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1	Introduction
The approval of the Rel-18 work package marks the start of 5G Advanced evolution. The package includes a study item on AI/ML for NR air interface, and the work item description can be found in [1].
The initial use cases focused in this study include:
 (
CSI feedback enhancement, e.g., overhead reduction, improved accuracy
, prediction [RAN1]
Beam management, e.g., 
beam prediction in time,
 and/or 
spatial domain
 for overhead and
 
latency reduction
, beam selection accuracy improvement [RAN1]
Positioning accuracy enhancements
 for different scenarios including, e.g.,
 
those with
 heavy
 
NLOS
 
conditions [RAN1] 
)
For the use cases under consideration, the study aims to evaluate performance benefits of AI/ML based algorithms:
 (
Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
Whether f
ield data 
are optionally needed 
to further assess the performance and
 
robustness in real-world environments 
should be discussed as part of the study. 
Need for common
 assumptions in
 dataset construction for training, 
validation
 and test for the
 
selected use cases
.
 
Consider adequate model training strategy, collaboration levels and associated implications
Consider agreed-upon base AI model(s) for calibration
AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
KPIs
: 
Determine the common 
KPIs
 and corresponding requirements for the AI/ML operations.
 
Determine the use-case specific 
KPIs
 and benchmarks of the selected use-cases.
Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
)
At RAN1#109-e and RAN1#110, a comprehensive set of evaluation assumptions were agreed (see Appendix A.1 and A.2). 
In this contribution, we discuss the remaining issues on evaluation assumptions and present initial evaluation results on AI/ML for CSI feedback enhancement.
2	Methodology
There are different types of CSI feedback, such as CRI, RI, PMI, CQI, SSBRI, LI, L1-RSRP, L1-RSRQ. The first discussion point is which type(s) of CSI feedback should be considered for evaluation.
The Type II codebook in NR is designed mainly targeting multi-user MIMO operation. In multi-user MIMO operation, the number of data streams is typically larger than the number of receive antennas at UE. The gNB needs to apply transmit beamforming to suppress inter-UE interference, which motivates the higher-resolution Type II codebook for CSI feedback. The higher resolution comes with higher overhead in CSI feedback. It is relevant to study AI/ML based algorithms for reducing the overhead of Type II codebook and/or improving the feedback accuracy.
AI/ML techniques, such as autoencoders, can be used in CSI compression and feedback. The basic principle of an autoencoder is to take an input, perform non-linear compression by an encoder to a lower-dimensional latent representation, and decompress the latent representation by a decoder to a defined target. In the context of CSI compression, the UE’s estimated CSI is taken as the input to the encoder. The output of the UE’s encoder (i.e., the latent representation of the channel in a quantized form) is transmitted over the air interface (Uu) to the BS. The BS uses a matching decoder to reconstruct the channel state. Hence, the autoencoder model is divided between the UE and BS, creating an inter-node dependency for model training and model management. 
Using autoencoders for CSI compression is in line with the agreement that for the evaluation of the AI/ML based CSI compression sub use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information. At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.
The autoencoders can be used to compressed either the raw channel matrix estimated by UE or the eigenvector(s) of the raw channel matrix estimated by UE, etc. Raw channel matrix-based CSI feedback provides gNB with the most flexibility in determining downlink transmission, though it deviates from the existing codebook-based CSI feedback. In contrast, the channel eigenvector-based CSI feedback is more in line with the conventional codebook-based CSI feedback methods, but it does not provide as much flexibility as the raw channel matrix-based CSI feedback. Both types of CSI feedback schemes are of interest and deserve study. 
Proposal 1: AI/ML based algorithms for CSI compression (e.g., using autoencoders) should be selected as a sub-use case for evaluation.
