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1. [bookmark: _Ref4683067] Introduction 
The objective for this agenda item, stated in [1], is given by
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
In this contribution, we discuss evaluation on AI/ML for beam management focusing on remaining issues on EVM and evaluation results on temporal beam prediction and spatial beam prediction.

2. Beam Management Performance Evaluation
The BM procedure is critical for the energy efficiency and latency performance of RAN1. The objective of the BM procedure is to achieve high data rate transmission (typically by finding the strongest Tx/Rx beams) with low beam measurement overhead. To evaluate the performance of AI/ML-assisted beam prediction, we first defined the performance metrics.
2.1. Performance metrics
In this section, we define the performance metrics that we used in this evaluation results. The metrics include the prediction accuracy, computing capacity of the AI/ML model, and the reference signal overhead.
· Prediction accuracy:
We use Top-k accuracy and RSRP difference to evaluate the prediction accuracy for the AI/ML model. In RAN 1 #109e, two options for Top-k accuracy KPI evaluation were agreed. In this evaluation, we choose to evaluate on Option 2, that is, the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-k predicted beams”. For RSRP difference, it is defined as the L1-RSRP difference in dB between the best genie-aid beam and the predicted Top-1 beam.
· Model size and computational complexity:
In this report, we choose to evaluate the AI/ML model size and computational complexity by their floating-point operations (FLOPs).
· RS overhead reduction:
For spatial beam prediction, we use the Option 1 as discussed in the last meeting for RS overhead analysis, that is, Option 1: , where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement (in Set B), M is the total number of beams (pairs) to be predicted (in Set A)

Proposal 1: For AI/ML-based beam prediction evaluation, adopt the FLOPs and/or MACs as the time complexity, and the number of parameters as the space complexity, other options are not precluded.
2.2. Dataset construction
In this section, we explain the adopted datasets in our simulation and performance evaluation for temporal and spatial beam managements. We adopt two different datasets, namely, the SLS dataset and the ray-tracing dataset. The SLS dataset is generated based on 38.901[2], in which the wireless communication channels are generated using statistical modelling on the propagation paths/rays. The ray-tracing dataset is based on the DeepMIMO dataset [3], in which the propagation paths are generated according to the geometry of the communication environment.
2.2.1. [bookmark: _Ref115399288]SLS dataset
In the SLS dataset, we consider an area of 7 sites and 21 cells as shown in Figure 1. The detailed parameters of the SLS dataset are summarized in in Section 5.1.  
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[bookmark: _Ref110957378][bookmark: _Ref110957368]Figure 1: illustration of the layout of the SLS dataset

The dataset contains 100 UEs, each is simulated with 1000 time-steps, the length of a time-step is 50ms. For each time-step sample, the RSRP for each pair of UE beams and gNB beams are recorded. That is, for each UE at one time-step, there are 21 (cells) x 24 (Tx beams) x 4 (Rx beams) = 2016 RSRP values being recorded. Besides the beam power, the UE location information in terms of azimuth and zenith angles to all the cells are recorded as well. We will denote this format as UE angle in the rest of the document. For each UE at each time-step, we define the UE’s serving cell, which is the cell that provides the best RSRP for a single Tx/Rx beam pair to the UE. 
Depends on the evaluation scheme, we prepare the data samples differently. For example, for the best Tx beam index prediction, we first identify the serving cell for each UE at each time-step. Then, for each Tx beams of the serving cell, we pick the best RSRP among all the RSRP values received by the UE’s Rx beams.  Therefore, each data sample for a UE at one time-step consists of a 1x24 vector of RSRP values. On the contrary, if the scheme is for the best Tx/Rx beam pair prediction, we will include the RSRP values of all the possible Tx/Rx beam pair combinations as a data sample for each UE at one time-step. That is, each data sample for a UE at one time-step consists of a 1x96 vector of RSRP values. Finally, if the scheme is predicting with UE’s additional angle information, we will add both the UE’s azimuth and zenith angles to its serving cell for each data sample.
For temporal beam dataset, note that if the serving cell changes for a UE within the 1000 simulating time-steps (as UE is moving), the 1000 time-steps data sequence will be chunked to multiple data sequences so that the data samples in a single sequence is mapped to the same serving cell. For example, if the serving cell for a UE changes from Cell 1 to Cell 2 at time-step 500, there will be two data sequences generated, each has 500 samples. One uses Cell 1 as the serving cell and the other uses Cell 2 as the serving cell.
2.2.2. Ray-tracing dataset
The wireless communication beams at high carrier frequency, e.g. millimeter wave, highly depends on the geometry of the position and neighboring environment, and the geometry of the gNB and the mobile user. By taking into considerations of the configuration of the position and neighboring environment/geometry, we believe that the generated wireless communication channels can have more specific realistic spatial consistency. Therefore, we believe that evaluating the FR2 beam management on ray-tracing based wireless communication channel dataset is valuable.
The ray-tracing technology keeps track of the position, shape, and material of other objects in the neighboring environment of the communication devices and calculates the gain , delay , and propagation angles  (azimuth) and  (elevation) of each wireless communication propagation paths. Note that  refers to the index of the propagation paths. Given these channel parameters, the delay-domain communication channel can be constructed based on the delay-d channel model as the following
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where  is the delay-domain channel response and  denotes the index of the delay taps.  is the pulse shaping function and  denotes the sampling time. (, ) is array response vector for the antenna array.
In this paper, we adopt the DeepMIMO dataset [3] to generate communication channel data using ray-tracing technology. The DeepMIMO dataset is a public dataset for deep learning applications in millimeter wave and massive MIMO systems.
The DeepMIMO “O1” scenario at 28 GHz carrier frequency is adopted in our simulation. The layout of the DeepMIMO “O1” scenario is shown in Figure 2. This scenario imitates a crowded downtown area in a city incorporating the intersection of two streets and multiple buildings (potential reflectors and scatterers). We placed our gNB at “BS 3” as circled in the Figure 2. Mobile users are distributed on the horizontal street as highlighted by the red rectangular box. In implementation, the user area is discretized into a user grid with the interval of 0.2 m. The channels between the gNB and all the positions in the user grid are generated.
The configuration of the DeepMIMO dataset is set to be as similar to [2] as possible. The detailed parameters of this configuration are summarized in Section 5.2.
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[bookmark: _Ref110957413]Figure 2: DeepMIMO “O1” scenario layout

