	8
	All in set C
	50.86%
	79.69%
	88.07%
	85.29%



In addition, Figure 6 provide prediction accuracy within an error margin in dB. Based on the error margin, the best beam selected by AIML model was counted as misdetection only when the RSRP of the selected beam differs from that of the optimal beam obtained from actual RSRP values by a value greater than the error margin. 
[image: ]
Figure 6: Accuracy of spatial beam prediction with error margin for different set B selections
[bookmark: _Hlk134795968]Observation 26: Training an AIML model with a smaller number of reported measurements (i.e., smaller size of set B) results in a decrease of Top-1 accuracy. 
Observation 27: Reporting a subset of the best measured beams for input to the AIML model achieves a higher beam prediction accuracy than reporting a uniformly or randomly selected subset of the measured beams. 

System-level Evaluation
We consider the system-level evaluation of spatial beam prediction in UMa environment with Scenario#1 of UE dropping (i.e., all UE are outdoor UEs). 10 UEs are uniformly dropped per cell with full buffer traffic. Set B of reported RSRP measurements consists of 16 Tx beams (following Pattern #4) and is a subset of set A consisting of 64 Tx beams. The trained AIML-model is used to predict the best beam for each UE. We measure the average throughput for all UEs normalized to the optimal case (i.e., Genie aided beam selection). The following table summarizes the relative average UE throughput.
Table 7: Spatial Prediction System-level Evaluation
	Case
	Normalized Average UE Throughput

	Genie aided beam selection
	1

	AIML-based spatial beam prediction
	0.9598

	Beam selection without AIML
	0.8916


[bookmark: _Hlk134795996]
Observation 28: AIML-based spatial beam prediction achieve 6% higher throughput compared to beam selection without AIML. 

Evaluation of the Impact of Quantization Errors on Spatial Predictions
In this section, we provide evaluation results for the impact of quantization errors on spatial beam prediction in a UMa scenario with 100% of the UEs are dropped outdoors. We consider a a set B of reported RSRP measurements consisting of 16 Tx beams, which a subset of set A consisting of 64 Tx beams. Selected beams for set B follow a fixed pattern as shown in the following figure. 
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Figure 7. Beam pattern of Set B for quantization errors

The RSRP measurements of set B are quantized using legacy 1 dB step or 2 dB step. The quantized RSRP measurements are used for both training and inference in a ResNet-based AIML model. The AIML model outputs the predicted best beam index.  
We consider the following cases for evaluation:
· Baseline: AIML model trained using real RSRP values and tested using real RSRP values. 
· Case 1: AIML model trained using quantized RSRP values and tested using quantized RSRP values, where quantization step is 1 dB following legacy quantization.
· Case 2: AIML model trained using quantized RSRP values and tested using quantized RSRP values, where quantization step is 2 dB.
· Case 3: AIML model trained using quantized RSRP values and tested using quantized RSRP values, where legacy differential quantization with 2 dB is applied. 


The following table summarizes the accuracy results.
  
Table 8: Spatial Prediction Accuracy of AIML-based Classification with and without Quantization
	Case
	Top-1 Accuracy
	Top-3/1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy

	Baseline
(No Quantization)
	79.12%
	95.50%
	98.00%
	96.24%

	Case 1
(1 dB Quantization)
	76.02%
	94.60%
	97.64%
	95.64%

	Case 2
(2 dB Quantization)
	71.21%
	92.00%
	96.26%
	94.74%

	Case 3
(2 dB Differential Quantization)
	74.48%
	93.67%
	97.10%
	95.52%



[bookmark: _Hlk131777987]Observation 29: The more the quantization step is set, the more the degradation in prediction accuracy becomes.
Observation 30: Using 1 dB quantization step results in small degradation in accuracy by 3% compared to baseline (no quantization) for Top-1 accuracy and by <1% for Top-3/1 and Top5/1 accuracies.
In addition, Figure 8 provide prediction accuracy within an error margin in dB. Based on the error margin, the best beam selected by AIML model was counted as misdetection only when the RSRP of the selected beam differs from the optimal beam obtained from actual RSRP values by a value greater than the error margin. 
[image: ]
Figure 8. Accuracy of spatial beam prediction with error margin with and without Quantization

Temporal Prediction
In this section, we provide evaluation results of temporal beam prediction of prediction window frames based on past RSRP measurements obtained during observation window frames. RSRP measurements of observation window frames are obtained at time instants (T1, T2, T3, …, Ti, Ti+1, Ti+2, …), where Ti+1 – Ti = 160 ms. 
We consider an observation window consisting of RSRP measurements at 3 time instant (Ti-2, Ti-1, Ti) and a prediction window in which we predict the best beam in 2 time instants (Ti+1, Ti+2). We compare the best beam prediction accuracy for the following UE speed generalization cases. 
A transformer-based AIML model is trained to capture temporal correlations between elements in a sequence beam information from the observation window and predict the best beam in prediction window instants. Two UE mobility speeds in UMa environment were considered:
· Speed Scenario #1: 100% Outdoor UEs with UE Speed = 30 km/h
· Speed Scenario #2: 100% Outdoor UEs with UE Speed = 60 km/h