Proposal 2: Both autoencoders with raw channel matrix as input and autoencoders with eigenvector(s) of raw channel matrix as input should be evaluated.
AI/ML techniques can also be used in CSI prediction. The problem of the current CSI reporting framework is that there is a delay between the time to which the reported CSI relates and the time when the BS receives the CSI report. In 5G non-terrestrial networks for satellite communications, the delay can range from a few milliseconds to hundreds of milliseconds. Such large delay can well cause the CSI to become outdated. In terrestrial networks where the delay is not large, the wireless channel can vary rapidly due to, e.g., high UE mobility, which can also cause the CSI to become outdated. CSI prediction reporting using, e.g., AI/ML algorithms, is one approach to mitigating the effect of the outdated CSI in the CSI reporting framework. In addition, CSI prediction can help reduce reference signal overhead and measurement reporting overhead. Therefore, it is of high interest to study AI/ML based algorithms for CSI prediction.
Proposal 3: AI/ML based CSI prediction should be selected as a sub-use case for evaluation.
Unlike AI/ML based CSI compression where a two-sided structure (CSI encoder at UE and CSI decoder at gNB) is needed, a one-sided structure is sufficient for AI/ML based CSI prediction. The AI/ML inference of the one-sided model can be performed at either gNB or UE.
Proposal 4: The inference of one-sided AI/ML model for CSI prediction can be performed at either gNB or UE. Both should be evaluated to understand the potential gains of performing CSI prediction at gNB side vs. UE side.
As the Rel-18 study on AI/ML for NR air interface is the first one in 3GPP that explores the benefits of augmenting air interface with features enabling improved support of AI/ML based algorithms, it is important to calibrate evaluation results from different companies in order to facilitate drawing observations and making conclusions. 
To evaluate AI/ML based algorithms for CSI feedback enhancement, datasets are needed. Both real data and synthetic data can be used to develop and evaluate AI/ML based algorithms. 3GPP has well established simulation methodology, which can be used to generate synthetic data. CSI enhancement would be most valuable in the scenarios where there is high-capacity demand. Therefore, the evaluation could focus on UMi-street canyon and UMa scenarios.
In general, the statistical models in TR 38.901 can be used as baseline for link and system evaluation of AI/ML based algorithms for CSI feedback enhancement. However, additional simulation methodology for generating synthetic data, such as digital twins, should be explored. A digital twin is a virtual representation — a true-to-reality simulation of physics and materials — of a real-world physical asset or system, which is continuously updated. Digital twins can help generate synthetic data that are closer to real-world data, compared to the traditional 3GPP simulation methodology based on statistical models.
While synthetic data can be the baseline for evaluating AI/ML based algorithms for beam management, it would be beneficial to identify existing sets of real data and/or build up new sets of real data, as part of the 3GPP Rel-18 AI/ML study for NR air interface. Such efforts would pay off as it is anticipated that AI/ML will become increasingly more integrated into the 3GPP family of technologies from 5G Advanced to 6G.
Proposal 5: Companies are encouraged to contribute real data to develop and evaluate AI/ML based algorithms for CSI feedback enhancement.
3	KPIs
The study item description lists many dimensions for KPIs, including performance, inference latency, computational complexity, overhead, power consumption, memory storage, hardware requirements, and generalization capability. 
Though it is beneficial to have a full characterization of the performance of AI/ML based algorithms for NR air interface, it is important to focus on a few most important KPIs in the initial phase to understand the gains of AI/ML based algorithms. 
From CSI feedback enhancement perspective, the key requirement is to enable UE to feedback accurate CSI that captures the fast-fading properties of the channel with reduced feedback overhead. 
· The CSI feedback overhead can be measured by number of feedback bits and/or compression ratio.
