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[bookmark: _Toc126842917]Introduction
This contribution discusses the issues for the agenda item other aspects on AI/ML for positioning accuracy enhancements. 
The paper outline is as follows:
· Section 2: Views are shared on some general aspects. 
· [bookmark: _Hlk118642507]Section 3: Analysis is provided for each deployment case on the potential benefits and specification impacts for AI/ML model inference, configuration, performance monitoring, and data collection for training. 
· Section 4 concludes the paper with a list of observations and proposals. 


In RAN1#112 and RAN1#112bis, the following agreements were reached:

	Agreement
Regarding training data generation for AI/ML based positioning, 
· The following options of entity and mechanisms to generate ground truth label are identified
· At least PRU is identified to generate ground truth label for UE-based positioning with UE-side model (Case 1) and UE-assisted positioning with UE-side model (Case 2a)
· At least LMF with known PRU location is identified to generate ground truth label for UE-assisted/LMF-based positioning with LMF-side model (Case 2b) and NG-RAN node assisted positioning with LMF-side model (Case 3b)
· At least network entity with known PRU location is identified to generate ground truth label for NG-RAN node assisted positioning with gNB-side model (Case 3a)
· FFS whether and if so, applicable conditions and potential specification impact for the following options to generate ground truth label
· UE generates ground truth label based on non-NR and/or NR RAT-dependent positioning methods
· Network entity generates ground truth label based on positioning methods
· The following options of entity to generate other training data (at least measurement corresponding to model input) are identified
· For UE-based with UE-side model (Case 1) and UE-assisted positioning with UE-side (Case 2a) or LMF-side model (Case 2b)
· PRU 
· UE
· For NG-RAN node assisted positioning with Network-side model (Case 3a and Case 3b)
· TRP
· Note: transfer of training data from the entity generating training data to a different entity is not precluded and associated potential specification impact is for further study

Agreement
Regarding training data collection for AI/ML based positioning, study benefit(s) and potential specification impact (including necessity) at least for the following aspects
· Associated information of training data
· Quality indicator at least for ground truth label (if needed)
· Other information associated with training data is not precluded. E.g., information related training dataset/samples, information related to scenario, resource configuration & mapping, timing for training data, information on implementation imperfections, etc.
· Assistance signaling and procedure to facilitate generating/collecting training data
· Potential determination of the UE/PRU/TRP which can provide the training data
· Configuration of reference signal (for measurement and/or label) 
· Signaling other than above 2 for data collection
· E.g., requested quality of training data

Agreement
Regarding AI/ML model monitoring for AI/ML based positioning, to study and provide inputs on benefit(s), feasibility, necessity and potential specification impact for the following aspects
· Entity to derive monitoring metric
· UE at least for Case 1 and 2a (with UE-side model)
· FFS PRU for Case 1 and 2a
· gNB at least for Case 3a (with gNB-side model)
· FFS gNB for Case 3b (with LMF-side model)
· LMF at least for Case 2b and 3b (with LMF-side model)
· Note1: companies are requested to report their assumption of entity to calculate monitoring metric if different from above options for each of the agreed cases (Case 1 to Case 3b)
· If model monitoring does not require ground truth label (or its approximation).
· Monitoring metric, e.g., statistics of measurement, relative displacement, inference output inconsistency, etc.
· Assistance signaling and procedure, e.g., RS configuration(s) for measurement, measurement statistics as compared to the model input statistics of the training data, etc.
· report of the calculated metric and/or model monitoring decision
· If model monitoring requires and is provided ground truth label (or its approximation)
· Monitoring metric, e.g., statistics of the difference between model output and ground truth label, etc.
· Assistance signaling and procedure, e.g., from LMF to UE/gNB indicating ground truth label and/or measurement, etc.
· report of the calculated metric and/or model monitoring decision
· Note2: other options (of monitoring methods, monitoring metrics, assistance signaling) are not precluded

Agreement
Regarding monitoring for AI/ML based positioning, at least the following aspects are identified for further study on benefit(s), feasibility, necessity and potential specification impact for each case (Case 1 to 3b)
· Assistance signaling from LMF to UE/PRU/gNB for UE/gNB-side model monitoring
· Assistance signaling from UE/PRU for network-side model monitoring
· Model monitoring based on provided ground truth label (or its approximation)
· Monitoring metric: statistics of the difference between model output and provided ground truth label
· Provisioning of ground truth label and associated label quality
· Model monitoring using at least statistics of measurement(s) without ground truth label
· Monitoring metric: e.g., statistics of measurement(s) compared to the statistics associated with the training data
· Note1: the measurement(s) may or may not be the same as model input 
· Note2: other monitoring methods (e.g., based on statistics of model output without ground truth label, based UE motion sensor and/or jointly based on multiple monitoring metrics) are not precluded

Agreement
Regarding monitoring for AI/ML based positioning, at least the following entities are identified to derive monitoring metric
· UE at least for Case 1 and 2a (with UE-side model)
· gNB at least for Case 3a (with gNB-side model)
· LMF at least for Case 2b and 3b (with LMF-side model)


Agreement
Regarding AI/ML model inference, to study the potential specification impact (including the feasibility, and the necessity of specifying AI/ML model input and/or output) at least for the following aspects for AI/ML based positioning accuracy enhancement
· For direct AI/ML positioning (Case 2b and 3b), type of measurement(s) as model inference input considering performance impact and associated signaling overhead
· Potential new measurement: CIR/PDP
· existing measurement: e.g., RSRP/RSRPP/RSTD
· Note1: details of potential new measurement and/or potential enhancement to existing measurement is to be studied
· Note2: study the impact of model input for other cases are not precluded
· For AI/ML assisted positioning with UE-assisted (Case 2a) and NG-RAN node assisted positioning (Case 3a), measurement report to carry model output to LMF
· new measurement report: e.g., ToA, path phase
· existing measurement report: e.g., RSTD, LOS/NLOS indicator, RSRPP
· enhancement of existing measurement report: e.g., soft information/high resolution of RSTD 
· Assistance signaling and procedure to facilitate model inference for both UE-side and Network-side model
· RS configurations
· Other assistance information is not precluded 

Agreement
For UE-side models and UE-part of two-sided models:
· For AI/ML functionality identification
· Reuse legacy 3GPP framework of Features as a starting point for discussion.
· UE indicates supported functionalities/functionality for a given sub-use-case.
· UE capability reporting is taken as starting point.
· For AI/ML model identification 
· Models are identified by model ID at the Network. UE indicates supported AI/ML models.
· In functionality-based LCM
· Network indicates activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI). 
· Models may not be identified at the Network, and UE may perform model-level LCM.
· Study whether and how much awareness/interaction NW should have about model-level LCM
· In model-ID-based LCM, models are identified at the Network, and Network/UE may activate/deactivate/select/switch individual AI/ML models via model ID. 
FFS: Relationship between functionality identification and model identification
FFS: Performance monitoring and RAN4 impact 
FFS: detailed understanding on model 





[bookmark: _Ref118009184][bookmark: _Toc126842918]General Aspects
Before delving into the issues specific to each deployment case, we review some general issues and open discussions from earlier meetings. 
Model delivery/transfer
On the topic of model transfer, the following terminology has been agreed as Working Assumption under 9.2.1.

	AI/ML model transfer
	Delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

	Model download
	Model transfer from the network to UE

	Model upload
	Model transfer from UE to the network



Specific to the use case of UE positioning, it has been agreed that one-sided model is prioritized, i.e., two-sided model is deprioritized.

Agreement
For the study of benefit(s) and potential specification impact for AI/ML based positioning accuracy enhancement, one-sided model whose inference is performed entirely at the UE or at the network is prioritized in Rel-18 SI.

When the AI/ML model is one-sided, then each side (i.e., the network and the UE) should design, train, and deploy their own model respectively. A big concern with model transfer case z2-z5 is, it is not possible to train and compile a binary executable model that is optimized for a given UE’s hardware. For model transfer case z1, there is no compelling reason to store a UE’s model in 3GPP network, rather than in the UE’s server. The 3GPP network cannot be used as a central node to distribute a model to a variety of UEs, since one UE vendor’s model cannot be shared with another UE vendor’s device; one type of UE chip’s model (e.g., advanced UE) cannot be shared with another type of UE (e.g., a low-cost UE). Additionally, it is a heavy burden to 3GPP network to store, register, maintain, retrieve, and transfer UE models, since a large number of different UE models are expected, considering factors like different UE vendors, different UE releases, different PHY functionalities, different deployment scenarios, etc. Compared to case z1, model delivery (case y) is an attractive alternative even if the UE need to obtain a model in real-time.
Not considering model transfer also avoids the question of how one side can be responsible for the performance of a model deployed at the other side. Thus, if model deployment in the UE is handled independently by the UE, there is no need of model transfer for the positioning use case. 
It is clarified that the broader term of model delivery (case y) can still be applicable to the positioning use case, e.g., a UE may download a model from its own server, which is transparent to the Uu interface.

In summary, for the positioning use case, cases z1-z5 for model transfer are not considered. Only case y for model delivery over-the-top is considered, if necessary.