2.2.3. [bookmark: _Ref111135317]Configuration of Set A of beams
We apply a beam steering code book for the Set A of beams at gNB. As shown in Figure 3, these Set A of beams consist of 24 beams with 2 beam angles along the elevation dimension and 12 beam angles along the horizontal dimension. The horizontal beams span a 120° range to align with the cell service area. The beam angles of the 24 beams are also summarized in Figure 3. To increase the diversity of the best beam selected by each UE, we apply a 15° down-tilting angle to all the Set A of beams.
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[bookmark: _Ref110957450]Figure 3: The Set A of beam configuration for gNB
2.3. Temporal beam prediction
As shown in Figure 4, the objective of the temporal beam prediction is to predict the future Top-k beams or beam pairs in Set A (in the prediction window size of T2) using the previous RSRP measurements of beams or beam pairs in Set B (in the observation window size of T1). Set A of beams are presented in Section 2.2.3. We consider Set B of beams are the same as Set A of beams.
UE angle

[bookmark: _Ref110957477]Figure 4: the objective of the temporal beam prediction with additional UE information and temporal beam pair prediction

2.3.1. UE Trajectory
As discussed in [4], it is agreed that the user trajectory needs to be considered at least for the temporal beam prediction task. In this report, we adopt the option-2 [4] user trajectory. The user trajectory can be summarized as follows.
Trajectory model (based on option 2)
· Step 0: initialize random position and moving direction, speed is a constant
· Step 1: generate a time interval following exponential distribution (mean = 5 s) with granularity of 100 ms
· Step 2: UE moves straightly along the selected direction to the end of the time interval
· Step 3: generate new moving direction: current moving direction + uniform distribution of [-45°, 45°]
· Loop back to step 1, break loop if
· Time limitation is reached
· UE is out of the service area 
· If the trajectory length (in time) is less than the length of (observation + prediction window), the trajectory should be discarded.
· UE orientation is randomly generated at the beginning of the simulation and fixed during the whole trajectory.
2.3.2. [bookmark: _Ref110957794]Performance Evaluation for Temporal Beam Prediction
2.3.2.1. Temporal beam prediction for the best Tx beam index 
In this section, we demonstrate the performance evaluation result in terms of the Top-k accuracy over 24 beams on both the SLS and ray-tracing datasets. We assume the prediction window is 4-time steps and observation window is 36 time-steps (i.e. N=4 and M=36). We perform predictions by two AI/ML models, LSTM and Transformer. The evaluation results are shown in Table 1 and illustrated in Figure 5. It shows that when using the SLS dataset, the Top-1 accuracy of predicting the best beam for the future 4 time-steps by using LSTM and Transformer are 54.2 % and 52.0 %, respectively. The accuracy increases with the Top-k values. For example, LSTM and Transformer has 94.6% and 92.8% prediction accuracy when the predicted top 5 best beam indices contain the best beam index of the ground truth. 
On the other hand, both of our models, LSTM and Transformer, perform better on the ray-tracing dataset. For example, for Top-1 accuracy LSTM performs 17.1% better than its performance on the SLS dataset and Transformer improves 19.8% when predicting on the ray-tracing dataset compared to the SLS dataset. The same observation remains across all the Top-k accuracy cases. We believe ray-tracing dataset has higher signal consistency across time compared to SLS dataset where the signal is passing through a stochastic channel.
Observation 1: Both machine learning models perform better on ray-tracing dataset compared to SLS dataset. 
Proposal 2: Study and evaluate the performance of AI/ML beam prediction using the dataset generated by the ray-tracing simulations.
Proposal 3: Evaluate the impact of different observation and prediction window sizes to the performance of AI/ML temporal beam prediction.
[bookmark: _Ref110959574][bookmark: _Hlk111128286]Table 1: The temporal beam prediction evaluation results
	Dataset
	Model
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	SLS
	LSTM
	54.2%
	76.0%
	85.8%
	94.6%