· The CSI feedback accuracy can be measured by comparing the decoded CSI to the ground-truth CSI. The metrics can be GCS/SGCS and/or NMSE.
Besides, it is beneficial to evaluate the AI/ML based algorithms for CSI feedback enhancement in terms of system throughput (e.g., average and 5-percentile throughput) performance. Such evaluation would demonstrate how the reduced CSI feedback overhead and/or improved CSI feedback accuracy translate into system performance gains.
Also, many of the KPIs such as inference latency depend on the used computing platform (such as the GPU model). Therefore, it is important to report the KPIs together with the used computing platform (such as the GPU model).
Proposal 6: The CSI feedback overhead can be measured by number of feedback bits and/or compression ratio.
Proposal 7: The CSI feedback accuracy can be measured by intermediate KPIs such as GCS/SGCS and/or NMSE.
Proposal 8: Evaluate system throughput (e.g., average and 5-percentile throughput) performance to assess the system performance gains from the reduced CSI feedback overhead and/or improved CSI feedback accuracy.
It was discussed that complexity should be evaluated as a KPI, where complexity includes model complexity and computational complexity. For evaluation of AI/ML based CSI feedback, the computational complexity can be reported via the metric of floating point operations (FLOPs), and the model complexity may be measured by memory storage in terms of AI/ML model size and number of AI/ML parameters.
It is however important to keep in mind that increasing hardware performance can support successively more complex models. For example, Figure 1 shows how single GPU performance has scaled up to meet the demands of deep learning. GPU inference performance has improved by 317x, more than doubling each year. Figure 2 shows single GPU FP64 performance increased by 20x over the decade from 2010 to 2020, an annual growth rate of 35%. In addition to scaling up the performance of individual GPUs, GPUs are also being scaled out to larger clusters for deep learning and high-performance computing applications.
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Figure 1: GPU inference performance is more than doubling every year. (Source: Ref. [3])
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Figure 2: Single GPU performance scaling. (Source: Ref. [3])
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Proposal 9: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for CSI feedback enhancements.
4	Evaluation results
4.1	CSI compression
In this section, we provide initial evaluation results on CSI compression using AI/ML based algorithms. The system-level simulation assumption and scenarios are built on the basis of the RAN1 agreements.
We consider CSI compression and feedback with an autoencoder, which is a two-sided model including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information. The autoencoder consists of mainly convolutional layers and fully connected layers. The input to the autoencoder is the eigenvectors of the raw channel matrix. 
We train and test the autoencoder for a range of compression ratios. The compression ratio is defined as the ratio of the number of real-valued channel eigenvector coefficients and the number of real-valued feedback coefficients.
Table 1 presents the performance results of the trained autoencoders in terms of the cosine similarity between true and reconstructed eigenvectors of raw channel matrix. For both cases, the results show that the higher the compression ratio, the higher the cosine similarity value. When the autoencoder is trained and tested on CDL-C, we can see that the cosine similarity is as high as 0.939 for a compression ratio as low as 1/64. When the autoencoder is trained and tested on dense urban scenario, we can see that the cosine similarity is 0.797 for a compression ratio of 1/16. Therefore, it is much easier for the autoencoders to compress CSI in CDL-C than in dense urban scenario. This is not surprising as the link level channel model CDL-C has fixed angle values and represents only a single channel realization while the system level channel in the dense urban scenario is much more sophisticated.
Table 1: Cosine similarity between true and reconstructed eigenvectors of raw channel matrix.
	CDL-C for training and testing
	Compression ratio
	1/64
	1/32
	1/16