	Case
	Model delivery/transfer
	Model storage location
	Training location

	y
	model delivery (if needed) over-the-top
	Outside 3gpp Network
	UE-side / NW-side / neutral site

	z1
	model transfer in proprietary format
	3GPP Network
	UE-side / neutral site

	z2
	model transfer in proprietary format
	3GPP Network
	NW-side

	z3
	model transfer in open format
	3GPP Network
	UE-side / neutral site

	z4
	model transfer in open format of a known model structure at UE
	3GPP Network
	NW-side

	z5
	model transfer in open format of an unknown model structure at UE
	3GPP Network
	NW-side




[bookmark: _Toc134955177]For the use case of positioning accuracy enhancement, model transfer (case z1-z5) is not considered. 

[bookmark: _Ref131681477]Functionality identification
In RAN1#112bis agenda items 9.2.1 and 9.2.4.2, the topics of functionality identification and model identification were discussed for UE-side models. The relevant agreements are copied below.
Agreement
· For AI/ML functionality identification and functionality-based LCM of UE-side models and/or UE-part of two-sided models:
· Functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability.
· Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG.
· FFS: Signaling to support functionality-based LCM operations, e.g., to activate/deactivate/fallback/switch AI/ML functionalities
· FFS: Whether/how to address additional conditions (e.g., scenarios, sites, and datasets) to aid UE-side transparent model operations (without model identification) at the Functionality level
· FFS: Other aspects that may constitute Functionality
· FFS: which aspects should be specified as conditions of a Feature/FG available for functionality will be discussed in each sub-use-case agenda.
· For AI/ML model identification and model-ID-based LCM of UE-side models and/or UE-part of two-sided models:
· model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.
· FFS: Which aspects should be considered as additional conditions, and how to include them into model description information during model identification will be discussed in each sub-use-case agenda.
· FFS: Relationship between functionality and model, e.g., whether a model may be identified referring to functionality(s).
· FFS: relationship between functionality-based LCM and model-ID-based LCM
· Note: Applicability of functionality-based LCM and model-ID-based LCM is a separate discussion.
	
Agreement
Regarding LCM of AI/ML based positioning accuracy enhancement, at least for Case 1 and Case 2a (model is at UE-side), further study the following aspects on information related to the conditions 
· What are the conditions for functionality-based LCM
· which aspects should be specified as conditions of a Feature/FG available for functionality
· What are the conditions for model-ID-based LCM
· Which aspects should be considered as additional conditions, and how to include them into model description information during model identification

For the positioning use case, functionality and functionality ID can reuse the UE capability framework. In a broad sense, a functionality corresponds to Case 1, 2a, and 2b. The UE can indicate whether it supports Case 1, 2a, 2b or not in a RRC signalling similar to UE capability reporting. Additionally, similar to existing UE capability definition and reporting, more details (similar to components of an existing UE capability) can be included, for example:
· Functionality X-1: Case 1;
· Functionality X-2: Case 2a, and the UE-side model provides LOS/NLOS Indicator to LMF;
· Functionality X-3: Case 2a, and the UE-side model provides RSTD to LMF;
· Functionality X-4: Case 2b, and the UE provides channel impulse response (CIR) with Nt time domain samples to LMF, where candidate values for Nt are {64, 128, 256};
· Functionality X-5: Case 2b, and the UE provides delay profile (DP) with Nt time domain samples to LMF, where candidate values for Nt are {64, 128, 256};
· …

As shown above, functionality and functionality identification are analogous to “Feature group” and “Index”, respectively, in UE capability reporting. 
Regarding the condition for functionality-based LCM of positioning use case, the condition provides the factory floor(s) / site(s) / area(s) the UE-side model is trained for, i.e., the model validity condition.
In the existing specification, AreaID-CellList (see TS37.355) provides the validity condition for assistance data. The same IE can be reused for checking the model validity condition for UE-side AI/ML model.
	[bookmark: _Toc131140110]–	AreaID-CellList
The IE AreaID-CellList provides the NR Cell-IDs of the TRPs belonging to a particular network area where the associated assistance data are valid.
-- ASN1START

AreaID-CellList-r17 ::= SEQUENCE (SIZE(1..maxCellIDsPerArea-r17)) OF NR-Cell-IDs-r17

NR-Cell-IDs-r17 ::= SEQUENCE {
	nr-CellGlobalID-r17				NCGI-r15					OPTIONAL,	-- Need ON
	nr-PhysCellID-r17				NR-PhysCellID-r16			OPTIONAL,	-- Need ON
	nr-ARFCN-r17					ARFCN-ValueNR-r15			OPTIONAL,	-- Need ON
	...
}

-- ASN1STOP



In addition to the condition checking of model validity, various deployment strategies commonly used in MLOps can be adopted to minimize the risk of model deployment in production. For example:
· Shadow deployment. The UE runs the candidate AI/ML model with positioning request without actually utilizing the model output. That is, the candidate AI/ML model is run in the shadow of the currently active positioning method (either conventional non-AI/ML method or an older AI/ML model). The output of the model is analyzed to be sure that the new AI/ML model performs better than the current positioning method. If the candidate AI/ML model passes the test, then the candidate AI/ML model is ready to be activated. Otherwise, the UE cannot activate the candidate AI/ML model.
· Canary deployment. The UE splits the positioning request between the currently active positioning method (e.g., 95% positioning request) and the candidate AI/ML model (e.g., 5% positioning request). The UE analyzes the performance of the candidate AI/ML model to check whether the candidate model's performance on the 5% positioning request is better than the currently active positioning method. If yes, then the candidate AI/ML model is ready to be activated. Otherwise, the UE cannot activate the candidate AI/ML model.

The exact deployment strategy is up to UE vendor for the UE-side model.

Regarding model ID and model ID based LCM, they are not necessary for the positioning use case. For a given functionality (e.g., Case 1), the UE is free to implement one or multiple models for it, update the model, fine-tune the model, switch from one model to another, etc., without identifying them to the network. Thus the network cannot, and does not need to, be aware of which physical model the UE is currently using. No ID needs to be assigned for a physical model, and no signalling/interaction between NW and UE is necessary to align the awareness of model ID.

[bookmark: _Toc134955178]For the UE-side model of positioning use case, the condition for model LCM is realized via the area ID, which is a type of assistance data sent from LMF. 
[bookmark: _Toc134955179]For the positioning use case, functionality ID and functionality ID based LCM are supported for UE side model.
[bookmark: _Toc134955180]For the positioning use case, model ID is not defined. Model ID based LCM is not supported for UE-side model. 

Ground truth label generation by conventional positioning methods 
In RAN1#112bis discussion, one question is whether ground truth label can be generated by conventional positioning method. The intention is to provide more training data in addition to, or in place of, the training data by PRU.
The evaluation results on labelling error indicate that the AI/ML model cannot achieve better positioning accuracy than the labelling error. Indeed, in supervised learning, the AI/ML model is trained to generate output as close to label as possible. Thus it is crucial to ensure the accuracy of the ground truth label. If the label accuracy cannot be guaranteed, it is better off to only include the measurements for model input without the corresponding label, since semi-supervised learning helps to improve model performance whereas supervised learning with erroneous label degrades the model performance.
[bookmark: _Toc134955181]For data collection of ground truth label for positioning use case, only labels with adequate accuracy are included in the training dataset. The label accuracy is at least as good as the targeted positioning accuracy. 

In our companion paper, the positioning accuracy of conventional positioning methods are shown, which is copied below. Assuming a positioning accuracy target of <1m, only {40%, 2m, 2m} has the possibility of providing <1m positioning accuracy at CDF=50%. Thus only environments with good LOS probability (e.g., 44.9% for {40%, 2m, 2m}) should be considered for label generation with conventional method. However, even though statistically about 63% UE locations can be generated with accuracy <1m with conventional method, there is no reliable method to identify which UE locations belong to the 63%, which ones are not. 
Regarding NR-TimingQuality defined in existing specification, it is an estimate of the uncertainty of a timing value (e.g., RSTD). It does not provide accuracy information for the final location estimation. Also, it is difficult to rely on the UE's estimation to guarantee label accuracy.

	The IE NR-TimingQuality defines the quality of a timing value (e.g., of a TOA measurement).
-- ASN1START

NR-TimingQuality-r16 ::= SEQUENCE {
	timingQualityValue-r16			INTEGER (0..31),
	timingQualityResolution-r16		ENUMERATED {mdot1, m1, m10, m30, ...},
	...
}

-- ASN1STOP

	NR-TimingQuality field descriptions

	timingQualityValue
This field provides an estimate of uncertainty of the timing value for which the IE NR-TimingQuality is provided in units of metres.

	timingQualityResolution
This field provides the resolution used in the timingQualityValue field. Enumerated values mdot1, m1, m10, m30 correspond to 0.1, 1, 10, 30 metres, respectively.






In summary, using conventional method to generate ground truth label has the following problems:
(a) It cannot be used for medium to heavy NLOS environment, e.g., LOS probability < 40%.
(b) For light to medium NLOS environment (e.g., LOS probability > 40%), theoretically the conventional positioning method can often provide positioning accuracy <1m. However, small dataset size is not a problem for such scenario. For example, [3] shows that with training dataset size of 5,400, positioning error <=0.1m at CDF=90% can be achieved for {40%, 2m, 2m} InF-DH, as compared to training dataset size of 80,000 (~15 times as large) for achieving around 0.3m at CDF=90% for {60%, 6m, 2m}. Furthermore,
(1). There is no reliable method to select data samples and guarantee that it satisfies the accuracy requirement (e.g., <1m), since by definition, true UE location is unknown. 
(2). Even if some method is put together to determine the favourable locations with good positioning accuracy with conventional method, it only adds to training sample density at the favourable locations, where improvement is not needed. It does not help with unfavourable locations, which are the bottleneck of performance. Thus little or no improvements to the overall performance (e.g., CDF=90%) is expected.
(c) For largely LOS environment, conventional methods can provide accurate target UE location. However, AI/ML model is not needed for environments where conventional methods are adequate.