We consider the following cases for evaluation:
· Case T1-1: Training on data from Speed Scenario #1 and Testing on Data from Speed Scenario #1
· Case T1-2: Training on data from Speed Scenario #2 and Testing on Data from Speed Scenario #1
· Case T1-3: Training on a mixed set of data from Speed Scenario #1 and Scenario #2 and Testing on Data from Speed Scenario # 1
· Case T2-1: Training on data from Speed Scenario #2 and Testing on Data from Speed Scenario #2
· Case T2-2: Training on data from Speed Scenario #1 and Testing on Data from Speed Scenario #2
· Case T2-3: Training on a mixed set of data from Speed Scenario #1 and Scenario #2 and Testing on Data from Speed Scenario #2

Accuracy results are summarized in the table below.

Table 9: Temporal Prediction Accuracy of AIML-based Classification (UE Speed Generalization)
	Case
	1st Instant of Prediction Window
	2nd Instant of Prediction Window

	
	Top-1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy
	Top-1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy

	Case T1-1
	60.51%
	95.35%
	76.05%
	61.29%
	95.35%
	77.02%

	Case T1-2
	30.21%
	63.40%
	59.92%
	22.64%
	55.15%
	48.85%

	Case T1-3
	60.51%
	95.69%
	76.55%
	59.61%
	94.91%
	75.77%

	Case T2-1
	50.32%
	86.20%
	65.58%
	58.05%
	89.70%
	74.47%

	Case T2-2
	21.22%
	52.00%
	47.79%
	16.67%
	41.70%
	39.53%

	Case T2-3
	49.96%
	87.29%
	65.30%
	58.26%
	90.27%
	74.89%



[bookmark: _Hlk131777999][bookmark: _Hlk134796024]Observation 31: Training an AIML model with examples from different UE speeds can help obtain a model that generalizes for temporal beam prediction for different UE speeds.
Summary
In this contribution, we discuss evaluation methodology, KPI and target scenarios for AI/ML beam management and provide preliminary evaluation results for AI/ML aided beam prediction. Based on the discussions and evaluation results, we made the following observations and proposals:
Observation 1: Legacy beam management with Rel-17 without AI/ML algorithms is not an appropriate baseline as implementation-based AI/ML operation is available for UE and gNB implementations.
Observation 2: Beam management via exhaustive beam sweeping is not an appropriate baseline as such beam management approach is not practically possible.
Observation 3: Selecting the best beam within Set A of beams based on the measurements of all the RSs from Set B is not an appropriate baseline as Set B size may not align with the limitations of the current specifications.  
Observation 4: Beam information related KPI is not a measure to evaluate actual performance benefits from AI/ML based beam prediction, however, beam information related KPI can be used as a temporal measure to have an insight as beam information related KPI requires less computational overhead for evaluation.
Observation 5: Specification enhancements should be justified based on actual system performance benefits such as throughputs not based on beam related KPIs such as L1-RSRP difference.
Observation 6: Option B (specific Rx beam) does not reflect actual benefits from AI/ML based beam prediction and misleads interpretation of evaluation metric for AI/ML based beam prediction. 
Observation 7: KPIs related to comparing L1-RSRP difference with predicted L1-RSRP difference does not reflect the main focus of beam predictions, i.e., to select the Top-1 or Top-K best beams.
Observation 8: For different beam pattern type, each beam pattern type has its own pros and cons for performance, flexibility of inference input and range of inputs required for training. 
Observation 9: Alt 2 (implicit information of Tx beam ID and/or Rx beam ID) can be applied for evaluation of Option 2: Set B is variable. 
Observation 10: For specification impact, an efficient procedure for supporting Option 2: Set B is variable can be different considering number of beams to be reported and required overheads for reporting corresponding RSRP values. 
Observation 11: Option D, i.e., selecting Set B out of measured beams (Set C), can be beneficial as Set B can be selected in a way for minimizing performance loss with reduced reporting overhead.
Observation 12: Performance of Option D, i.e., Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), can vary depending on beam subset selection methods. 
Observation 13: As using same beamwidth for all channels and signals is a general implementation within a frequency range, using a subset of Set A as Set B is a reasonable option if Set A and Set B are utilized in a same frequency range. 
Observation 14: It is difficult to use a subset of Set A considering different beamwidths for beam management between different frequency ranges.
Observation 15: Utilization of wide beam information from a low frequency range has great potential as a low frequency range is more reliable and utilization of wide beam requires much less time and frequency resources for beam management.
Observation 16: Beam prediction accuracy marginally improves when the quantization step size used for beam measurement and reporting is further reduced.  
Observation 17: According to the current specifications, UE can only report L1-RSRP of up to maximum of 4 beams. 
Observation 18: If L1-RSRP reporting mechanism in the current specification is extended to report beam measurements of many beams, reporting overhead is significantly increased. 
Observation 19: While it is important to understand the impact of measurement errors on the beam prediction accuracy, there are many evaluation scenarios and cases are on the table.
Observation 20: The difference between the FR1 requirement and the FR2 requirement is mainly due to the different measurement methods for FR1 and FR2.
Observation 21: Number of Rx beam switching for DL Tx beam prediction should be identical or even higher than number of Rx beam switching for DL Tx beam pair prediction.
Observation 22: One metric alone out of the identified alternative metric(s) can fail to determine the validity/invalidity of a model.
Observation 23: Training an AIML model for a certain environment (e.g., UMa) and a certain UE dropping scenario for inference on a different UE dropping scenario results in degradation in Top-1 accuracy by 4%-11%.
Observation 24: Training an AIML model for a certain environment (e.g., UMa) and a mixed data set from different UE dropping scenarios can be generalized for different UE dropping scenarios for each UE dropping scenario with unnoticeable accuracy losses.
Observation 25: Training an AIML model with different beam patterns or random beam patterns can help obtain a model that generalizes over multiple beam patterns without significant degradation in prediction accuracy. 
Observation 26: Training an AIML model with a smaller number of reported measurements (i.e., smaller size of set B) results in a decrease of Top-1 accuracy. 
Observation 27: Reporting a subset of the best measured beams for input to the AIML model achieves a higher beam prediction accuracy than reporting a uniformly or randomly selected subset of the measured beams. 
Observation 28: AIML-based spatial beam prediction achieve 6% higher throughput compared to beam selection without AIML.
Observation 29: The more the quantization step is set, the more the degradation in prediction accuracy becomes.
Observation 30: Using 1 dB quantization step results in small degradation in accuracy by 3% compared to baseline (no quantization) for Top-1 accuracy and by <1% for Top-3/1 and Top5/1 accuracies.
Observation 31: Training an AIML model with examples from different UE speeds can help obtain a model that generalizes for temporal beam prediction for different UE speeds.

