Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _Hlk110250560]3GPP TSG-RAN WG1 Meeting #110-bis-e	R1-2209506
e-Meeting, October 10th – 19th, 2022
Agenda Item:	9.2.2.1
Source:	MediaTek Inc.
Title:	Evaluation on AI/ML for CSI feedback enhancement
Document for:	Discussion and Decision
Introduction
Artificial intelligence (AI)/machine learning (ML) for NR air interface has been approved as a study item in Release 18 [1]. In RAN WG1 #109-e [2] and #110 [3], potential of AI/ML models for enhancing CSI feedback has been revealed, and essential KPIs, training strategies, and evaluation methodologies for pilot studies have been agreed. In this contribution, for CSI compression sub use case, we further study AI/ML models’ capability of improving CSI feedback for channel models in [4], generalization of AI/ML models, and training strategies of two-sided models. For CSI prediction sub use case, we have also studied potential of AI/ML model compared to conventional method and also examined the generalizability of AI/ML models from one scenario/config to another and on mixed datasets.

CSI Compression
We adopt autoencoder (AE)-based ML model to compress CSI feedback, where the ML-based encoder at the UE is responsible for providing an abstract representation of CSI, and the ML-based decoder at the gNB reconstructs CSI. CSI can be fed back either in the form of precoders or channel gains. While the potential of AE-based ML models in compressing channels has already been verified [5], we turned our focus on compressing CSI in the form of precoders, i.e., eigenvectors (EVs for simplicity), in this contribution.
[image:]
[bookmark: _Ref115254118]Figure 1: A high-level illustration of AE-based CSI compression
As shown in Figure 1, in our model of interest, UE first extracts a set of EVs from the estimated channel gains in a desired frequency granularity, e.g., a resource block (RB) or a sub-band (SB) including multiple PRBs. A sample-invariant or sample-variant pre-processing may be applied on the EVs to either inject a desired statistic or translate the EVs to an intermediate representation domain. The pre-processed EVs will be compressed, quantized, and converted into bits to be sent toward the gNB. Feedback from a UE to the gNB includes information of CSI and may also include useful information about the pre-processing applied at the UE. The pre-processing information is not needed to be a part of feedback unless the pre-processing stage involves sample-variant functions with effects that have to be reverted or considered at the gNB, e.g., categorization, per-sample normalization, etc. We believe this kind of pre-processing approaches drastically impact the realization of multi-vendor environments. The scope of such pre-processing approaches should be limited to the single-vendor environment, or detailed information about their additional feedback overhead should be revealed by proponents. At the gNB side, the received feedback will be dequantized, decompressed, and possibly post-processed. The post-processed information is leveraged to design precoders at the gNB.
Evaluation Methodology
Our evaluation scopes for CSI compression are as follows:
AI/ML models’ potential for CSI compression in terms of feedback overhead and accuracy
New KPI and baselines for evaluation of AI/ML models or training techniques
Generalization of AI/ML models over various scenarios and configurations
Training strategies for single or multiple two-sided AI/ML modes for CSI compression
Datasets
To train and evaluate AI/ML models, we have resorted to datasets according to channel models specified in TR 38.901 [4] and parameters presented in Table 27 in Section 6.1 for CSI compression. For generalization purposes, we have also combined subsets of Dataset 1-3 to create a mixed dataset over layer and rank dimensions. While generalization has been identified as an important aspect of AI/ML models (see Issue# 2-11 and Issue#2-12 in [3]), there is no agreed way to construct mixed datasets. The mixed datasets should be subject of further discussions to determine exact contribution of each dataset into the mixed one according to real-world settings. We suggest using public mixed datasets (across agreed dimensions with known combinations) to foster research on generalization aspects of AI/ML models.
[bookmark: _Hlk110337592]For generalization study, the mixed datasets should be subject of further discussions to determine the exact contribution of each sub-dataset into the mixed one according to real-world settings.
Considering the potential number of mixing dimensions, offer public datasets to facilitate study on generalization aspects of AI/ML models.
KPIs
Performance KPIs: We use Generalized Cosine Similarity (GCS), Squared Generalized Cosine Similarity (SGCS), and Normalized Mean Square Error (NMSE) as performance KPIs for CSI feedback enhancement use cases. For mixed datasets, we generalize performance KPIs by averaging over their constituting sub-datasets.