Thus conventional method should not be considered for generating ground truth label, unless evaluation results are first shown to dismiss concerns (b)(1) and (b)(2) above.
 
[bookmark: _Toc134955182]Do not support using conventional RAT-dependent positioning method for data collection of ground truth label. 

Thus, other approaches should be used if faced with the problem of small training dataset provided by PRU. Possible solutions include:
· Leverage non-3GPP data to provide high accuracy labels. UE or network can generate ground truth label by combining non-3GPP positioning techniques (e.g., sensors including camera, IMU) with NR RAT-dependent positioning methods, when the UE is equipped with sensors to improve positioning accuracy. 
· Use methods generally available for solving the problem of small training dataset.
· Semi-supervised learning. Several companies have evaluated semi-supervised learning under AI 9.2.4.1. Evaluation results show that unlabelled data can be included in the training dataset to assist with model training. Unlabelled data can be collected from any UE, i.e., not limited to PRU, thus unlabelled data is plentiful. In terms of signalling and specification impact, no impact is expected for collecting unlabelled data, since the signalling for collecting labelled data can be reused, except the label is missing.
· Data augmentation. It is well known that many data augmentation techniques can be leveraged to artificially generate 'new' samples from collected training dataset. For example, data augmentation is used in [3] to achieve good positioning performance (e.g., 1.9m @90%) from a dataset as small as 2000 samples. Data augmentation is a technique used in model training stage, and completely up to implementation. No signalling or specification impact is expected.

[bookmark: _Toc134955183]Numerous methods exist for tackling the problem of small training dataset, including: semi-supervised learning and data augmentation. 

[bookmark: _Ref110581322]Table 1. LoS probabilities of different InF-DH environment settings.
	Environment clutter setting
	LoS Probability

	{40%, 2m, 2m}
	0.449

	{50%, 2m, 2m}
	0.352

	{60%, 2m, 2m}
	0.268

	{40%, 6m, 2m}
	0.014

	{50%, 6m, 2m}
	0.025

	[bookmark: _Hlk117081197]{60%, 6m, 2m}
	0.008



[bookmark: _Ref114819624]Table 2 Baseline results for comparison. UE positioning errors obtained using conventional non-ML solutions to produce input (LoS classification and ToA) for UL-TDOA.
	CDF Percentile
	UE horizontal position error [m]

	
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.131
	2.855
	5.643
	6.175

	67
	1.783
	5.646
	7.650
	8.432

	80
	4.814
	9.254
	10.668
	11.315

	90
	9.595
	16.775
	17.541
	15.849



[image: ]
[bookmark: _Ref114834045]Figure 1 Baseline results for comparison. Positioning error distributions using conventional non-ML solutions

[bookmark: _Ref118112511][bookmark: _Toc126842920]AI/ML model training (online versus offline) 
Some companies argued for online versus offline training of AI/ML models in RAN1#110bis-e, with potential down selection. The discussion was deferred until sufficient progress was made in the General Aspects agenda item 9.2.1. For reference, the following working assumption from RAN1#110 on online versus offline training is shown in Table 3.

	Terminology
	Description

	Online training
	An AI/ML training process where the model being used for inference) is (typically continuously) trained in (near) real-time with the arrival of new training samples.
Note: the notion of (near) real-time vs. non real-time is context-dependent and is relative to the inference time-scale.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as online training by commonly accepted conventions.
Note: Fine-tuning/re-training may be done via online or offline training. (This note could be removed when we define the term fine-tuning.)

	Offline training
	An AI/ML training process where the model is trained based on collected dataset, and where the trained model is later used or delivered for inference.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as offline training by commonly accepted conventions.


[bookmark: _Ref118011302]Table 3: Working assumption for online versus offline training

This is the first RAN1 AI/ML project and, not surprisingly, there remains much uncertainty and significant standardization challenges. It is our understanding that online learning primarily refers to reinforcement learning solutions where agents learn in an online manner through action exploration and reward observation. It is our opinion that offline training of AI/ML models (that have standard impact) already pose significant challenges with performance and testing (mainly RAN4 work). In addition, reinforcement learning problems are notorious for slow convergence times, instability, and sensitivity to the reward function. It is our view that consideration of highly adaptive online learning for AI/ML training can be left for future 3GPP projects / releases. 
[bookmark: _Toc134955184]For the use case of positioning accuracy enhancement, prioritize the study of offline AI/ML model training in Release 18. 

Some companies propose to support online training for fine-tuning of models. For example, if model monitoring indicates that a model needs fine-tuning due to changed environmental conditions, the model is fine-tuned in the inference node. Our view is that fine-tuning of models should also be handled offline and deployment procedures are the same regardless of whether the model is fine-tuned (before or after initial deployment) or not.  
[bookmark: _Toc131661756][bookmark: _Toc131680225][bookmark: _Toc131682635][bookmark: _Toc131661757][bookmark: _Toc131680226][bookmark: _Toc131682636][bookmark: _Toc131661767][bookmark: _Toc131680236][bookmark: _Toc131682646][bookmark: _Toc131661768][bookmark: _Toc131680237][bookmark: _Toc131682647][bookmark: _Toc131661769][bookmark: _Toc131680238][bookmark: _Toc131682648][bookmark: _Toc131661770][bookmark: _Toc131680239][bookmark: _Toc131682649][bookmark: _Toc131661771][bookmark: _Toc131680240][bookmark: _Toc131682650][bookmark: _Toc131661772][bookmark: _Toc131680241][bookmark: _Toc131682651][bookmark: _Toc131661773][bookmark: _Toc131680242][bookmark: _Toc131682652][bookmark: _Toc131661774][bookmark: _Toc131680243][bookmark: _Toc131682653][bookmark: _Toc131661775][bookmark: _Toc131680244][bookmark: _Toc131682654][bookmark: _Toc131661776][bookmark: _Toc131680245][bookmark: _Toc131682655][bookmark: _Toc131661777][bookmark: _Toc131680246][bookmark: _Toc131682656][bookmark: _Toc131661778][bookmark: _Toc131680247][bookmark: _Toc131682657][bookmark: _Toc134955185]For the positioning use case, online fine-tuning of models is not considered. 


Measurements for Model input
As shown in our companion paper [3], three types of measurements can be used as model input:
· Channel impulse response (CIR) 
· Power delay profile (PDP)
· Delay profile (DP)

CIR provides the most detailed information and has the potential to achieve the highest positioning accuracy. PDP can be viewed as providing condensed information compared to CIR, i.e., PDP only retains magnitude information averaged across RX ports. DP is the most simplified model input, where only timing information of selected paths with highest path powers are retained. Therefore, it can be expected that a model using CIR as input has the highest model complexity and computational complexity, while a model using DP as input has the lowest.
Although DP provides much less information, a model using DP as input has been shown to be able to achieve good positioning accuracy with limited performance degradation. From complexity perspective, using delay profile (DP) only as model input has great advantages, as compared to using PDP or CIR. The advantages are due to: 
a) Substantially reduced number of features at model input. For a given number of paths (), DP-only uses  features (i.e.,  path timings), PDP uses  features (i.e.,  path timings, and  power values), CIR uses  features (i.e.,  path timings,  values for CIR since CIR values are complex).
b) Substantially reduced model input size in terms of bits. When measurements of model input need to be sent from one entity to another entity, DP has the advantage of smaller payload size. Transmission of model input measurements is necessary in various LCM stages, for example, training data collection, and providing model input data for Case 2b/3b.
Similar advantages exist when comparing PDP to CIR as model input.

In RAN1#112bis, it was agreed to optionally adopt DP as model input. Thus DP (i.e., without path timing information only) should be included when considering new and existing measurement for model input
Agreement
For evaluation of both the direct AI/ML positioning and AI/ML assisted positioning, company optionally adopt delay profile (DP) as a type of information for model input.
· DP is a degenerated version of PDP, where the path power is not provided.

For example, the existing DP measurement is limited to a maximum of 9 path timings (first path and 8 additional paths). For achieving higher positioning accuracy, more taps should be supported as new DP measurement, for example, 16, or 32 taps.


For model inference stage of Case 1/2a/3a, the model input does not need to be sent over a standardized interface. Thus it is up to implementation to decide which type of information to use: CIR, PDP, or DP. The value range and resolution of model input are also up to UE or gNB implementation.  On the other hand, the information type and size for model input still have impact to other aspects of the model management. For example, CIR requires a sample of larger size ( features) to be collected during the stage of training data collection. For model architecture design and model training stage, the model complexity and computational complexity are expected to be substantially lower if PDP or DP is used as model input, as compared to CIR. Thus the decision on model input should consider all LCM stages of a model, not just the model inference stage.

For model inference stage of Case 2b/3b, model input needs to be specified and signalled over standardized interface. Thus the type and format of model input have to be investigated carefully. Regarding specification impact, CIR has not been specified thus far, while PDP and DP have been specified and can be more easily extended to fit the needs of AI/ML. The existing PDP and DP signaling are provided via absolute timing of the first path and relative timing of additional paths. They are different from the model input format assumed in companies’ evaluations. Thus for Case 2b and 3b, where the measurements of model input need to be sent from the measurement entity (UE for Case 2b, NG-RAN for Case 3b) to LMF for model inference, it should be studied how the existing signalling should be updated to support AI/ML. 