Proposal 1: ‘No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes’ could be an appropriate baseline to accurately evaluate the benefits of AI/ML with specification enhancements.
Proposal 2: Support system performance related KPIs as mandatory KPIs.
· Support Avg. and 5% UE throughput for system performance KPIs.
Proposal 3: KPIs related to the difference between the estimated L1-RSRP and actual L1-RSRPs of the same beams get lower priority over beam ranking based KPIs (e.g., Top-1 (%), Top-K/1 (%), Top-1/K (%)).
Proposal 4: Support beam information related KPIs as optional for temporal measures.
· Support average L1-RSRP difference of Top-1 predicted beam in addition to the agreed options for beam prediction accuracy (%).
Proposal 5: For the definition of Top-1 genie-aided beam/beam pair, consider Option A, i.e., the Top-1 genie-aided Tx beam/beam pair is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams/beam pairs. 
Proposal 6: Further study benefits of various beam pattern types.
Proposal 7: For evaluation, Alt 2 (implicit information) can be used. However, specification impact to support Option 2 should be further discussed considering reporting information overheads. \
Proposal 8: Consider Option D, i.e., selecting Set B out of measured beams (Set C), to identify performance benefits and corresponding potential specification enhancements. 
Proposal 9: Identify potential methods for selecting Set B out of measured beams (Set C) and evaluate benefits of the identified Set B selection methods to decide an optimized Set B selection method. 
Proposal 10: Support ‘Set B is a subset of Set A’ when Set A and Set B are utilized in a same frequency range for both temporal/spatial domain prediction.
Proposal 11: Support ‘Set A and Set B are different’ when Set A and Set B are utilized in different frequency ranges for both temporal/spatial domain prediction.
Proposal 12: AI/ML based beam management based on association between different frequency ranges should be supported for both between FR1 and FR2-1 and between FR2-1 and FR2-2.
Proposal 13: Consider alternative beam reporting methods that can report L1-RSRP of more beams with minimized reporting overhead to support AI/ML based beam predictions. 
Proposal 14: Identify and evaluate performance of potential beam reporting methods that can support large number of beams with minimized reporting overhead increment. 
Proposal 15: Given the limited time for the SI, evaluating the impact of measurement errors by considering one of the identified error models can be optionally considered.
Proposal 16: Identical L1-RSRP measurement error is applied to both DL Tx beam prediction and DL Tx beam pair prediction. 
Proposal 17: For traffic model, support the following evaluation assumptions:
· For beam information related KPIs, no traffic model is needed to be defined as UE is only measuring reference signals not decoding actual PDSCHs.
· For system performance related KPIs, FTP traffic should be used to reflect practical traffics for the evaluation. 
· For FTP traffic model, FTP model 3 is preferred as generating a new UE for each packet (FTP model 1) is not appropriate for evaluating benefits from AI/ML based beam prediction. 
Proposal 18: For UE distribution, support the following evaluation assumption:
· For FTP traffic model, 10 UEs per cell/sector with 50% and 70% RUs is preferred. 
Proposal 19: In Alt 4, ‘L1-RSRP difference’ of a beam is the difference between the measured L1-RSRP (e.g., by the UE) and the predicted L1-RSRP of the same beam using AI/ML model.
Proposal 20: At least Alt1, Alt2, and Alt 4 can be considered for model monitoring and LCM. 
Proposal 21: Use a combination of metrics for the LCM and model monitoring.
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Appendix
Evaluation assumptions
	Parameter
	 Values