	
	Transformer
	52.0%
	71.8%
	82.5%
	92.8%

	Ray-tracing
	LSTM
	63.5%
	88.0%
	95.0%
	99.2%

	
	Transformer
	62.3%
	87.4%
	94.6%
	99.1%
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[bookmark: _Ref111128405][bookmark: _Ref111128342]Figure 5: illustration of the temporal beam prediction evaluation results
In the next experiment, we evaluate the performance of temporal beam prediction under different observation and prediction window sizes. Figure 6 shows the evaluation result of temporal beam prediction by fixing the observation window size to 24 and changing the prediction window size from 2 to 12. In Figure 6 (a), the Top-k accuracy decreases when the prediction window size increases, which is reasonable. The same trend can be found in Figure 6 (b), where the corresponding RSRP difference performance of each model is demonstrated.
On the other hand, Figure 7 shows the evaluation result of temporal beam prediction by fixing the prediction window size to 2 and changing the observation window size from 2 to 12. In Figure 7 (a), the Top-k accuracy increases with the increase of the observation window size. We believe the more history information contained in the larger observation window size improves the prediction accuracy. The same trend can be found in Figure 7 (b), where the corresponding RSRP difference of each model is demonstrated. 
Since larger observation window size has two-fold drawbacks, (i) either UE or gNB needs to providers larger space to store the history data and, (ii) higher computational complexity, which is shown in Table 2, we encourage to study how to improve the accuracy by increasing the observation window while taking the performance saturation and the drawback of large observation window into consideration.   
Observation 2: By fixing the observation window size, the accuracy performance becomes better when prediction window size is lower. 
Observation 3: By fixing the prediction window size, the accuracy performance increases when the observation window size increases. However, the performance will saturate.
Observation 4: Transformer performs better than LSTM in terms of Top-k accuracy, and it requires less observation window size than LSTM does to achieve the same level of RSRP difference.
Observation 5: The computing complexity of Transformer is larger than LSTM, furthermore, the computing complexity increases with the observation window for both models.
Proposal 4: For different choices of prediction and observation window sizes, study the optimal model for to use, considering their computing complexity, UE’s computational and storage capacity.
Proposal 5: When the prediction window size is fixed, evaluate and study the optimal observation window size in terms of prediction accuracy and RS overhead.
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[bookmark: _Ref115399644]Figure 6: temporal beam prediction evaluation result of (a) Top-k accuracy, and (b) Average RSRP difference, by fixing the observation window size to 24 
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[bookmark: _Ref115399690]Figure 7: temporal beam pair prediction evaluation result of (a) Top-k accuracy, and (b) Average RSRP difference, by fixing the prediction window size to 2 
[bookmark: _Ref115345828]Table 2: The computational complexity for each prediction and observation window configurations
	Observation window size
	Prediction window size
	LSTM computational complexity (Mega FLOPs)
	Transformer computational complexity (Mega FLOPs)

	24
	2
	0.43
	28.45

	
	4
	0.46
	30.57

	
	6
	0.50
	32.69

	
	12
	0.60
	39.04

	2
	2
	0.08
	5.28

	4
	
	0.11
	7.39

	6
	
	0.15
	9.49

	12
	
	0.24
	15.81



2.3.2.2. Temporal beam prediction with additional information 
In this section, we evaluate the performance of temporal beam prediction with UE angle information as additional input to the AI/ML model. We assume each user uses the best Rx beam. The format of UE angle can be found in Section 2.2.1. Figure 8 shows the AI/ML model design for the temporal beam prediction with additional UE information, the input to the AI/ML model is the optimal beam indices and UE angle information obtained in the observation window (T1), and the output of the AI/ML model is the probability of each beam in Set A to be the best beam for all the time instances in the prediction window (T2). Therefore, the input of the AI/ML model is a 2-dimensional matrix, one dimension is the time-step and the other dimension is the input features, including optimal beam indices, UE azimuth and zenith angles. We adopt two AI/ML models, LSTM and Transformer, for prediction. Both models are trained with 25 epochs. The corresponding computation complexity of each model are shown in Table 3. 
Table 3 also demonstrates the evaluation results for LSTM and Transformer, respectively, when the observation window size is fixed to 12 and the prediction window size is fixed to 2. The values colored by red show the best performance of each KPI metrics across different models and scenarios. For LSTM model, we didn’t observe any gain by adding additional UE angle information directly to the input of the model, comparing to predicting without UE angle information. For Transformer, the Top-k accuracy and RSRP difference improves with the use of the UE angle information. However, LSTM’s performance without additional UE angle information still outperforms Transformer with additional UE angle information. The reason may be that the best beam indices obtained in the observation window already contains the information of the UE’s angle to the gNB. Therefore, to study the benefit of using additional UE side information for temporal beam prediction, more challenging scenarios, for example NLOS or beam blockage conditions, can be evaluated.
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[bookmark: _Ref110957508]Figure 8: illustration of AI/ML model based temporal beam prediction with additional UE information
[bookmark: _Ref115310326]
Table 3: The temporal beam prediction with additional UE angle information evaluation results by using LSTM (Observation window = 12, Prediction window size = 2, epoch is 25)
	Model
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc
	Avg. RSRP-diff (dB)
	FLOPs
(M)