	
	Cosine similarity
	0.939
	0.976
	0.989

	Dense urban for training and testing
	Compression ratio
	1/16
	1/8
	1/4

	
	Cosine similarity
	0.797
	0.845
	0.891



Observation 2: Evaluation results show that it is much easier for the autoencoders to compress CSI in CDL-C than in dense urban scenario, as the link level channel model CDL-C has fixed angle values and represents only a single channel realization while the system level channel in the dense urban scenario is much more sophisticated.
Next, we explore the model generalization performance. Specifically, we use the autoencoders trained for dense urban scenario and test them using the channel data generated by CDL-C. Table 2 presents the performance results. We can see that the autoencoders trained in the sophisticated dense urban scenario perform well in CDL-C. We can see that the cosine similarity is 0.9358 for a compression ratio of 1/16. 
Table 2: Generalization performance of CSI autoencoder: Training on dense urban and testing on CDL-C.
	Dense urban for training; CDL-C for testing
	Compression ratio
	1/16
	1/8
	1/4

	
	Cosine similarity
	0.9358
	0.9655
	0.9661



In contrast, we find in our experiments that the autoencoders trained in CDL-C do not perform well in the sophisticated dense urban scenario. This is not surprising as AI/ML models are only as good as the data they are trained on, and the autoencoders trained in CDL-C do not learn enough the channel data pattern in the sophisticated dense urban scenario.
For ease of visualization, we plot the results in Table 1 and Table 2 in the same figure below.
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Figure 3: Performance of CSI autoencoder.
Observation 3: Evaluation results show the autoencoders trained in the sophisticated dense urban scenario perform well in CDL-C, illustrating the generalization capability of the AI/ML models.
4.2	CSI prediction
In this section, we provide initial evaluation results on CSI prediction using AI/ML based algorithms. The system-level simulation assumption and scenarios are built on the basis of the RAN1 agreements.
The AI/ML-based CSI prediction utilizes a convolutional neural network (CNN). 
· CSI-RS periodicity is assumed to be 4 ms. 
· The raw channel matrices of the four latest CSI-RS measurement instances are used as the AI/ML model input. The raw channel matrices are associated with the first PRB.
· The AI/ML model output is the predicted raw channel matrix at 4 ms ahead.
· The UE speed is 30 km/h.
As a benchmark, we assume no prediction with sample-and-hold, i.e., the most recently estimated raw channel matrix is assumed to be the channel matrix at 4 ms ahead.
We consider both NMSE and squared cosine similarity to measure the performance. 
· Denoting by  and  the ground-truth channel and the predicted channel respectively, NMSE is equal to .
· Denoting by  and  the strongest eigenvector associated with the ground-truth channel  and the strongest eigenvector associated with the predicted channel  respectively, squared cosine similarity is equal to .
Figure 4 shows the CDFs of the NMSE of AI/ML based CSI prediction vs. no prediction (sample-and-hold). Figure 5 shows the CDFs of the squared cosine similarity of AI/ML based CSI prediction vs. no prediction (sample-and-hold). Table 3 summarizes the average values of NMSE and squared cosine similarity. The results show that AI/ML based CSI prediction significantly outperform the baseline case without prediction (sample-and-hold). 
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Figure 4: NMSE of AI/ML based CSI prediction vs. no prediction.
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Figure 5: Squared cosine similarity of AI/ML based CSI prediction vs. no prediction.
Table 3: Average NMSE and average squared cosine similarity of AI/ML based CSI prediction vs. no prediction.
	
	No prediction (sample-and-hold)
	AI/ML based prediction

	Average NMSE
	-0.74 dB
	-14.54 dB

	Average squared cosine similarity
	 0.857 
	0.976



Observation 4: Evaluation results show that AI/ML based CSI prediction significantly outperforms the baseline case without prediction (sample-and-hold).
In the above results, AI/ML training and inference are performed on the first PRB. Next, we use the AI/ML model trained on the first PRB to carry out inference/testing on different PRBs. 
Table 4 shows the performance of applying the AI/ML model trained on the first PRB to the inference of the 11th, 21st, 31st, 41st, and 51st PRB. From the results, we can see that the performance is consistent across the whole band. This implies that we can train only one AI/ML model associated with a specific PRB, and use the same AI/ML model for other PRBs to save memory and reduce complexity.
Table 4: Generalization of AI/ML based CSI prediction over different PRBs.
	