Complexity KPIs: The complexity of AI/ML models are measured in terms of floating-point operations (FLOPs) and number of parameters, which respectively indicate computational and storage requirements of AI/ML models in final deployment stage. We also report these KPIs separately as discussed in [3] for encoder (CSI generation) and decoder (CSI reconstruction) parts of AI/ML models.
Unified KPIs: The common performance KPIs are well enough to measure both intermediate capability (e.g., reconstruction accuracy) and ultimate capability (e.g., throughput) of ML models in the context of CSI feedback enhancement. On the other hand, complexity of ML models can be measured in terms of number of models’ parameters or FLOPs. Nevertheless, none of these KPIs can be individually regarded as a single point of comparison between AI/ML models. We suggest defining new KPIs incorporating both throughput and complexity to appreciate AI/ML models with a balanced design, such as Throughput per FLOPs, Throughput per MACs, or Throughput per number of trainable parameters.
[bookmark: _Ref102130427][bookmark: _Toc102133426]To appreciate low-complex, yet high-performing, AI/ML model designs, a KPI measuring throughput per complexity unit would be beneficial.
Lifecycle-related KPIs: In line with the recent research efforts to decrease number of required data samples for training AI/ML models, we believe number of training samples for catching a certain performance KPI would be a beneficial KPI itself. For example, number of training samples required for catching eType II codebook is important for deployment and maintenance of an AI/ML model within its lifecycle in the network. Especially for online learning, this KPI offers a rough criterion on when a model can be effectively deployed and leveraged for compression. It also indicates how much engineering efforts and observation time are required to replace the model if it fails due to any reason. As another benefit, such a KPI indicates how well a network is designed to be trained on rare samples, e.g., layer 3 CSI samples of rank-4 channels which are not as abundant as layer 0 CSI samples of rank-1 channels. Although tuning or well initialization of hyperparameters can reduce number of required training data samples by a limited extent, novel network structures and data processing techniques will bring a significant impact on the aforementioned KPI.
Number of training samples to reach a certain performance KPI can itself be used as a KPI to quantify trainability of AI/ML models.
Baselines
Baseline for Generalization: To quantify generalization of an AI/ML model from one scenario/configuration to another, we have measured and compared performance KPI of the generalized and dedicated ML models in the test setting (scenario/configuration which may be different from training scenario/configuration depending on the generalization case).
Baseline for training strategies: In evaluation of different training strategies, the performance of joint training is adopted as the performance baseline for matched and unmatched pairs of encoders and decoders.
Use the performance of matched/unmatched encoder-decoder trained via joint training strategy as the baseline for evaluation of other training strategies
Performance of AI/ML Models in CSI Compression
We have evaluated the performance of the AI/ML model shown in Figure 1 and compared it with eType II codebook. We particularly focused our evaluation on Dataset 1 with parameters specified in Table 27 and used the same SLS parameter configuration to evaluate eType II codebook. The evaluation confirms the superior performance of AI/ML model in terms of “feedback accuracy for a certain feedback size” and “feedback overhead reduction for a certain feedback accuracy”. The evaluation result is illustrated in Figure 2.
[bookmark: _Hlk110334233]On average over evaluation settings with 100~300 bits of CSI feedback, AI/ML models achieve 5.43% GCS gain over eType II codebook in terms of CSI feedback accuracy. The GCS gain ranges from 3.75% to 6.47% for 100~300 bits of CSI feedback.
At 0.85 GCS, the AI/ML model is able to approximately reduce feedback overhead by 36%.
[image:]
[bookmark: _Ref110815807]Figure 2: GCS performance of AI/ML models versus eType II codebook for Dataset 1
AI/ML Model for Rank>1
The effective design of AI/ML models for channels with rank>1 is subject of further studies to identify best approach for dealing with different ranks/layers and extend current KPIs to rank>1 case.
	[bookmark: _Hlk115254723]Issue#3-4 AI/ML model settings for rank>1 [3]
For the evaluation of the AI/ML based CSI compression sub use cases with rank >=1, companies are encouraged to report the specific option adopted for AI/ML model settings to adapt to ranks/layers.
· Option1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference.
· Option2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference.
· Option3 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference.
· Option4 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· Other options not precluded.
· FFS further down selection for the above options