[bookmark: _Toc134955157]For model inference of Case 1/2a/3a, the same entity generates measurement data for model input and performs model inference. It is up to UE or gNB implementation to decide which type of information to use: CIR, PDP, or DP.
[bookmark: _Toc134955186]For model inference of Case 2b/3b, PDP and DP are prioritized over CIR considering the smaller model input size and the limited specification impact.
[bookmark: _Toc134955187]For model inference of Case 2b/3b, study how to specify the signalling of measurement data for model input, including PDP and DP.
[bookmark: _Toc134955188]For all Cases, design choice for model input (including information type and size) need to consider all LCM stages, not just model inference stage.

One concrete issue is, how to format the model input to support the needs of AI/ML model, e.g., the model input size cannot be too large. For example, in the existing specification, the range of timing value of first path is from -985024Tc to 985024Tc, and the range of relative path delay is from -8175Tc to 8175Tc. The resolution step size is 2kTc., where k value is an integer in the range of 0 to 5. This means that in the existing specification, the time window size where paths are detected is much bigger than the Nt samples (e.g., Nt =256 on the high end) assumed in companies’ evaluations. There is also ongoing evaluation on how to reduce the model input size, including reduction of bitmap size Nt, so that the AI/ML model complexity and computational complexity can be reduced without significantly degrading performance. 

Thus there is a gap between the evaluation assumptions on model input, and the timing signalling in the existing specification. To close the gap, it needs to be studied how to modify the existing signalling to fit the needs of the AI/ML models at least for Case 2b/3b. 


[bookmark: _Toc134955189]For Case 2b/3b, study how to adjust the timing value range, and format the timing measurement information for signalling over the interfaces (LPP, NRPPa), where the timing measurements are used directly or indirectly as input to the AI/ML model in LMF.

Another concrete issue is, the achievable accuracy of timing measurement is affected by many factors (e.g., SCS, RS bandwidth, SINR, etc). Correspondingly, a range of measurement report resolution/granularity (2kTc) are defined in 38.133, with k ranging from 0 to 5, resulting in the possible resolution/granularity from Tc to 32Tc. The value of k provides information on the reporting mapping table, and indirectly dictates the number of bits required to represent the timing value. See examples from 38.133 in Appendix A and B.

For AI/ML, it is expected that measurement and reporting of timing information face the same issues. When timing values need to be sent from the entity that performs the measurement to another entity, it is important to keep track of the k value (if used for timing data of AI/ML), which provides the data format information for interpreting the measurement data. For example, when training data is to be collected on timing information, then the k value should be recorded as well. Indeed, different UEs are allowed to use different k values to report their data, which is strongly related to the timing detection accuracy achievable by the UE. Even the same UE can be configured to use different k values at different times, if the configured PRS bandwidth changes, for example. Thus, data format information (e.g., k value for resolution) need to be kept as part of the data. 

At the model training stage, such data format information needs to be taken into account by the model training entity when ingesting training data samples. 

It is noted that, for model inference of Case 2b/3b, when measurement data of timing need to be sent from UE or gNB to LMF, the existing specification can be reused, where the granularity information is already exchanged.

[bookmark: _Toc134955190]For training data collection of all Cases, data format information (e.g., granularity factor k) is reported together with the timing related measurement data.

Regarding model inference output, currently most evaluations use timing information as model output. While for simulation purpose, such timing information can be called time-of-arrival (TOA) for simplicity, for actual deployment and IE reporting, relative timing values should be used instead. In the existing positioning methods, relative timing values or timing differences are used always, since absolute time (i.e., clock time) requires tight synchronization among the TRPs and UE, which is very difficult to achieve. Moreover, a model cannot be trained to work on absolute time ToA since the clock time is certainly different between model training stage and model inference stage. 

[bookmark: _Toc134955191]For timing information as model output, only consider relative timing measurement or measurement of timing differences.


[bookmark: _Ref118009225][bookmark: _Toc126842921]Potential specification impact for each positioning cases
We share our views on the potential benefits and specification impacts for AI/ML model inference, configuration, performance monitoring, and data collection for training in this section. To help structure our discussion, we will break the problem space down into the deployment cases as discussed in RAN1#110bis-e), see Table 4. 

	
	Legacy solution
	AI/ML solution

	Case 1
	DL-TDoA, DL-AoD
	UE-based positioning with UE-side model, direct AI/ML or AI/ML assisted positioning

	Case 2a
	DL-TDoA, DL-AoD, Multi-RTT
	UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning

	Case 2b
	DL-TDoA, DL-AoD, Multi-RTT
	UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning

	Case 3a
	Multi-RTT, UL-TDoA, UL-AoA
	NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning

	Case 3b
	Multi-RTT, UL-TDoA, UL-AoA
	NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning


[bookmark: _Ref127278829][bookmark: _Ref118272839]Table 4: AI/ML positioning cases for discussing benefits and potential specification impacts

For Case 3a, RAN2/RAN3 discussions will need to deal with the specifics of the various flavors of AI/ML model structure (single-TRP, multiple-TRP (including all-TRP)), according to the conclusion below.
	Conclusion (RAN1#109e)
· RAN1 discussion should focus on network-UE interaction.
· AI/ML functionality mapping within the network (such as gNB, LMF, or OAM) is up to RAN2/3 discussion.



For AI/ML models deployed at network side, it is not part of RAN1 scope to discuss the mapping of entities to network nodes. 
[bookmark: _Toc134955192]At least for AI/ML models residing at network side (Case 2b, 3a, 3b), it is outside RAN1 scope to discuss whether/how to map the AI/ML functional entities to network nodes. 

In the following subsections, we address each case in Table 4 separately, shaping discussions around the following key topics: data collection, AI/ML model configuration, AI/ML model inference, and AI/ML model monitoring. We start with the three NG-RAN assisted positioning solutions. 

[bookmark: _Toc126842922](Case 3a) NG-RAN node assisted positioning with gNB side model, AI/ML assisted positioning
This subsection discusses Case 3a. We have a multi-TRP scenario where the unobserved direct path ToA is estimated. As shown in our evaluation paper [3], AI/ML assisted positioning with a gNB-side AI/ML model provides positioning performance enhancements over legacy solutions, especially in heavy NLOS environment. Two different Case 3a AI/ML assisted variants are evaluated [3]:
Solution 1. Semi-distributed unobserved direct path time of arrival estimation, where a distributed model estimated the unobserved direct path ToA using different AI/ML models with UL channel impulse response (or PDP, or DP) from multiple TRPs, and
Solution 2. Centralized unobserved direct path time of arrival estimation, where a centralized model estimates the unobserved direct path ToA using UL channel impulse responses (or PDP, or DP) collected from all TRPs.

For the evaluations in [3], when CIR is used as input, the input to the AI/ML model(s) is assumed to be a three-dimensional complex-valued tensor  ( TRPs with 2 Rx antennas and 256 time-domain samples).  The target outputs of the AI/ML model is the unobserved ToAs, as illustrated in Figure 2, and Figure 3. 

[image: ]
[bookmark: _Ref126315214]Figure 2 NG-RAN node assisted positioning with semi-distributed model, AI/ML assisted positioning (Case 3a), solution 1.
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[bookmark: _Ref118293143][bookmark: _Ref118293112]Figure 3: NG-RAN node assisted positioning with centralized model, AI/ML assisted positioning (Case 3a), solution 2.

Our evaluation shows that the centralized joint ToA estimation can reduce the ToA errors by almost 50% when compared to the distributed ToA estimation case for the highly non-LoS {60%, 6m, 2m} environment. It is not surprising that a centralized multi-TRP AI/ML-based joint estimation of all unobserved direct path ToAs outperforms separate estimation of direct path ToAs at each TRP. For example, the earlier layers of the multi-TRP deep neural network will learn to extract important features that are needed for later layers to jointly estimate the direct path ToAs. If, instead, the centralized multi-TRP AI/ML is replaced by separate AI/ML models at each TRP, then the set of learned features is restricted to a single CIR. That is, the direct path ToA estimate of a particular NLoS cannot leverage important side information from links to other TRPs.
All these different ML positioning approaches have different advantages and disadvantages. Nevertheless, our evaluation results show they can all achieve very high positioning accuracy. They present a range of good AI/ML design options for engineers to choose from, depending on the specific deployment needs and trade-offs.