	without additional UE angle

	LSTM
	0.5234
	0.7220
	0.8170
	0.9058
	1.0857
	0.2390

	Transformer
	0.5143
	0.7062
	0.8088
	0.9067
	1.1528
	15.8135

	with additional UE angle

	LSTM
	0.5220
	0.7209
	0.8147
	0.9065
	1.0942
	0.2452

	Transformer
	0.5163
	0.7127
	0.8130
	0.9104
	1.1322
	15.8550



Observation 6: Temporal beam prediction by adding additional UE angle information directly to the input of the model did not show significant gains compared to predicting without UE angle information.
Proposal 6: Study more scenarios where additional information may improve the temporal beam prediction performance
2.3.2.3. Temporal Tx/Rx beam pair prediction 
In this section, we evaluate the performance of temporal beam prediction for Tx/Rx beam pair prediction. In our experiment set up, we have 24 Tx beams at the gNB and 4 Rx beams at the UE. Therefore, Set A of beam pairs contains 24x4 = 96 Tx/Rx beam pairs. We assume Set B is the same as Set A, that is, we measure the RSRP of each Tx/Rx beam pairs of all the time-steps in the observation window and predict the index of the best Tx/Rx beam pair of all the time-steps in the prediction window. Figure 9 shows the AI/ML model design for temporal beam prediction for Tx/Rx beam pairs, the input to the AI/ML model is the optimal beam pair indices obtained in the observation window (T1), and the output of the AI/ML model is the probability of each beam pairs in Set A to be the best beam pair for all the time instances in the prediction window (T2). 
Figure 10 shows the corresponding evaluation results by using LSTM and Transformer models. Both models are trained with 25 epochs. We use the same model size for both the best beam and best beam pair prediction. The performance of predicting the best Tx beam is higher than predicting the beam pair in Figure 10(a), as beam pair has a greater number of indices to predict on. The same trend can be observed in RSRP difference for both models in Figure 10(b). However, with Tx/Rx beam pair prediction, UE doesn’t need to do Rx sweeping to find the best Rx beam for the predicted Tx beam of all the time-steps in the prediction window, and hence, delivers less beam management overhead.
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[bookmark: _Ref115429492]Figure 9: illustration of AI/ML model based temporal beam pair prediction
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[bookmark: _Ref115367581]Figure 10: comparison between predicting the best Tx beam and best Tx/Rx beam pair, for fixed observation window size = 12 and prediction window size = 2, for (a) Top-k accuracy, and (b) Average RSRP difference
Observation 7: Tx beam prediction’s Top-k performance is better than beam pair prediction’s Top-k performance. However, beam pair prediction doesn’t require UE Rx beam sweeping during the prediction windows.
Proposal 7:  Study the tradeoff between using Tx beam prediction or beam pair prediction mechanisms considering their prediction Top-k accuracy, and corresponding beam management overhead.
2.4. Spatial beam prediction
As shown in Figure 11, the objective of the spatial beam prediction is to predict the current Top-k beams in Set A using RSRP measurements of beams in Set B (in the observation window size of T1). Set A of beams and Set B of beams are presented in Section 2.2.3. We adopt Set B of beams as the subsets of Set A of beams and as a set of beams different from Set A. We also conducted simulations with different sizes of Set B to investigate the beam measurement overhead for the spatial beam prediction. Note that we arrange Set B of beams as distributed as possible when selecting from the Set A so that Set B can cover a wider range of beam angles. We assume that the user always uses the optimal UE beam in the best Tx beam prediction.
For spatial domain beam prediction, the AI/ML model inputs can include the RSRP of the beams in Set B and, optionally additional information, such as beam index and angle. The output of the AI/ML model can be the index of beam in Set A that achieves the highest RSRP, or the RSRP of all beams in Set A. 
UE angle
boresight direction

[bookmark: _Ref110957530]Figure 11: the objective of the spatial beam prediction task
2.4.1. Performance Evaluation for Spatial Beam Prediction
2.4.1.1. [bookmark: _Hlk115370470]Spatial beam prediction for the best Tx beam 
In our AI/ML model design for spatial beam prediction for the best Tx beam, the input to the model is the RSRP measurements of the beams in Set B. The output of the AI/ML model is the probability of each beam in Set A to be the best beam for the current time instance, from which we will calculate the Top-k beam indices among Set A. As shown in Figure 12, we evaluate the spatial beam prediction performance with two different machine learning models, DNN and Transformer, by using both SLS and ray-tracing datasets. Note that in this section, the SLS and ray-tracing dataset does not apply the 15 degree down-tilting angle. Table 4 and Figure 13 demonstrate the evaluation results. It shows that with 4 beams in Set B (i.e. Set B size = 4), DNN and Transformer can achieve 42.8% and 46.3% Top-1 accuracy, respectively, with the SLS dataset. On the contrary, with the ray-tracing dataset, the Top-1 accuracy performances of these two models improve to 58.7% and 67.9%, respectively. The accuracy increases by more than 10% when comparing to SLS dataset. Also, Transformer’s Top-k accuracy performance is always better than DNN given any dataset and Set B sizes. However, architecture-wise, Transformer is more complex than DNN.  That is, Transformer requires more FLOPs than DNN for inference.
[image: ]
[bookmark: _Ref110957538]Figure 12: illustration of ML model based spatial beam prediction
On the other hand, it can be observed that by using more beams in Set B, the Top-k accuracy performances of both models improve monotonically given any value of k. For example, DNN’s Top-1 accuracy increases from 42.8% to 88.1% on the SLS dataset. The same trend happens when using the ray-tracing dataset as well. However, it takes more beam RSRP measurements in Set B when the size of Set B increases.
Observation 8: Transformer always outperforms DNN in both datasets under various sizes of Set B. However, Transformer is more complex than DNN in terms of FLOPs. 
Observation 9: With a greater number of beams in Set B, both models achieve higher Top-k accuracy. However, greater number of beams in Set B requires more beam RSRP measurements. 
Proposal 8: Study the tradeoff between the beam measurement overhead and prediction accuracy for different number of beams in Set B.
Proposal 9: For AI/ML-based spatial domain beam prediction evaluation, adopt the RSRP of beams in Set B as the AI/ML model inputs. Additional information to the input of AI/ML model is not excluded. 
Proposal 10: Adopt one of the following as the output of AI/ML model: (i) beam index of highest RSRP Set A of beams. (ii) RSRPs of all the Set A of beams.