For CSI compression sub use case, layer-specific and rank-specific models manifold the number of AI/ML models need to be deployed at gNBs and UEs. Given the possible number of scenarios and configurations, it is infeasible to train and deploy a dedicated AI/ML model for each. In fact, it is the objective of generalization efforts to avoid dedicated designs like layer-specific and rank-specific AI/ML models. On the other, rank-specific designs are not suited for UE vendors as stacking layers, to process them jointly, will drastically increases AI/ML models’ complexity. In this regard, we believe designing elegant layer-common AI/ML models which treat layers individually with high accuracy is of greater importance. Also, the generalization of layer-common AI/ML models from higher channel ranks to lower channel ranks are quite clear and expected. To support this down selection, we evaluate and compare the performance of a layer-common AI/ML model and two layer-specific AI/ML models for rank-2 channels of Dataset 1. Our results implicate that similarity of semantic features among different layers as input are relatively high, and there is no pressing need for training dedicated (layer-specific) AI/ML models for each layer. As shown in Table 1, the layer-common AI/ML model not only does not underperform but it also respectively achieves 1.18% and 1.55% SGCS gain for layer 0 and layer 1 of rank-2 channels compared to layer-specific AI/ML models. In lieu of this observation, we believe a least among the layer-specific and layer-common AI/ML models, the layer-common AI/ML model design is a more favourable option for both UEs and gNBs.
[bookmark: _Ref115286569]Table 1: Comparison of layer-common and layer-specific models for rank-2 channels in terms of SGCS
	FB bits
	48
	60
	72
	84
	96
	108
	120
	180
	240
	300

	Layer-specific: L 0
	0.721
	0.728
	0.733
	0.740
	0.748
	0.753
	0.767
	0.832
	0.846
	0.857

	Layer-common: L0
	0.724
	0.734
	0.741
	0.746
	0.752
	0.755
	0.783
	0.845
	0.869
	0.865

	Layer-specific: L1
	0.584
	0.599
	0.612
	0.642
	0.619
	0.627
	0.630
	0.694
	0.745
	0.759

	Layer-common: L1
	0.590
	0.605
	0.616
	0.623
	0.630
	0.635
	0.663
	0.728
	0.762
	0.759

[bookmark: _Hlk115286785]Layer-common AI/ML model respectively achieves 1.18% and 1.55% SGCS gain for layer 0 and layer 1 of rank-2 channels compared to layer-specific AI/ML models.
Between layer-specific and layer-common AI/ML models settings for rank>1, down select layer-common AI/ML models.
In Table 1, we also observe that layer 0 is much difficult to compress compared to layer 1 of rank-2 channels. As our observation is consistent over different datasets and ranks, we suspect that higher compressibility of EVs in layer 0 roots in some features which holds in general. We would like to further explore if such a property can be also observed for channels with higher ranks. To study the different compressibility levels of layer 0 and layer 1, we have exploited different statistics of EVs of layer 0 and layer 1. We have observed EVs of layer 0 are more correlative across frequency and antenna domains compared to the EVs of layer 1. The two-dimensional autocorrelation of EVs across frequency and antenna domains is represented in Figure 3. Since EVs of Layer 1 are less compressible, we believe having a weighted average for training loss with higher weight on layer 0 inclines the AI/ML models toward layer 0. This exacerbates the compression of EVs of layer 0. We propose to use a simple averaging as the training loss which treats all layers equally.
For rank-2 channels in Dataset 1-Dataset 3, EVs of layer 0 are more correlative across frequency and antenna domains compared to EVs of layer 1.
For training a layer-common models for rank>1 channel, the training loss should be simply averaged across the layers.
	[image:]
(a) Dataset 1: Layer 0
	

(b) Dataset 2: Layer 0
	

(c) Dataset 3: Layer 0

	[image:]
(d) Dataset 1: Layer 1
	

(e) Dataset 2: Layer 1
	

(f) Dataset 3: Layer 1

[bookmark: _Ref115289477]Figure 3: Autocorrelation of layer 0 and layer 1 samples across antenna and frequency domains for different datasets
	[image:]
(a) Dataset 1: Layer 0
	[image:]
(b) Dataset 2: Layer 0
	[image:]
(c) Dataset 3: Layer 0

	[image:]
(d) Dataset 1: Layer 1
	[image:]
(e) Dataset 2: Layer 1
	[image:]
(f) Dataset 3: Layer 1

[bookmark: _Ref111109910]Figure 4: Autocorrelation of layer 0 and layer 1 samples across delay and beam domains for different datasets