[bookmark: _Toc126842923]AI/ML model inference
The UE is configured to transmit periodic, aperiodic, or semi-persistent SRS. Support for positioning specific SRS configurations was added in Rel-16. The SRS is recommended by the LMF, with the requested SRS characteristics sent to the gNB, which in turn, configures and sends the SRS configuration to the UE using RRC signalling. 
The TRP can utilize UL SRS transmissions to estimate the UL CIR, or PDP, or DP, using proprietary methods. The distributed or centralized model for AI/ML assisted positioning is a complex deep neural network that will need to be executed on dedicated AI accelerators in a NW node. The NRPPa protocol already supports reporting of potential ML output from the gNB to LMF, for example, hard and soft LoS/NLOS indicator, UL RTOA (UL Relative Time of Arrival). Hence, model output of the assisted AI/ML positioning solutions using distributed model(s) can be reported with existing signaling. The reporting IE can be the same towards the LMF regardless of whether the gNB produced the report using legacy methods or using AI/ML models. This considerably reduces specification impacts of NRPPa. The LMF obtains the UE position using conventional positioning algorithms.
[bookmark: _Toc134955158]For Case 3a (NG-RAN assisted positioning with gNB-side model, AI/ML assisted positioning): AI/ML model inference is up to network implementation and transparent to the UE and LMF.   
[bookmark: _Toc134955193]For Case 3a (NG-RAN assisted positioning with gNB-side model, AI/ML assisted positioning):  The input to the AI/ML model does not need to be specified. The model output can be reported from gNB to LMF using existing signaling.  No specification impact is expected for model inference. 
[bookmark: _Toc131661734][bookmark: _Toc131661735][bookmark: _Toc131661736]
[bookmark: _Toc126842925]AI/ML model performance monitoring 
The AI/ML assisted solutions proposed and evaluated in [3] can be deployed transparently in the NW in terms of model inference. Also, for NW-side model, it is expected that model monitoring is done in the NW. 
In the straightforward way, model monitoring can for example be done by collecting labelled data using a special device, which is specifically designed for testing the model performance. 
On the other hand, for Case 3a, model monitoring can be accomplished without collecting labelled data during model deployment. In the Case 3a setup, the LMF takes the AI/ML estimated ToA into conventional triangulation-based error minimization framework to search and determine the UE position. It can be expected that the minimization outcome will have smaller residual losses when the AI/ML models are operating in the correct environment and are generating correct ToA. Conversely, larger residual losses are unavoidable when the models are applied to an environment different than the one used to train the models. 
In [3] we provide the residual losses from conventional triangulation-based error minimization positioning algorithms. In the evaluation (see [3]) the AI/ML models for supplying the ToAs are trained with a dataset for the {60%, 6m, 2m} parameter.
· When the trained model is operating in the same {60%, 6m, 2m} environment, the residual losses shown in blue line are below 0.77 with a probability of 99%.
· When the trained model is operating in the {40%, 2m, 2m} environment where it performs badly, the residual losses shown in orange line are above 0.77 with a probability of 99%.
· When the trained model is operating in a {40%, 6m, 2m} environment that is different than the training set environment but not so different that the model is still performing well, the distribution of the residual losses shown in green remain quite similar to those for the {60%, 6m, 2m} environment.

It can be concluded that the residual losses from the conventional positioning algorithms can be used as a reliable metric to detect model/environment mismatch. For the example shown here, one could determine a threshold of 1 considering both the blue and the green curves. If the positioning residual losses are above this threshold, there is a high chance that the environment has drifted far enough from the training environment that the model will need to be replaced or adjusted. Therefore, the AI/ML assisted models for Case 3a can be reliably monitored without collecting additional test samples with the required model inputs and ground truth labels (e.g., UE positions). This means that there is no need to specify signalling to collect test data for model monitoring purpose. Furthermore, there is no need to specify any assistance signaling from the UE or the LMF node for model monitoring purposes. 
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Figure 4: Residual losses from conventional triangulation-based error minimization positioning algorithms. The ML model is trained in the {60%, 6m, 2m} environment and tested in three environments: {60%, 6m, 2m}, {40%, 6m, 2m} and {40%, 2m, 2m}.

Apart from residual loss based model monitoring, the self-model monitoring approach is also a viable solution for Case 3a [3], and it also does not require ground truth labels for model monitoring.

[bookmark: _Toc134955159]For AI/ML assisted positioning methods, self-model monitoring method does not require ground truth label and has no signaling overhead. The complexity, power consumption, and latency for obtaining one model monitoring sample are equal to one round of model inference. 
[bookmark: _Toc134955160]Performance monitoring of AI/ML assisted positioning (e.g., Case 2a/3a) can be achieved by evaluating the residual loss from the triangulation-based error minimization positioning algorithm (i.e., conventional positioning methods). No need to collect labelled data or define assistance data signaling from the UE or LMF for model monitoring purpose. 

[bookmark: _Hlk130371948][bookmark: _Toc134955194]Conclude that for Case 3a, model monitoring metric is calculated without collecting test data. No signalling needs to be specified to collect test data for model monitoring purpose.
[bookmark: _Toc126842926]Data collection for training
For the Case 3a assisted AI/ML solutions, gNB data is used for model training and model inference. As discussed above, data for model inference can be collected based on SRS transmissions from a UE. Legacy SRS configuration mechanisms can be used to configure a UE to transmit positioning SRS. 
As stated in Section 2.4, we propose to prioritize offline AI/ML model training for Rel-18. For training purposes, model input data as well as appropriate labelling of the data needs to be collected. Using supervised learning, the data labels need to represent the model output, for example, LoS classification and time of arrival estimates as the output. The labels need to be collected in a way so that they can be properly associated with the model input.
For data collection, it was discussed in the latest RAN1 meeting TRPs can be used to generate training data. At least network entity with known PRU location can generate ground truth label for Case 3a. The network is in control of when the SRSs are transmitted. The TRP measures the configured SRS and compiles channel information reports (e.g., CIR) for the purpose of training data collection, although the format of input (e.g., CIR) to the AI/ML model does not need to be specified for model inference nor training data collection. The network entity with knowledge of PRU location can provide the location for ground truth label generation. If the network entity with knowledge of PRU location is the LMF node, the NRPPa protocol needs to be extended to support ground truth label transmission to the gNB. The association of channel information reports (e.g., CIR, PDP, or DP) with the correct label can be done in the network.
[bookmark: _Toc134955161]For Case 3a (NG-RAN assisted positioning with gNB-side model, AI/ML assisted positioning): If LMF is the network entity with ground truth label knowledge, the NRPPa protocol needs to be extended to support transmission of ground truth label from LMF to the training data collection entity.  
[bookmark: _Toc134955195]For Case 3a (NG-RAN assisted positioning with gNB-side model, AI/ML assisted positioning): Study signaling enhancements for the LMF to provide the ground truth label (e.g., ground truth direct path ToAs or UE locations) to support the training data collection. 

[bookmark: _Toc126842927][bookmark: _Toc126842928][bookmark: _Toc126842929][bookmark: _Toc126842930][bookmark: _Toc126842931][bookmark: _Toc126842932][bookmark: _Toc126842933][bookmark: _Toc126842934][bookmark: _Toc126842935][bookmark: _Toc126842936][bookmark: _Toc126842937][bookmark: _Toc126842938][bookmark: _Toc126842939][bookmark: _Toc126842940][bookmark: _Toc126842941][bookmark: _Toc126842942][bookmark: _Toc126842943][bookmark: _Toc126842944][bookmark: _Toc126842945][bookmark: _Toc126842946][bookmark: _Toc126842947][bookmark: _Toc126842948][bookmark: _Toc126842949][bookmark: _Toc126842950][bookmark: _Toc126842951][bookmark: _Toc126842952][bookmark: _Toc126842953][bookmark: _Toc126842954][bookmark: _Toc126842955][bookmark: _Toc126842956][bookmark: _Toc126842957][bookmark: _Toc126842958][bookmark: _Toc126842959][bookmark: _Toc126842960][bookmark: _Toc126842961][bookmark: _Toc126842962][bookmark: _Toc126842963][bookmark: _Toc126842964][bookmark: _Toc126842965][bookmark: _Toc126842966][bookmark: _Toc126842967][bookmark: _Toc126842968][bookmark: _Toc126842969][bookmark: _Toc126842970][bookmark: _Toc126842971][bookmark: _Toc126842972][bookmark: _Toc126842973][bookmark: _Toc126842974][bookmark: _Toc126842975][bookmark: _Toc126842976][bookmark: _Toc126842977][bookmark: _Toc126842978][bookmark: _Toc126842979][bookmark: _Toc126842980][bookmark: _Toc126842981][bookmark: _Toc126842982][bookmark: _Toc126842983][bookmark: _Toc126842984][bookmark: _Toc126842985](Case 3b) NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning
As shown in our companion paper [3], direct AI/ML positioning with gNB side model, provides positioning performance enhancements over legacy positioning methods, and also enables positioning in heavy NLoS environment. A direct AI/ML solution using UL CIR as input has been evaluated, see Figure 5. 
[image: ]
[bookmark: _Ref118708717]Figure 5: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning (Case 3b).
[bookmark: _Toc126842986]AI/ML model inference 
As for Case 3a, the TRP can utilize UL SRS transmissions to estimate the CIR, or PDP, or DP, to be used for model input for Case 3b. For the inference phase, the UE can be configured to transmit SRS. 
The existing NRPPa protocol supports reporting of UL RTOA, UL SRS-RSRP, etc. Using the extended additional path list, time and power of up to 8 additional paths can be reported with existing signaling. 
In many evaluation results reported so far in the study item, a time domain CIR with 256 entry (bitmap) has been used as model input for Case 2b and 3b solutions. This allows Nt’ to be significantly longer than the maximum of 9 (=1+8) paths that can be reported in existing specifications. Solutions with varying number of path timings have been evaluated in for example [3], [4], [5], and [6]. It is expected that the exact representation of the channel information model input for Case 2b and 3b solutions will continue to be evaluated in agenda item 9.2.4.1. 
Depending on the outcome of this evaluation, the existing NRPPa signalling likely need to be extended due to: (a) new model input type (e.g., CIR) is reported instead of RSRPP; (b) more time domain paths may be needed than the existing list size of maximum 9 (=1+8); (c) the range of reported timing values may need to be reduced if a bitmap is used instead of the relative path delay in current specification.