[bookmark: _Ref110959752] Table 4: The spatial beam prediction evaluation results for different Set B sizes when Set B is a subset of Set A and evenly distributed in Set A 
	Dataset
	Model
	Set B size
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	SLS
	DNN
	4
	42.8%
	66.1%
	83.0%
	92.9%

	
	Transformer
	
	46.3%
	70.2%
	86.0%
	95.2%

	
	DNN
	6
	51.4%
	75.3%
	88.3%
	95.6%

	
	Transformer
	
	59.1%
	81.4%
	91.9%
	97.0%

	
	DNN
	12
	71.1%
	92.3%
	96.6%
	98.3%

	
	Transformer
	
	79.4%
	95.7%
	99.0%
	99.84%

	
	DNN
	24
	88.1%
	96.3%
	97.8%
	98.6%

	
	Transformer
	
	99.88%
	99.96%
	99.99%
	99.99%

	Ray-tracing
	DNN
	4
	58.7%
	79.9%
	89.9%
	97.8%

	
	Transformer
	
	67.9%
	87.3%
	94.6%
	98.8%

	
	DNN
	6
	73.4%
	90.2%
	95.8%
	99.2%

	
	Transformer
	
	85.4%
	96.3%
	98.8%
	99.8%

	
	DNN
	12
	84.5%
	97.5%
	99.5%
	99.97%

	
	Transformer
	
	91.8%
	98.8%
	99.75%
	99.98%

	
	DNN
	24
	95.9%
	99.5%
	99.84%
	99.98%

	
	Transformer
	
	99.95%
	99.99%
	100%
	100%
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[bookmark: _Ref111128799]Figure 13: illustration of the spatial beam prediction evaluation results for different Set B sizes when Set B is a subset and evenly distributed in Set A with (a) SLS Dataset, and (b) ray-tracing dataset. 

In the following experiment, we present the evaluation result for DNN and Transformer by using different choices of beams in Set B given the same dataset and the size of Set B. Note that Set B is still a subset of Set A (i.e. BM case 1, Alt. 1). Figure 15 shows two different selections of beams in Set B with 2 different Set B sizes, 4 and 6. In this figure, the green table shows all beams in Set A which are arranged based on their vertical and horizontal beam directions. The selection of beams in Set B is shown by the red circles. Note that Set B selection 1 is evenly distributed across the spatial domain of beams in Set A, therefore, they are used in the performance evaluations above. We evaluate the prediction performance of the above two models using the ray-tracing dataset. Table 5 and Figure 14 demonstrate the evaluation results in terms of Top-k accuracy. For both models, the prediction performance by using Set B selection 1 is always higher than that by using Set B selection 2 given any Top-k accuracy evaluation. 
Observation 10: The selection of beams in Set B will affect the prediction accuracy of the AI/ML-based spatial beam prediction.
Proposal 11: For AI/ML-based spatial domain beam prediction evaluation, study the subset selection (number and combination) if Set B is variable (Option2 on the selection of Set B of beams in the RAN1 #110 agreement).
[bookmark: _Ref110960508]Table 5: The spatial beam prediction evaluation results under different sizes of Set B with different beam selections for Set B
	Dataset
	Model
	Set B size
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	Ray-tracing
(Set B selection 1)
	DNN
	4
	58.74%
	79.94%
	89.90%
	97.78%