We should note that the 2D autocorrelation in Figure 3 is not a generic measure of compressibility unless the AI/ML model of interest performs compression with a global receptive field (e.g., Transformer-based models). To illustrate this issue, we have translated the datasets into a sparse domain (delay-beam domain) through a lossless transformation which does not alter the amount of information carrying by a data sample. As shown in Figure 4, the data samples in the sparse domain lack a strong correlation along the delay and beam dimensions. However, these data samples can still be effectively compressed by a CNN-based model which captures the clustered-shaped features within each data sample.
The data samples in a sparse domain (e.g., delay-beam domain) lack a strong autocorrelation but still can be effectively compressed.
Generalization of AI/ML Models for CSI Compression
In the context of AI/ML research, generalization capability of a model is commonly referred to its success upon encountering unseen data with the same distribution as that of the training dataset. One may consider a generalizable model as a robust model which is not suffering from overfitting, and it equally performs well in both training and inference phases. However, the generalization issues discussed in RAN WG1 #109-e [2] involve “re-usage” where the distribution of data in training and inference phases are not necessarily the same, and also “unification” where one unified model serves multiple datasets with different distributions (or a mixed dataset) to replace AI/ML models dedicated to each dataset. In this regard, the generalization cases have been agreed in RAN WG1 #110 [3] as follows:
	Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g., Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification

Generalization Case 2 Over Rank and Layers
Per second case of generalization, AI/ML modes are re-used in unseen scenarios/configurations. To be specific, in this category of scenario/configuration generalization, the AI/ML models is trained on a dataset from a scenario/configuration which is different from that in inference phase. As such, the data samples that the AI/ML model will be exposed to are not necessarily drawn from the same distribution in training and inference phases. Therefore, we use “generalization case 2” and “re-usage” interchangeably in this contribution. The re-usage of AI/ML models has prominent benefits: i) Using AI/ML models trained on more frequent settings as an initial point of training for AI/ML models targeting rare settings, ii) Temporary solution if a dedicated AI/ML model fails due to any reason, iii) Rectifying the need for dedicated models and reducing the number of AI/ML models stored at UEs or gNBs. As a pilot study on feasibility of re-using ML models (case 2 of generalization), we focus on the following two cases:
· Generalization case 2 over layers: We focus on rank-2 channels of datasets represented in Table 27. Separating EVs of layer 0 and layer 1 of rank-2 channels into two sub-datasets, we train an AI/ML model on a sub-dataset and inferenced on another. Figure 5(a) shows an example of layer-level generalization case 2 (training on layer 0 and inference on layer 1)
· Generalization case 2 over ranks: We focus on rank-1 and rank-2 channels of datasets represented in Table 27. Separating EVs from different channel ranks into two sub-datasets, we train an AI/ML model on a sub-dataset and inferenced on another. Figure 5(b) shows an example of rank-level generalization case 2 (training on rank 1 and inference on rank 2)
	[image:]
(a) Layer-level generalization case 2
	[image:]
(b) Rank-level generalization case 2

[bookmark: _Ref111110450]Figure 5: Examples AI/ML model re-usage (generalization case 2) for eigenvector compression
To evaluate layer-level and rank-level re-usage, we have considered case 1 of generalization (i.e., a dedicated model trained and inferenced on the same sub-dataset) as the baseline. The results are shown in Figure 6-Figure 11 and confirms the feasibility of re-using AI/ML models to unseen scenarios/configurations (generalization case 2) on both rank and layer dimensions. Our observations are as follows:
On average over evaluation settings with 100~300 bits of CSI feedback, re-usage of AI/ML models (case 2 of generalization) at layer level causes 1.29% GCS degradation.
On average over evaluation settings with 100~300 bits of CSI feedback, re-usage of AI/ML models (case 2 of generalization) at rank level causes 1.13% GCS degradation.
It is feasible to generalize a layer-common AI/ML model across ranks with negligible performance loss
Between all options of AI/ML models settings for rank>1, down select layer-common setting.
	[image:]
[bookmark: _Ref111110506]Figure 6: Layer-level re-usage of AI/ML models for Dataset 1
	[image:]
Figure 7: Rank-level re-usage of AI/ML models for Dataset 1

	[image:]
Figure 8: Layer-level re-usage of AI/ML models for Dataset 2
	[image:]
Figure 9: Rank-level re-usage of AI/ML models for Dataset 2

	[image:]
Figure 10: Layer-level re-usage of AI/ML models for Dataset 3
	[image:]
[bookmark: _Ref111110517]Figure 11: Rank-level re-usage of AI/ML models for Dataset 3