[bookmark: _Toc134955162]For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): The existing reporting from gNB to LMF may need to be enhanced to support model inference due to potentially new information type (e.g., CIR) and/or a larger size of measurement report.
[bookmark: _Toc134955196]For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): Postpone the final specification impact discussion until it has been concluded based on evaluations the suitable information to report as model input. 

[bookmark: _Toc126842988]AI/ML model performance monitoring 
For direct AI/ML Case 3b positioning, the AI/ML model is deployed and controlled fully on the network side. 
[bookmark: _Toc127547037]In [3], we elaborate more on a solution to perform self monitoring for direct AI/ML positioning. The evaluation result is copied in Figure 6 below. This demonstrates that for a direct positioning ML model, self-model monitoring can be performed if the model was trained with data augmentation techniques. This means that there is no need to specify signalling to collect test data for model monitoring purpose. Furthermore, there is no need to specify any assistance data signaling from the UE or the LMF node for model monitoring purposes.

[image: ]
[bookmark: _Ref130371877]Figure 6. 2D position estimate difference using unmodified or modified positioning request data at production in different operating environments for a small centralized direct positioning model trained with {60%, 6m, 2m} dataset samples.

[bookmark: _Toc127547038][bookmark: _Toc134955163]For direct AI/ML positioning methods, self-model monitoring method does not require ground truth label and has no signaling overhead. The complexity, power consumption, and latency for obtaining one model monitoring sample are equal to one round of model inference. 
[bookmark: _Toc134955197]For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): Conclude that for Case 3b, model monitoring metric is calculated without collecting test data. No signalling needs to be specified to collect test data for model monitoring purposes.

[bookmark: _Toc126842989]Data collection for training 
For the Case 3b direct AI/ML solutions, gNB data reported to LMF is used for model training and model inference. As discussed above, data for model inference can be collected in gNB based on SRS transmissions from a UE. For Case 3b solutions, input data from several TRPs is used in the model training and model inference stages. 
As stated in Section 2.4, we propose to prioritize offline AI/ML model training for Rel-18. For training purposes, model input data as well as appropriate record keeping information (e.g., time stamp) of the data needs to be collected. The model input data can be CIR, or PDP, or DP, based on the evaluation results.
Using supervised learning, the data labels need to represent the model output, in this case, the UE position. Regardless how the labelling is achieved, the labels (i.e., UE position) need to be collected in a way so that they can be properly associated with the model input when building up the database for model training.
For data collection, it was discussed in the latest RAN1 meeting that TRPs can be used to generate training data, and at least LMF with known PRU location can generate ground truth label for Case 3b. The network is in control of when the SRSs are transmitted. The TRP measures the configured SRS and compile channel information reports (e.g., CIR, PDP, DP) for the purpose of training data collection, although the format of input to the AI/ML model does not need to be specified for model inference nor training data collection. The LMF with knowledge of PRU location can provide the location for ground truth label generation. After that the association of channel information reports (e.g., CIR) with the correct label can be done in the network.
[bookmark: _Toc134955164]For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): The same standard impact (if any) is expected to support data collection for model training and model inference.

[bookmark: _Toc126842990](Case 1) UE-based positioning with UE-side model, direct AI/ML or AI/ML assisted positioning 
For case 1, the entire procedure from performing PRS measurement to determining UE location is fully contained within the black box (i.e., the UE).   
[bookmark: _Toc126842991]AI/ML model inference
For Cases with UE-side model (Case 1/2a), the UE is configured by the network to measure PRS signals and report the UE location back to the network. For model inference, a couple of companies have proposed that support for assistance data transmission to the UE shall be added. Our view is that the benefit of adding assistance information should be proven with evaluations in agenda item 9.2.4.1 before any specification impact is considered. 
The same reasoning applies for training data collection as well.
[bookmark: _Toc134955198]For Case 1/2a, for model inference as well as training data collection, the benefits of adding support for assistance information should be proven with evaluations before RAN1 discuss what assistance information to support and the potential specification impact. 

[bookmark: _Ref134954190]AI/ML model performance monitoring
As stated in our contribution for agenda item 9.2.1 [2], the performance of UE side one-sided AI/ML models is expected to be monitored on the UE side. 
While it is possible to use PRU for performance monitoring of network-side model (Case 2b/3a/3b) if cost and complexity are of no concern, it is not feasible to use PRU for monitoring of UE-side model (Case 1/2a). The PRU cannot be expected to be loaded with individual UE's model, since different UE can have different physical models. Also the PRU cannot be expected to be put at the target UE's location whenever model monitoring is needed, when the target UE is deployed in the field.
For AI/ML assisted positioning under Case 1, the same model monitoring approach as outlined for Case 3a can be used. The residual loss is calculated as part of the positioning calculation in the UE.
For direct AI/ML positioning under Case 1, the same model monitoring approach as outlined for Case 3b can be used.  
[bookmark: _Toc134955165]It is not feasible to use PRU for performance monitoring of UE-side AI/ML models (Case 1/2a).
[bookmark: _Hlk130373770][bookmark: _Toc134955199]For Case 1 (UE-based positioning with UE-side model): Conclude that model monitoring is handled on the UE side. 

Data collection for training
For the Case 1 solutions, measurements collected in the UE are used for model training and model inference. As discussed above, data for model inference can be collected in UE based on PRS transmissions from gNB. For Case 1 solutions, input data reflecting UE measurements of several TRPs’ PRS transmissions are used in the model training and model inference stages. 
As stated in Section 2.4, we propose to prioritize offline AI/ML model training for Rel-18. For training purposes, model input data as well as appropriate record keeping information (e.g., time stamp) of the data needs to be collected. Using supervised learning, the data labels need to represent the model output, in this case, the UE measurements (if assisted) or UE location (if direct). 
Regardless how the labelling is achieved, the labels need to be collected in a way so that they can be properly associated with the model input when building up the database for model training.
For data collection, PRUs and UEs can be used to generate training data. At least PRU can generate ground truth label for UE based positioning.  Alternatively, LMF may need to provide label to UE or PRU for training data collection. Ground truth label generation and association of rich channel information with the correct label can then be done in the UE or PRU. 
A number of enhancements have been proposed in earlier meetings, for example, support for training data transmission (including label information and assistance information) between UE and the NW, and support for signaling so that UE can trigger PRS transmissions for data collection purposes. 
Regarding PRS configuration, the existing specification is sufficient and no enhancement is needed for supporting AI/ML that uses UE-side PRS measurements (Case 1/2a/2b). Proposals such as multi-port PRS is not well motivated by the needs of AI/ML. If any generic PRS enhancement is necessary, the discussion should be handled in non-AI/ML positioning first.
[bookmark: _Toc134955166]Existing PRS configuration is sufficient for data collection purposes for Case 1/2a/2b.
[bookmark: _Toc134955200]Conclude that there is no need for PRS configuration enhancements for data collection purposes for Case 1/2a/2b. 

For Case 1, introducing a mechanism for the UE to trigger PRS transmissions for data collection purposes seems reasonable, for example, UE can send a request to LMF. 
[bookmark: _Toc134955201]For Case 1, introduce support for the UE to request PRS transmissions for training data collection purposes.


(Case 2a) UE-assisted/LMF-based positioning with UE side model, AI/ML assisted positioning 
Case 2a solution covers AI/ML assisted positioning with UE side model. For the solutions discussed so far during the study item, model input can be CIR, or PDP, or DP [3]. As model output, LoS/NLoS classification or time of arrival estimates are common model output parameters. 
[bookmark: _Toc126842992]AI/ML model inference 
The UE can utilize DL PRS transmissions to estimate the CIR/PDP/DP for model input for the assisted solutions in Case 2a. For the inference phase, the gNB transmits PRS for the UE to perform measurements and generate input for the model. 
The LPP protocol supports reporting of DL RSTD (DL Reference Signal Time Difference) with optional additional path information from the UE to LMF. The RSTD is the relative timing difference between this neighbour TRP and the PRS reference TRP. The LPP protocol also supports reporting of various other types of measurements, e.g., LoS/NLoS indicator, ToA/RSTD, DL-PRS-RSRP, DL AoD.
Hence, model output reporting for the currently evaluated assisted AI/ML positioning solution using a UE side model can be supported with existing LPP signalling. Also, with existing measurement reports, the conventional positioning methods (e.g., DL-TDOA) works the same regardless of how the measurement values are obtained by the UE (AI/ML or non-AI/ML).
[bookmark: _Toc134955167]For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Model inference can be supported with existing signalling, where the reporting of model output to LMF reuses the existing LPP IEs (e.g., LoS/NLOS indicator, ToA/RSTD, DL-PRS-RSRP, DL AoD).
[bookmark: _Toc134955202]For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): No specification impact for model inference is expected when the model output is fully aligned with existing measurement report.

[bookmark: _Toc126842994][bookmark: _Toc126842995]AI/ML model performance monitoring 
As stated in our contribution for agenda item 9.2.1 [2] and the discussion in Section 3.3.2, the performance of UE side AI/ML models is expected to be monitored on the UE side. 
For Case 2a, the same model monitoring approach as outlined for Case 3a can be used. The residual loss is calculated as part of the positioning calculation in LMF and can be provided as monitoring information back to the UE. Alternatively, the residual loss can be calculated in the UE. 
[bookmark: _Toc126851862][bookmark: _Toc127142999][bookmark: _Toc127278886][bookmark: _Toc134955203]For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Conclude that model monitoring is handled on the UE side. Available residual loss information could be used as assistance data from the network to the UE for model monitoring purposes.