	Carrier Frequency
	30 GHz

	Bandwidth
	80 MHz

	Subcarrier Spacing
	120 kHz 

	Deployment
	2-tier model with wrap-around (7 sites, 3 sectors/cells per site) with ISD = 200 m

	Channel model
	5G-UMa (TR 38.901)

	UE Model Parameters 

	UE Noise Figure
	10 dB

	UE Antenna Configuration
	(M, N, P, Mg, Ng) = (1, 4, 2, 1, 1), dH = 0.5λ

	UE Dropping (Spatial Prediction)
	· Scenario #1: 100% Outdoor UEs 
· Scenario #2: 20% Outdoor UEs and 80% Indoor UEs
· UE Speed: 3 km/h

	UE Dropping (Temporal Prediction)
	· 100% Outdoor UEs
· UE Speed: 30 km/h

	UE mobility modeling (Temporal Prediction)
	Procedure A from Section 7.6.3.2 in TR38.900 

	UE Antenna Height
	1.5 m

	gNB Model Parameters 

	gNB TX power
	23 dBm

	gNB Antenna Configuration
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ

	gNB Antenna Radiation Pattern
	3-sector (120 degrees apart from each other)

	gNB Antenna Height
	25 m



AI/ML Spatial Prediction Parameters
	Data Description

	Complete Dataset Description
	Each sample includes 64 RSRP measurements for beams from one sector to one UE

	Input Dataset Description
	Each sample includes a subset of the RSRP measurements from complete dataset

	Output Dataset Description
	Probabilities of Top-1 beam for all Tx beams

	Beams Description
	64 Tx beams per sector per TRP. Beams are generated from the combination of beams at 16 azimuth angles and 4 elevation angles

	Number of Samples
	21,000 Samples

	Size of Training, Validation, and Testing Set
	70%, 10%, 20% of the dataset 

	ML Model Parameters

	Model Description
	A ResNet model to predict the best beam given the available RSRP measurements in the input dataset (Figure A.1) 

	Model Parameters
	· Loss Function: Cross entropy
· Optimizer: Adam

	Evaluation
	· Top-K Accuracy: If the best genie-predicted beam is among the top-K model-predicted beams
· Top-K Reversed Accuracy: If the best model-predicted beam is among the top-K genie-predicted beams
· Accuracy within X dB: If the best model-predicted beam is within X dB from the top-1 genie-predicted beam
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Figure A.1: ResNet Model for Spatial Beam Prediction

AI/ML Temporal Prediction Parameters
	Data Description

	Complete Dataset Description
	Each sample includes 64 RSRP measurements for beams from one sector to one UE

	Input Dataset Description
(Observation Window)
	RSRP measurements from observation window frames at time instants (Ti, Ti+1, Ti+2, …), where Ti+1 – Ti = 160 ms

	Output Dataset Description
(Prediction Window)
	Probabilities of Top-1 beam for all Tx beams

	Beams Description
	64 beams per sector per TRP. Beams are generated from the combination of beams at 16 azimuth angles and 4 elevations angles

	Number of Samples
	~30K Samples

	Size of Training, Validation, and Testing Set
	70%, 10%, 20% of the dataset 

	ML Model Parameters

	Model Description
	A transformer-based model to predict the best beam (or best k-beams) in each time frame of the prediction window (Figure A.2) 

	Model Parameters
	· Loss Function: Aggregate cross entropy over the prediction window
· Optimizer: Adam

	Evaluation Metrics
	· Top-K Accuracy: If the best genie-predicted beam is among the top-K model-predicted beams
· Top-K Reversed Accuracy: If the best model-predicted beam is among the top-K genie-predicted beams
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Figure A.2: Transformer-based Model for Temporal Beam Prediction
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