	1st PRB
	11th PRB
	21st PRB
	31st PRB
	41st PRB
	51st PRB

	Average NMSE
	-14.54 dB
	-14.39 dB
	-14.43 dB
	-14.43 dB
	-14.40 dB
	-14.45 dB

	Average squared cosine similarity
	0.976
	0.974
	0.975
	0.975
	0.973
	0.975



Observation 5: The AI/ML based CSI prediction model trained on a certain PRB can be generalized to perform inference on other PRBs.
Conclusion
In the previous sections, we discuss general aspects of AI/ML framework for NR air interface and make the following observations:
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Observation 2: Evaluation results show that it is much easier for the autoencoders to compress CSI in CDL-C than in dense urban scenario, as the link level channel model CDL-C has fixed angle values and represents only a single channel realization while the system level channel in the dense urban scenario is much more sophisticated.
Observation 3: Evaluation results show the autoencoders trained in the sophisticated dense urban scenario perform well in CDL-C, illustrating the generalization capability of the AI/ML models.
Observation 4: Evaluation results show that AI/ML based CSI prediction significantly outperforms the baseline case without prediction (sample-and-hold).
Observation 5: The AI/ML based CSI prediction model trained on a certain PRB can be generalized to perform inference on other PRBs.
Based on the discussion in the previous sections we propose the following:
Proposal 1: AI/ML based algorithms for CSI compression (e.g., using autoencoders) should be selected as a sub-use case for evaluation.
Proposal 2: Both autoencoders with raw channel matrix as input and autoencoders with eigenvector(s) of raw channel matrix as input should be evaluated.
Proposal 3: AI/ML based CSI prediction should be selected as a sub-use case for evaluation.
Proposal 4: The inference of one-sided AI/ML model for CSI prediction can be performed at either gNB or UE. Both should be evaluated to understand the potential gains of performing CSI prediction at gNB side vs. UE side.
Proposal 5: Companies are encouraged to contribute real data to develop and evaluate AI/ML based algorithms for CSI feedback enhancement.
Proposal 6: The CSI feedback overhead can be measured by number of feedback bits and/or compression ratio.
Proposal 7: The CSI feedback accuracy can be measured by intermediate KPIs such as GCS/SGCS and/or NMSE.
Proposal 8: Evaluate system throughput (e.g., average and 5-percentile throughput) performance to assess the system performance gains from the reduced CSI feedback overhead and/or improved CSI feedback accuracy.
Proposal 9: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for CSI feedback enhancements.
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Appendix
A.1	RAN1#109-e agreements
Agreement
For the performance evaluation of the AI/ML based CSI feedback enhancement, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, for the calibration purpose on the dataset and/or AI/ML model over companies, consider to align the parameters (e.g., for scenarios/channels) for generating the dataset in the simulation as a starting point.
Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, ideal DL channel estimation is optionally taken into the baseline of EVM for the purpose of calibration and/or comparing intermediate results (e.g., accuracy of AI/ML output CSI, etc.)
· Note: Eventual performance comparison with the benchmark release and drawing SI conclusions should be based on realistic DL channel estimation.
· FFS: the ideal channel estimation is applied for dataset construction, or performance evaluation/inference.
· FFS: How to model the realistic channel estimation
· FFS: Whether ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation
Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, companies can consider performing intermediate evaluation on AI/ML model performance to derive the intermediate KPI(s) (e.g., accuracy of AI/ML output CSI) for the purpose of AI/ML solution comparison.
Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, Floating point operations (FLOPs) is adopted as part of the ‘Evaluation Metric’, and reported by companies.
Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, AI/ML memory storage in terms of AI/ML model size and number of AI/ML parameters is adopted as part of the ‘Evaluation Metric’, and reported by companies who may select either or both.
· FFS: the format of the AI/ML parameters
Agreement 
For the evaluation of the AI/ML based CSI compression sub use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.
· At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the following table is taken as a baseline of EVM
· Note: the following table captures the common parts of the R16 CSI enhancement EVM table and the R17 CSI enhancement EVM table, while the different parts are FFS.
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions.
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.

	Parameter
	Value

	Duplex, Waveform
	FDD (TDD is not precluded), OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only) is a baseline.
Other scenarios (e.g. UMi@4GHz 2GHz, Urban Macro) are not precluded.

	Frequency Range
	FR1 only, FFS 2GHz or 4GHz as a baseline

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	Companies need to report which option(s) are used between
-          32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ
-          16 ports: (8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ
Other configurations are not precluded.

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)
2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)
Other configuration is not precluded.