Data collection for training
For the Case 2a AI/ML assisted solutions, measurements collected in the UE are used for model training and model inference. As discussed above, data for model inference can be collected in UE based on PRS transmissions from gNB. Input data reflecting UE measurements of several TRPs’ PRS is used in the model training and model inference stages. 
As stated in Section 2.4, we propose to prioritize offline AI/ML model training for Rel-18. For training purposes, model input data as well as appropriate record keeping information (e.g., time stamp) of the data needs to be collected. Using supervised learning, the data labels need to represent the model output, in this case, the UE measurements. 
Regardless how the labelling is achieved, the labels need to be collected in a way so that they can be properly associated with the model input when building up the database for model training.
For data collection, PRUs and UEs can be used to generate training data. At least PRU can generate ground truth label for UE based positioning. Alternatively, LMF may need to provide label to UE or PRU for training data collection. Ground truth label generation and association of rich channel information with the correct label can then be done in the UE or PRU. 
Regarding PRS configuration and assistance information, the same view is applicable to both Case 1 and Case 2a.
[bookmark: _Toc126842996](Case 2b) UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning 
Case 2b solution covers UE assisted direct AI/ML positioning with LMF-side model. For the solutions discussed so far during the study item, model input can be CIR, or PDP, or DP. The evaluated models provide UE location as the output.
[bookmark: _Toc126842997]AI/ML model inference
Like Case 2a, the UE can utilize DL PRS transmissions to estimate the CIR/PDP/DP, which is used as model input for LMF-side model. For the inference phase, the gNB can transmit PRS for the UE to perform measurements, and the UE send the measurement reports to LMF to be used as model input. 
The LPP protocol supports reporting of DL PRS measurement results such as LoS/NLoS indicator, ToA/RSTD, DL-PRS-RSRP, DL AoD. However, in most evaluation results reported so far in the study item, a time domain CIR with 256 entries (bitmap) has been used as model input for Case 2b and 3b solutions.  Thus, similar to Case 3b, the existing signalling likely need to be extended due to: (a) new model input type (e.g., CIR) is reported instead of RSTD/DL-PRS-RSRP/etc; (b) more time domain paths may be needed than the existing list size of maximum 9 (=1+8); (c) the range of reported timing values may need to be reduced if a bitmap is used instead of the relative path delay in current specification.

[bookmark: _Toc134955168]If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): The existing measurement reporting from UE to LMF may need to be enhanced to support model inference due to potentially new information type (e.g., CIR) and/or a larger size of measurement report.
[bookmark: _Toc134955169]If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning), it is necessary to define ML model input which is to be carried by LPP from UE to LMF. The extent of specification impact depends on the type and size of measurement results that are required as the model input.

For Case 2b, the channel information report is transmitted over the air interface on top of RRC, which have a size limitation for the information elements. Transmitting a full set of CIR without down-selection seems unrealistic. In addition, rich channel information (if needed) can be obtained in the network using UL reference signals. 
Instead of full-size CIR, techniques can be used to reduce the model input size, As shown in [3], the model input size can be reduced substantially by the following techniques:
· Retain a fraction of the strongest taps only, for example, 64 taps in stead of the full 256 taps.
· Discard less useful information and change to a lower cost input type:
· Change from CIR to PDP by discarding phase information and multi-port resolution
· Change from PDP to DP by further discarding the magnitude (or power) information

Thus, lean measurement report to support Case 2b is very important. Case 2b should be supported only if the IE for reporting model input is kept small (e.g., DP only), and does not impose an excessive burden to RRC. 
[bookmark: _Toc134955204]For Case 2b, the IE for reporting model input should kept small (e.g., DP only). Full-size CIR is not considered.

[bookmark: _Toc126842999]AI/ML model performance monitoring 
For direct AI/ML Case 2b positioning, the AI/ML model is deployed and controlled fully on the network side. Hence, no specification impact is expected for model monitoring. 
[bookmark: _Toc134955170]If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): Model monitoring is left for implementation. No specification impact is expected.
[bookmark: _Toc126843000] Data collection for training 
For the Case 2b direct AI/ML solutions, UE data reported to LMF is used for model training and model inference. As discussed above, data for model inference can be collected in UE based on PRS transmissions from gNB. For Case 2b solutions, input data reflecting UE measurements of several TRPs’ PRS is used in the model training and model inference stages. For one sided models, our assumption is that model training is managed by the node used for model inference. This means that training data needs to be available at the NW side for training purposes and training data collected at the UE side need to be transferred to the NW side. 
As stated in Section 2.4, we propose to prioritize offline AI/ML model training for Rel-18. For training purposes, model input data as well as appropriate record keeping information (e.g., time stamp) of the data needs to be collected. Using supervised learning, the data labels need to represent the model output, in this case, the UE position. 
For data collection, it was discussed in the latest RAN1 meeting that PRUs and UEs can be used to generate training data. At least LMF with known PRU location can generate ground truth label for Case 2b. Alternatively, the UE or PRU may report its location as ground truth label. The association of rich channel information with the correct label can be done in the network.
In case timestamp information of training data is not known in the network, this information needs to be collected together with the data. In case the label is provided by UE or PRU, to enable collection of label information, enhancements of the LPP protocol are needed. 
[bookmark: _Toc134955171]If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): If label information is not needed from UE for training data collection, the same standard impact is expected to support data collection for model training and model inference. If label information is needed from UE, signaling enhancements may be necessary to support training data collection.  
If training data is transmitted over the air using 3GPP protocols, it needs to be defined how this is done. In our companion contribution [2], we conclude that such procedures should be discussed in RAN2 based on requirements from RAN1. For example, PRS measurements can be collected and reported upon request or periodically to the network. One option is to use RRC signaling. It needs to be evaluated if RRC message size limitations put any restrictions on RRC based reporting of training data. 
[bookmark: _Toc134955205]If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): Study the requirements for training data logging and reporting using 3GPP protocols. 

[bookmark: _Ref118642439][bookmark: _Toc126843001]Conclusion
In the previous sections we made the following observations: 
Observation 1	For model inference of Case 1/2a/3a, the same entity generates measurement data for model input and performs model inference. It is up to UE or gNB implementation to decide which type of information to use: CIR, PDP, or DP.
Observation 2	For Case 3a (NG-RAN assisted positioning with gNB-side model, AI/ML assisted positioning): AI/ML model inference is up to network implementation and transparent to the UE and LMF.
Observation 3	For AI/ML assisted positioning methods, self-model monitoring method does not require ground truth label and has no signaling overhead. The complexity, power consumption, and latency for obtaining one model monitoring sample are equal to one round of model inference.
Observation 4	Performance monitoring of AI/ML assisted positioning (e.g., Case 2a/3a) can be achieved by evaluating the residual loss from the triangulation-based error minimization positioning algorithm (i.e., conventional positioning methods). No need to collect labelled data or define assistance data signaling from the UE or LMF for model monitoring purpose.
Observation 5	For Case 3a (NG-RAN assisted positioning with gNB-side model, AI/ML assisted positioning): If LMF is the network entity with ground truth label knowledge, the NRPPa protocol needs to be extended to support transmission of ground truth label from LMF to the training data collection entity.
Observation 6	For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): The existing reporting from gNB to LMF may need to be enhanced to support model inference due to potentially new information type (e.g., CIR) and/or a larger size of measurement report.
Observation 7	For direct AI/ML positioning methods, self-model monitoring method does not require ground truth label and has no signaling overhead. The complexity, power consumption, and latency for obtaining one model monitoring sample are equal to one round of model inference.
Observation 8	For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): The same standard impact (if any) is expected to support data collection for model training and model inference.
Observation 9	It is not feasible to use PRU for performance monitoring of UE-side AI/ML models (Case 1/2a).
Observation 10	Existing PRS configuration is sufficient for data collection purposes for Case 1/2a/2b.
Observation 11	For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Model inference can be supported with existing signalling, where the reporting of model output to LMF reuses the existing LPP IEs (e.g., LoS/NLOS indicator, ToA/RSTD, DL-PRS-RSRP, DL AoD).
Observation 12	If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): The existing measurement reporting from UE to LMF may need to be enhanced to support model inference due to potentially new information type (e.g., CIR) and/or a larger size of measurement report.
Observation 13	If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning), it is necessary to define ML model input which is to be carried by LPP from UE to LMF. The extent of specification impact depends on the type and size of measurement results that are required as the model input.
Observation 14	If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): Model monitoring is left for implementation. No specification impact is expected.
Observation 15	If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): If label information is not needed from UE for training data collection, the same standard impact is expected to support data collection for model training and model inference. If label information is needed from UE, signaling enhancements may be necessary to support training data collection.