	
	Transformer
	
	67.87%
	87.34%
	94.55%
	98.78%

	
	DNN
	6
	73.38%
	90.17%
	95.82%
	99.15%

	
	Transformer
	
	85.35%
	96.28%
	98.78%
	99.83%

	Ray-tracing
(Set B selection 2)
	DNN
	4
	49.58%
	69.49%
	80.61%
	90.97%

	
	Transformer
	
	56.10%
	75.21%
	84.48%
	93.40%

	
	DNN
	6
	69.38%
	90.32%
	95.91%
	99.18%

	
	Transformer
	
	82.74%
	95.60%
	98.35%
	99.70%
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[bookmark: _Ref111128982]Figure 14: illustration of the spatial beam prediction evaluation results for different beam selections for Set B with (a) Set B size = 4, and (b) Set B size = 6.
[image: ]
[bookmark: _Ref110957595]Figure 15: illustration of two different selections of beams in Set B for beam size 4 and 6
In the experiment below, we present the evaluation result for DNN and Transformer by using different designs of beams for Set B. Note that in this evaluation, Set B is not necessarily a subset of Set A. The design and pattern of beams in Set B can be completely different from the beams in Set A.  Figure 16 demonstrates an example of different designs of beams in Set B. Figure 16 (a) shows the shape of beams in Set B when it is a subset of Set A and when the selection of Set B matches the Set B selection 1 pattern for Set B size = 4 in Figure 15. On the other hand, Figure 16 (b) shows the beam shape when the beams in Set B are wider beams compared to beams in Set A. An example can be that Set B are SSB beams and Set A are communication beams (or CSI-RS beams). Finally, Figure 16 (c) shows the beam shape when the beams in Set B have multi-arm beam shapes. 
To generate the wide beam design for Set B at gNB, we reduce the number of antennas used for signal transmission. We use the first half of the antenna arrays, that are being used to generate Set A of beams, along both vertical and horizontal dimensions. That is, the (M,N,P) = (4,8,2) antenna array becomes (2,4,2). To generate the multi-arm beam design for Set B at gNB, we conduct the following steps. First, we generate 24 beams as Set A. Second, each of these 24 beams are multiplied with a Taylor window to achieve sidelobe suppression. Third, we generate a 5-by-31 parity-check matrix for Hamming code. Note that only first 24 columns of this matrix are used to match the number of beams in Set A. Finally, we generate five multi-arm beams in Set B, each of which is the summation of the corresponding beams in Set A as indicated by the parity-check matrix.
Table 6 and Figure 17 show the evaluation results for both models in terms of Top-k accuracy using a variety of beam shape designs in Set B. The results show that even though the wide beam design of Set B is evenly distributed and covers almost all the beam directions in Set A, it does not outperform the subset design. Moreover, in terms of Top-1 accuracy, wide beam design’s performance is worse than the subset design, changing from 58.7% for subset design to 51.3% for wide beam design when using DNN, and from 67.9% for subset design to 67 % for wide beam design when using Transformer. We believe the reason is that the ML models cannot learn how to distinguish among narrow beams whose beam directions lie within a wide beam. To improve the accuracy, a second stage narrow beam sweeping is necessary to identify the best beam. 
On the other hand, both models deliver improvements in terms of the Top-1 and top-2 accuracy by using the multi-arm beam design. Since the waveform of multi-arm beam is asymmetric and unbalanced spatially, the ML models can learn to identify the best beam in Set A by cross comparing the input features of the RSRP of all the multi-arm beams in Set B. 
[image: ]
[bookmark: _Ref110957619]Figure 16: different beam designs of Set B: (a) subset, (b) wide beams, and (c) multi-arm beams
	[bookmark: _Ref110960577]Dataset
	Model
	Beam design of Set B
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	Ray-tracing

	DNN
	Subset
	58.7%
	79.9%
	89.9%
	97.8%

	
	Transformer
	
	67.9%
	87.3%
	94.6%
	98.8%

	
	DNN
	Wide beam
	51.3%
	78.8%
	89.3%
	98.3%

	
	Transformer
	
	67.0%
	87.5%
	94.2%
	98.9%

	
	DNN
	Multi-arm beam
(5 beams)
	59.8%
	81.9%
	89.3%
	94.9%

	
	Transformer
	
	69.8%
	88.1%
	93.4%
	97.4%


[bookmark: _Ref111129436]Table 6: The spatial beam prediction evaluation results for different beam designs of Set B

[image: Chart
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[bookmark: _Ref111129098]Figure 17: illustration of the spatial beam prediction evaluation results for different Set B
Observation 11: The spatial beam prediction by using multi-arm beam design in Set B performs better than using subset beam design in Set B.
Observation 12: The spatial beam prediction by using wide beam design in Set B does not outperforms the performance by using subset beam design in Set B. 
Proposal 12: Study and evaluate a more comprehensive Set B design, including joint designing the number of beams in Set B and their beam shape for spatial beam prediction.
2.4.1.2. Spatial beam prediction with additional information 
In this section, we evaluate the spatial beam prediction performance with or without the UE angles as additional input. Figure 18 shows the corresponding input and output of the AI/ML model. Table 7 and Figure 19 demonstrate the evaluation results. The ratio between the sizes of Set B and Set A that we investigated starts from 1/6 to 1. No obvious improvement is observed by including the UE angle information. In most cases, the performance difference is neglectable. Also, Transformer’s Top-k accuracy performances are always better than DNN given any Set B sizes. However, architecture-wise, Transformer is more complex than DNN.  That is, Transformer requires more FLOPs than LSTM for inference.
Observation 13: The spatial prediction accuracy does not improve much by using UE angles directly as the additional input, at least for the ratio of Set B and Set A sizes is between 1/6 to 1.
ML Model 
Received power of the beams in Set B
Output: optimal beam indices among set A of beams
Optionally UE location or angle information

[bookmark: _Ref115431744]Figure 18: illustration of ML model based spatial beam prediction with optional UE additional information as input

[bookmark: _Ref115432681] Table 7: The spatial beam prediction evaluation results for different Set B sizes when Set B is a subset of Set A and evenly distributed in Set A 
	Input
	Model
	Set B size
	RSRP Diff(dB)
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	RSRP
	DNN
	4
	3.16
	34.9%
	58.0%
	70.8%
	86.7%