	BS Tx power
	41 dBm for 10MHz, 44dBm for 20MHz, 47dBm for 40MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz, 30kHz for 4GHz

	Simulation bandwidth
	FFS

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	FFS

	MIMO layers
	For all evaluation, companies to provide the assumption on the maximum MU layers (e.g. 8 or 12)

	CSI feedback
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) :  5 ms,
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Overhead
	Companies shall provide the downlink overhead assumption (i.e., whether the CSI-RS transmission is UE-specific or not and take that into account for overhead computation)

	Traffic model
	FFS

	Traffic load (Resource utilization)
	FFS

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)
FFS whether/what other indoor/outdoor distribution and/or UE speeds for outdoor UEs needed

	UE receiver
	MMSE-IRC as the baseline receiver

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic as a baseline
FFS ideal channel estimation

	Evaluation Metric
	Throughput and CSI feedback overhead as baseline metrics.
Additional metrics, e.g., ratio between throughput and CSI feedback overhead, can be used.
Maximum overhead (payload size for CSI feedback)for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics.

	Baseline for performance evaluation
	FFS


Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, as a starting point, take the intermediate KPIs of GCS/SGCS and/or NMSE as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI
· For GCS/SGCS, 
· FFS: how to calculate GCS/SGCS for rank>1
· FFS: whether GCS or SGCS is adopted
· FFS other metrics, e.g., equivalent MSE, received SNR, or numerical spectral efficiency gap.
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if LLS is preferred, the following table is taken as a baseline of EVM
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions. 
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.
· FFS: other parameters and values if needed
	Parameter
	Value

	Duplex, Waveform 
	FDD (TDD is not precluded), OFDM 

	Carrier frequency
	2GHz as baseline, optional for 4GHz

	Bandwidth
	10MHz or 20MHz

	Subcarrier spacing
	15kHz for 2GHz, 30kHz for 4GHz

	Nt
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Nr
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Channel model
	CDL-C as baseline, CDL-A as optional

	UE speed
	3kmhr, 10km/h, 20km/h or 30km/h to be reported by companies

	Delay spread
	30ns or 300ns

	Channel estimation
	Realistic channel estimation algorithms (e.g. LS or MMSE) as a baseline, FFS ideal channel estimation

	Rank per UE
	Rank 1-4. Companies are encouraged to report the Rank number, and whether/how rank adaptation is applied


Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, study the verification of generalization. Companies are encouraged to report how they verify the generalization of the AI/ML model, including:
· The training dataset of configuration(s)/ scenario(s), including potentially the mixed training dataset from multiple configurations/scenarios
· The configuration(s)/ scenario(s) for testing/inference
· The detailed list of configuration(s) and/or scenario(s)
· Other details are not precluded
Note: This Agreement is updated to below Agreement
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, study the verification of generalization. Companies are encouraged to report how they verify the generalization of the AI/ML model, including:
· The configuration(s)/ scenario(s) for training dataset, including potentially the mixed training dataset from multiple configurations/scenarios
· The configuration(s)/ scenario(s) for testing/inference
· Other details are not precluded
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, companies are encouraged to report the details of their models, including:
· The structure of the AI/ML model, e.g., type (CNN, RNN, Transformer, Inception, …), the number of layers, branches, real valued or complex valued parameters, etc.
· The input CSI type, e.g., raw channel matrix estimated by UE, eigenvector(s) of the raw channel matrix estimated by UE, etc.
· FFS: the input CSI is obtained from the channel with or without analog BF
· The output CSI type, e.g., channel matrix, eigenvector(s), etc.
· Data pre-processing/post-processing
· Loss function
· Others are not precluded
Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the following parameters are taken into the baseline of EVM
· Note: The 2nd column applies if R16 TypeII codebook is selected as baseline, and the 3rd column applies if R17 TypeII codebook is selected as baseline.
· Additional assumptions from R17 TypeII EVM Same consideration with respect to utilizing angle-delay reciprocity should be considered taken for the AI/ML based CSI feedback and the baseline scheme if R17 TypeII codebook is selected as baseline
· FFS baseline for potential sub use cases involving CSI enhancement on time domain
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions.
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.
	Parameter
	Value (if R16 as baseline)
	Value (if R17 as baseline)