Based on the discussion in the previous sections we propose the following:
Proposal 1	For the use case of positioning accuracy enhancement, model transfer (case z1-z5) is not considered.
Proposal 2	For the UE-side model of positioning use case, the condition for model LCM is realized via the area ID, which is a type of assistance data sent from LMF.
Proposal 3	For the positioning use case, functionality ID and functionality ID based LCM are supported for UE side model.
Proposal 4	For the positioning use case, model ID is not defined. Model ID based LCM is not supported for UE-side model.
Proposal 5	For data collection of ground truth label for positioning use case, only labels with adequate accuracy are included in the training dataset. The label accuracy is at least as good as the targeted positioning accuracy.
Proposal 6	Do not support using conventional RAT-dependent positioning method for data collection of ground truth label.
Proposal 7	Numerous methods exist for tackling the problem of small training dataset, including: semi-supervised learning and data augmentation.
Proposal 8	For the use case of positioning accuracy enhancement, prioritize the study of offline AI/ML model training in Release 18.
Proposal 9	For the positioning use case, online fine-tuning of models is not considered.
Proposal 10	For model inference of Case 2b/3b, PDP and DP are prioritized over CIR considering the smaller model input size and the limited specification impact.
Proposal 11	For model inference of Case 2b/3b, study how to specify the signalling of measurement data for model input, including PDP and DP.
Proposal 12	For all Cases, design choice for model input (including information type and size) need to consider all LCM stages, not just model inference stage.
Proposal 13	For Case 2b/3b, study how to adjust the timing value range, and format the timing measurement information for signalling over the interfaces (LPP, NRPPa), where the timing measurements are used directly or indirectly as input to the AI/ML model in LMF.
Proposal 14	For training data collection of all Cases, data format information (e.g., granularity factor k) is reported together with the timing related measurement data.
Proposal 15	For timing information as model output, only consider relative timing measurement or measurement of timing differences.
Proposal 16	At least for AI/ML models residing at network side (Case 2b, 3a, 3b), it is outside RAN1 scope to discuss whether/how to map the AI/ML functional entities to network nodes.
Proposal 17	For Case 3a (NG-RAN assisted positioning with gNB-side model, AI/ML assisted positioning):  The input to the AI/ML model does not need to be specified. The model output can be reported from gNB to LMF using existing signaling.  No specification impact is expected for model inference.
Proposal 18	Conclude that for Case 3a, model monitoring metric is calculated without collecting test data. No signalling needs to be specified to collect test data for model monitoring purpose.
Proposal 19	For Case 3a (NG-RAN assisted positioning with gNB-side model, AI/ML assisted positioning): Study signaling enhancements for the LMF to provide the ground truth label (e.g., ground truth direct path ToAs or UE locations) to support the training data collection.
Proposal 20	For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): Postpone the final specification impact discussion until it has been concluded based on evaluations the suitable information to report as model input.
Proposal 21	For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): Conclude that for Case 3b, model monitoring metric is calculated without collecting test data. No signalling needs to be specified to collect test data for model monitoring purposes.
Proposal 22	For Case 1/2a, for model inference as well as training data collection, the benefits of adding support for assistance information should be proven with evaluations before RAN1 discuss what assistance information to support and the potential specification impact.
Proposal 23	For Case 1 (UE-based positioning with UE-side model): Conclude that model monitoring is handled on the UE side.
Proposal 24	Conclude that there is no need for PRS configuration enhancements for data collection purposes for Case 1/2a/2b.
Proposal 25	For Case 1, introduce support for the UE to request PRS transmissions for training data collection purposes.
Proposal 26	For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): No specification impact for model inference is expected when the model output is fully aligned with existing measurement report.
Proposal 27	For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Conclude that model monitoring is handled on the UE side. Available residual loss information could be used as assistance data from the network to the UE for model monitoring purposes.
Proposal 28	For Case 2b, the IE for reporting model input should kept small (e.g., DP only). Full-size CIR is not considered.
Proposal 29	If supporting Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): Study the requirements for training data logging and reporting using 3GPP protocols.
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Appendix A. Accuracy requirements of timing information

In the following, 38.133 table for RSTD absolute accuracy in FR1 for AWGN channel is provided as an example. Several other accuracy requirement tables (e.g., FR2, fading channel) are specified for RSTD also. Similarly, accuracy requirement tables are also specified for UE Rx-Tx Time Difference Measurements.

Table 10.1.23.2-1: RSTD absolute accuracy in FR1 for AWGN channel
	Accuracy
	Conditions

	
	PRS Ês/Iot
	PRS SCS
	PRS bandwidth
Note 1
	PRS resource repetition ()
Note 2
	Io Note 3 range

	
	
	
	
	
	NR operating band groups Note 4
	Minimum Io 
	Maximum Io

	Tc Note 5
	dB
	kHz
	RB
	
	
	dBm/SCS 
	dBm/BWChannel

	132 +ΔNote 7
	(PRS Ês/Iot)ref ≥-6dB

 (PRS Ês/Iot)i ≥-13dB
	15
	≥ 24
	≥ 4
	NR_FDD_FR1_A, NR_TDD_FR1_A,
NR_SDL_FR1_A
	-121
	-50

	
	
	
	
	
	NR_FDD_FR1_B
	-120.5
	-50

	
	
	
	
	
	NR_TDD_FR1_C
	-120
	-50

	
	
	
	
	
	NR_FDD_FR1_D, NR_TDD_FR1_D
	-119.5
	-50

	
	
	
	
	
	NR_FDD_FR1_E, NR_TDD_FR1_E
	-119
	-50

	
	
	
	
	
	NR_FDD_FR1_F
	-118.5
	-50

	
	
	
	
	
	NR_FDD_FR1_G
	-118
	-50

	
	
	
	
	
	NR_FDD_FR1_H
	-117.5
	-50

	98 +Δ
	
	
	≥ 52
	≥ 1
	Note 6
	Note 6
	Note 6

	42 +Δ
	
	
	≥ 104
	≥ 1
	Note 6
	Note 6
	Note 6

	75 +Δ
	
	30 
	≥ 24
	≥ 4
	NR_FDD_FR1_A, NR_TDD_FR1_A,
NR_SDL_FR1_A
	-118
	-50

	
	
	
	
	
	NR_FDD_FR1_B
	-117.5
	-50

	
	
	
	
	
	NR_TDD_FR1_C
	-117
	-50

	
	
	
	
	
	NR_FDD_FR1_D, NR_TDD_FR1_D
	-116.5
	-50

	
	
	
	
	
	NR_FDD_FR1_E, NR_TDD_FR1_E
	-116
	-50

	
	
	
	
	
	NR_FDD_FR1_F
	-115.5
	-50

	
	
	
	
	
	NR_FDD_FR1_G
	-115
	-50

	
	
	
	
	
	NR_FDD_FR1_H
	-114.5
	-50

	48 +Δ
	
	
	≥ 48
	≥ 1
	Note 6
	Note 6
	Note 6

	24 +Δ
	
	
	≥ 132
	≥ 1
	Note 6
	Note 6
	Note 6

	50 +Δ

	
	60
	≥ 24
	≥ 4
	NR_FDD_FR1_A, NR_TDD_FR1_A,
NR_SDL_FR1_A
	-115
	-50

	
	
	
	
	
	NR_FDD_FR1_B
	-114.5
	-50

	
	
	
	
	
	NR_TDD_FR1_C
	-114
	-50

	
	
	
	
	
	NR_FDD_FR1_D, NR_TDD_FR1_D
	-113.5
	-50

	
	
	
	
	
	NR_FDD_FR1_E, NR_TDD_FR1_E
	-113
	-50

	
	
	
	
	
	NR_FDD_FR1_F
	-113.5
	-50

	
	
	
	
	
	NR_FDD_FR1_G
	-113
	-50

	
	
	
	
	
	NR_FDD_FR1_H
	-111.5
	-50

	24 +Δ
	
	
	≥ 64
	≥ 1
	Note 6
	Note 6
	Note 6

	10 +Δ
	
	
	≥ 132
	≥ 1
	Note 6
	Note 6
	Note 6

	NOTE 1:	Minimum PRS bandwidth, which is minimum of the PRS bandwidths of the reference resource and the measured neighbour resource i.
NOTE 2: 	Minimum number of PRS resource repetitions among the reference resource and the measured neighbour resource i.  are configured by higher layer parameter dl-PRS-ResourceRepetitionFactor, dl-PRS-NumSymbols and dl-PRS-CombSizeNdefined in TS 37.355 [34], respectively.
NOTE 3:	Io is assumed to have constant EPRE across the bandwidth.
NOTE 4:	NR operating band groups in FR1 are as defined in clause 3.5.2.
NOTE 5:	Tc is the basic timing unit defined in TS 38.211 [6].
NOTE 6:	The same bands and the same Io conditions for each band apply for this requirement as for the corresponding requirement with the PRS bandwidth of the smallest RB number for the corresponding SCS.
NOTE 7:	Δ= 0 for single PFL, Δ is defined in Table 10.1.23.2-5a for dual PFL.




Appendix B. Report mapping of timing information
In the following, 38.133 specification for Absolute DL RSTD Measurement Reporting is provided as an example. Similar measurement reporting tables exist for UE Rx-Tx Time Difference. For gNB side measurements, report mapping tables are also defined for UL-RTOA and gNB Rx-Tx time difference.

[bookmark: _Hlk131762335]10.1.23.3.1	Absolute DL RSTD Measurement Reporting
The reporting range for the DL RSTD measurement is defined from -985024Tc to 985024Tc with the resolution step of 2kTc, where 
	Tc is defined in TS 38.211 [6], 
	kmin≤k≤kmax, 
	kmin=[2] and kmax=5, when configured PRS resource of at least one of the reference cell and neighbor cell measured for the RSTD measurement is in FR1,
	kmin=0 and kmax=5, when configured PRS resource of both the reference cell and neighbor cell measured for the RSTD measurement are in FR2,
	k≥ timingReportingGranularityFactor [34] configured by LMF via LPP for the RSTD measurement.
The measurement report mapping for different k values are specified in Tables 10.1.23.3.1-1  10.1.23.3.1-6.
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