	
	Transformer
	
	2.63
	46.0%
	67.2%
	79.1%
	89.9%

	
	DNN
	6
	2.20
	41.9%
	66.6%
	80.2%
	92.3%

	
	Transformer
	
	1.56
	57.5%
	79.3%
	88.5%
	95.5%

	
	DNN
	12
	0.511
	71.5%
	91.8%
	96.8%
	99.0%

	
	Transformer
	
	0.397
	75.7%
	93.8%
	98.5%
	99.7%

	
	DNN
	24
	0.135
	88.3%
	97.0%
	98.6%
	99.6%

	
	Transformer
	
	0.0062
	99.86%
	99.97%
	99.98%
	100%

	RSRP & UE Angle
	DNN
	4
	3.24
	33.2%
	56.0%
	70.1%
	85.3%

	
	Transformer
	
	2.53
	45.0%
	67.0%
	79.9%
	91.0%

	
	DNN
	6
	2.09
	42.2%
	66.9%
	80.2%
	92.4%

	
	Transformer
	
	1.56
	56.7%
	78.3%
	88.2%
	95.8%

	
	DNN
	12
	0.569
	69.3%
	90.7%
	96.2%
	98.7%

	
	Transformer
	
	0.416
	75.2%
	93.8%
	98.3%
	99.6%

	
	DNN
	24
	0.187
	85.2%
	96.1%
	98.3%
	99.5%

	
	Transformer
	
	0.0068
	99.85%
	99.96%
	99.98%
	100%



	[image: ]
(a)
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(b)


[bookmark: _Ref115431730]Figure 19: illustration of the spatial beam prediction evaluation results for different Set B sizes when Set B is a subset and evenly distributed in Set A (a) RSRP only, and (b) RSRP and UE angle 

In the following experiment, we present the evaluation result for DNN and Transformer by using a different choice of beams in Set B given the same dataset and the size of Set B. Note that Set B is still a subset of Set A (i.e. BM case 1, Alt. 1). While in the previous experiment, we use Set B Selection 1 as shown in Figure 15, in this experiment we use Set B Selection 2 for evaluation. Table 8 and Figure 20 demonstrate the evaluation results in terms of Top-k accuracy for Set B Selection 2, no obvious performance improvement is observed when UE angles are added as additional input with Set B Selection 2’s RSRP values. 
Observation 14: The spatial prediction accuracy does not improve much by using UE angles directly as the additional input, under various selections of Set B.
[bookmark: _Ref115432644]Table 8: The spatial beam prediction evaluation results under different sizes of Set B with Set B Selection 2
	Input
	Model
	Set B size
	RSRP Diff(dB)
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	RSRP
	DNN
	4
	3.86
	33.6%
	54.5%
	68.3%
	82.5%

	
	Transformer
	
	3.68
	42.7%
	63.2%
	74.1%
	85.8%

	
	DNN
	6
	2.38
	43.8%
	65.9%
	80.0%
	90.9%

	
	Transformer
	
	1.76
	56.5%
	76.7%
	87.3%
	94.7%

	RSRP and UE Angle
	DNN
	4
	3.82
	32.2%
	53.7%
	68.2%
	82.3%

	
	Transformer
	
	3.69
	41.3%
	62.3%
	74.3%
	85.9%

	
	DNN
	6
	2.33
	44.2%
	66.2%
	80.1%
	91.6%

	
	Transformer
	
	1.72
	56.3%
	76.3%
	87.2%
	94.7%


	[image: ]
(a)
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(b)


[bookmark: _Ref115432323]Figure 20: illustration of the spatial beam prediction evaluation results for different beam selections for Set B with (a) RSRP only, and (b) RSRP & UE Angle.

2.4.1.3. Spatial beam prediction with Tx/Rx beam pair 
In this section, we evaluate the performance of spatial beam prediction for Tx/Rx beam pairs. In the experiment, we have 24 Tx beams at the gNB and 4 Rx beams at the UE. Therefore, Set A of beam pairs contains 24x4 = 96 Tx/Rx beam pairs. We assume Set B is a subset of Set A with a ratio of size from 1/4 to 1, and contains 24, 48, 96 beam pairs correspondingly. We use the same ML model, DNN and Transformer, and the same model size as those used in best Tx beam prediction. Table 9 demonstrates the evaluation results. By using Transformer, the prediction performance of the best beam pair is ~10% less than the best Tx beam for the same size ratio of Set B to Set A. However, by using DNN, the beam pair prediction performance is significantly lower than predicting the best Tx beam. Judging from the fact that Transformer’s computational complexity is larger than the DNN, we expect that larger size model is required to perform Tx/Rx beam pair prediction for a reasonable accuracy performance.

Observation 15: For spatial beam prediction, the prediction performance of the best beam pair by using Transformer is only around 10% worse than predicting the best Tx beam.

Observation 16: For spatial beam prediction, the prediction performance of the best beam pair by using DNN is significantly worse than predicting the best Tx beam.

Proposal 13: Further study the use of larger size AI/ML model for best Tx/Rx beam pair prediction in spatial beam prediction.

[bookmark: _Ref115433029]Table 9: The spatial beam prediction evaluation results for Tx/Rx beam pair when Set B is a subset of Set A and evenly distributed in Set A 
	Model
	Set B size
	RSRP Diff(dB)
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	DNN
	24
	3.59
	27.7%
	47.3%
	57.6%
	70.3%