	Frequency Range
	FR1 only, 2GHz as baseline, optional for 4GHz.
	FR1 only, 2GHz with duplexing gap of 200MHz between DL and UL, optional for 4GHz

	Simulation bandwidth 
	10 MHz for 15kHz as a baseline, and configurations which emulate larger BW, e.g., same sub-band size as 40/100 MHz with 30kHz, may be optionally considered. Above 15kHz is replaced with 30kHz SCS for 4GHz.
	20 MHz for 15kHz as a baseline (optional for 10 MHz with 15KHz), and configurations which emulate larger BW, e.g., same sub-band size as 40/100 MHz with 30kHz, may be optionally considered. Above 15kHz is replaced with 30kHz SCS for 4GHz

	MIMO scheme
	SU/MU-MIMO with rank adaptation.
Companies are encouraged to report the SU/MU-MIMO with RU
	SU/MU-MIMO with rank adaptation. Companies are encouraged to report the SU/MU-MIMO with RU

	Traffic load (Resource utilization)
	20/50/70%
Companies are encouraged to report the MU-MIMO utilization.
	20/50/70%
Companies are encouraged to report the MU-MIMO utilization.


Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the ‘Baseline for performance evaluation’ in the baseline of EVM is captured as follows
	Baseline for performance evaluation
	Companies need to report which option is used between
-        Rel-16 TypeII Codebook as the baseline for performance and overhead evaluation.
-         Rel-17 TypeII Codebook as the baseline for performance and overhead evaluation.
-         FFS: Whether Type I Codebook can be optionally considered at least for performance evaluation


Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, companies to report the GCS/SGCS calculation/extension methods, including:
·     Method 1: Average over all layers
o    Note:  is the eigenvector of the target CSI at resource unit i and K is the rank. is the  output vector of the output CSI of resource unit i.  is the total number of resource units.  denotes the average operation over multiple samples.

·     Method 2: Weighted average over all layers
o    Note: Companies to report the formula (e.g., whether normalization is applied for eigenvalues)
·     Method 3: GCS/SGCS is separately calculated for each layer (e.g., for K layers, K GCS/SGCS values are derived respectively, and comparison is performed per layer)
·       Other methods are not precluded
·       FFS: Further down-selection among the above options or take one/a subset of the above methods as baseline(s).

A.2	RAN1#110 agreements
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted
Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification

Conclusion
If the AI/ML based CSI prediction sub use cases is to be selected as a sub use case, consider CSI prediction involving temporal domain as a starting point.
Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.
Conclusion
For the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, it is up to companies to choose the error modeling method for realistic channel estimation and report by willingness.
· Note: It is not precluded that companies use ideal channel to calibrate
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, the throughput in the ‘Evaluation Metric’ includes average UPT, 5%ile UE throughput, and CDF of UPT.
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, companies are encouraged to report the specific quantization/dequantization method, e.g., vector quantization, scalar quantization, etc.
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, the capability/complexity related KPIs, including FLOPs as well as AI/ML model size and/or number of AI/ML parameters, are to be reported separately for the CSI generation part and the CSI reconstruction part.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, a one-sided structure is considered as a starting point, where the AI/ML inference is performed at either gNB or UE.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for evaluation,
· 100% outdoor UE is assumed for UE distribution.
· FFS: whether to add O2I carpenetration loss per TS 38.901 if the simulation assumes UEs inside vehicles
· UE speed is assumed for evaluation with 10, 20, 30, 60, 120km/h
· Note: Companies to report the set/subset of speeds
· 5ms CSI feedback periodicity is taken as baseline, while other CSI feedback periodicity values can be reported for the EVM
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, companies are encouraged to report the details of their models for evaluation, including:
· The structure of the AI/ML model, e.g., type (FCN, RNN, CNN,…), the number of layers, branches, format of parameters, etc.
· The input CSI type, e.g., raw channel matrix, eigenvector(s) of the raw channel matrix, feedback CSI information, etc.
· The output CSI type, e.g., channel matrix, eigenvector(s), feedback CSI information, etc.
· Data pre-processing/post-processing
· Loss function
· Others are not precluded
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