	Transformer
	
	2.86
	36.4%
	56.6%
	67.5%
	79.9%

	DNN
	48
	2.32
	46.1%
	65.6%
	75.4%
	84.3%

	Transformer
	
	1.02
	64.5%
	84.0%
	90.8%
	95.3%

	DNN
	96
	2.39
	46.7%
	65.9%
	74.4%
	84.0%

	Transformer
	
	0.03
	99.7%
	99.9%
	99.91%
	99.95%




3. Conclusion
In summary, based on the above discussion we have the following observations and proposals:
Observation 1: Both machine learning models perform better on ray-tracing dataset compared to SLS dataset. 
Observation 2: By fixing the observation window size, the accuracy performance becomes better when prediction window size is lower. 
Observation 3: By fixing the prediction window size, the accuracy performance increases when the observation window size increases. However, the performance will saturate.
Observation 4: Transformer performs better than LSTM in terms of Top-k accuracy, and it requires less observation window size than LSTM does to achieve the same level of RSRP difference.
Observation 5: The computing complexity of Transformer is larger than LSTM, furthermore, the computing complexity increases with the observation window for both models.
Observation 6: Temporal beam prediction by adding additional UE angle information directly to the input of the model did not show significant gains compared to predicting without UE angle information.
Observation 7: Tx beam prediction’s Top-k performance is better than beam pair prediction Top-k performance. However, beam pair prediction doesn’t require UE Rx beam sweeping during the prediction windows.
Observation 8: Transformer always outperforms DNN in both datasets under various sizes of Set B. However, Transformer is more complex than DNN in terms of FLOPs. 
Observation 9: With a greater number of beams in Set B, both models achieve higher Top-k accuracy. However, greater number of beams in Set B requires more beam RSRP measurements. 
Observation 10: The selection of beams in Set B will affect the prediction accuracy of the AI/ML-based spatial beam prediction.
Observation 11: The spatial beam prediction by using multi-arm beam design in Set B performs better than using subset beam design in Set B.
Observation 12: The spatial beam prediction by using wide beam design in Set B does not outperforms the performance by using subset beam design in Set B. 
Observation 13: The spatial prediction accuracy does not improve much by using UE angles directly as the additional input, at least for the ratio of Set B and Set A size is between 1/6 to 1.
Observation 14: The spatial prediction accuracy does not improve much by using UE angles directly as the additional input, under various selections of Set B.
Observation 15: For spatial beam prediction, the prediction performance of the best beam pair by using Transformer is only around 10% worse than predicting the best Tx beam.

Observation 16: For spatial beam prediction, the prediction performance of the best beam pair by using DNN is significantly worse than predicting the best Tx beam.

Proposal 1: For AI/ML-based beam prediction evaluation, adopt the FLOPs and/or MACs as the time complexity, and the number of parameters as the space complexity, other options are not precluded.
Proposal 2: Study and evaluate the performance of AI/ML beam prediction using the dataset generated by the ray-tracing simulations.
Proposal 3: Evaluate the impact of different observation and prediction window sizes to the performance of AI/ML temporal beam prediction.
Proposal 4: For different choices of prediction and observation window sizes, study the optimal model for to use, considering their computing complexity, UE’s computational and storage capacity.
Proposal 5: When the prediction window size is fixed, evaluate and study the optimal observation window size in terms of prediction accuracy and RS overhead.
Proposal 6: Study more scenarios where additional information may improve the temporal beam prediction performance
Proposal 7:  Study the tradeoff between using Tx beam prediction or beam pair prediction’s mechanism considering their prediction Top-k accuracy, and corresponding beam management overhead.
Proposal 8: Study the tradeoff between the beam measurement overhead and prediction accuracy for different number of beams in Set B.
Proposal 9: For AI/ML-based spatial domain beam prediction evaluation, adopt the RSRP of beams in Set B as the AI/ML model inputs. Additional information to the input of AI/ML model is not excluded. 
Proposal 10: Adopt one of the following as the output of AI/ML model: (i) beam index of highest RSRP Set A of beams. (ii) RSRPs of all the Set A of beams.
Proposal 11: For AI/ML-based spatial domain beam prediction evaluation, study the subset selection (number and combination) if Set B is variable (Option2 on the selection of Set B of beams in the RAN1 #110 agreement).
Proposal 12: Study and evaluate a more comprehensive Set B design, including joint designing the number of beams in Set B and their beam shape for spatial beam prediction.
Proposal 13: Further study the use of larger size AI/ML model for best Tx/Rx beam pair prediction in BM Case-1.
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[bookmark: _Ref40286490]Table 10: Simulation parameters for SLS dataset
	Parameter
	Value


	Frequency Range
	FR2 @ 30 GHz

	SCS
	120 kHz

	Deployment
	200m ISD, 2-tier model with wrap-around (7 sites, 3 cells per site)

	Channel mode
	IMT2020_ChannelB_UMa

	System BW
	80MHz

	UE Speed
	Spatial beam prediction: 3km/h
Temporal beam prediction: 30km/h

	UE distribution
	10 UE per cell, 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	(4, 8, 2, 1, 1)

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	(1, 4, 2, 1, 1)

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	BS Antenna tilting angle
	15 degree

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB


5. [bookmark: _Ref111135341]Simulation assumptions for the ray-tracing dataset
	Table 11: Simulation parameters for ray-tracing dataset

	[bookmark: _Hlk102038587][bookmark: _Hlk111194379]Parameter
	Value

	Carrier frequency
	28 GHz

	Subcarrier spacing
	120 KHz

	BS antenna configuration
	(4, 8, 2, 1, 1)

	BS antenna radiational pattern
	isotropic

	BS orientation
	Pointing to the horizontal street with 10° down-tilting

	BS height
	6 m

	UE antenna configuration
	(1, 4, 2, 1, 1)

	UE antenna radiational pattern
	isotropic

	UE orientation
	Random

	UE height
	2m

	BS BF scheme
	Beam-steering

	Data allocation
	32 OFDM subcarriers
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