Generalization Case 3 Over Layers
Generalization case 3 deals with training a unified model covering multiple scenarios/configurations, thereby we use “unification” and “generalization case 3” interchangeably. Unification stands in contradiction to dedicated training where one model is responsible for handling a single scenario/configuration. As the number of possible scenarios//configurations dealing with CSI compression is numerous, storing and maintaining dedicated models at UEs and the gNB are not pragmatic. This makes unification (generalization case 3) approach a necessity for the prospect of “AI/ML for NR air interface”. To examine feasibility and potential of unification, we conduct a pilot study on using a unified model for EV compression. We specifically compare generalization case 1 and case 3 of a layer-common AI/ML model for rank-2 channels in Dataset 1, 2, and 3.
· Generalization Case 1: A dedicated model is trained on EVs of layer and is responsible for their compression, where and. The performance of dedicated AI/ML modes are used as the baseline.
· Generalization Case 3: A unified model is trained on EVs of layer 0 and layer 1 to compress EVs of rank-2 channels
For training a unified model, EVs from both layers equally contributes to forming a mixed dataset. We also treat them equally important for calculating training loss and test accuracy through a simple averaging over both layers. The evaluation results are presented in Figure 12-Figure 17.
	[image:]
[bookmark: _Ref111196126]Figure 12: Layer-level unification of AI/ML models for Dataset 1
	

Figure 13: Performance of unified AI/ML models for layers 0 and 1 of Dataset 1

	[image:]
Figure 14: Layer-level unification of AI/ML models for Dataset 2
	

Figure 15: Performance of unified AI/ML models for layers 0 and 1 of Dataset 2

	[image:]
Figure 16: Layer-level unification of AI/ML models for Dataset 3
	

[bookmark: _Ref111196130]Figure 17: Performance of unified AI/ML models for layers 0 and 1 of Dataset 3

[bookmark: _Hlk115295456]On average over all datasets in Table 27, a unified AI/ML model (generalization case 3) not only does not degrade the feedback accuracy, but it also achieves 0.46% higher GCS accuracy compared to the dedicated AI/ML models for both layers.
On average over all datasets in Table 27, a unified AI/ML model (generalization case 3) shows 5.8% higher GCS accuracy for EVs of layer 0 compared to those belonging to layer 1. The similar trend has also been observed among the dedicated AI/ML models.
Training Strategies
In this contribution, we evaluate different training strategies in a multi-vendor environment where the encoder and decoder of the autoencoder-based AI/ML model do not necessarily belong to the same vendor, thereby, not necessarily posing same architecture, type, training loss, optimizer, etc. By evaluating various types of encoder and decoders, we pursue the following objectives:
· Performance of each encoder/decoder type upon training
· Performance loss/gain achieved by different training strategies
· Vulnerability of certain encoder/decoder types in joint or separate training
· Requirements of each training strategy
To pursue our evaluation scopes, we resort to four AI/ML models with different architectures and computational capabilities. To be specific, we have used Model 1-4, where Model 1 and 2 use CNN-based encoder and decoders. Model 3 and Model 4 employ Transformer-based (TF-based) encoder and decoder for CSI compression. Complexity of these models are measured for encoder and decoder parts separately in terms of FLOPs and number of parameters. The complexity of models is shown in Figure 18.
	[image:]
(a) FLOPs
	[image:]
(b) Number of parameters

[bookmark: _Ref115042659][bookmark: _Ref115042650]Figure 18: Complexity of AI/ML models used for CSI compression
[bookmark: _Ref115343215]Joint Training
We evaluate joint training first to offer a baseline for the evaluations of the other training strategies. We specifically pair encoder from Model with decoder from Model for If , the pair is called a “matched pair” of encoder-decoder, and if , the pair is called an “unmatched pair” of encoder-decoder in the rest of this contribution. The joint training is implemented such that the paired encoder and decoder are trained in a single forward pass and backpropagation loop using a common dataset. For every data sample, encoder passes its latent output to the decoder, and the decoder reconstructs CSI data sample. The decoder further calculates the reconstruction loss and gradient. It then propagates gradient backward toward its input layer and passes the gradient on its input layer to the encoder. Upon availability of such a gradient vector, encoder initiates backpropagation and updates its own parameters. The encoder and decoder do not need to use/share the same training hyper parameters such as learning rate, optimization algorithm, etc. However, sharing dataset, latent vectors, and gradient vectors are required.
If joint training is adopted, the least requirements of the training are disclosing gradient by gNB, disclosing latent vector by UE, and sharing a common dataset by both sides.
We measure the GCS performance of each possible encoder-decoder pairs through the four different models we described. We compare performance of unmatched pairs and matched pairs to identify possible performance gain/loss for UE and gNB within the join training strategy. We define UE’s and gNB’s gain as what follows:
· UE’s gain: Performance of (encoder , decoder) compared to (encoder , decoder) which is the matched pair designed by UE vendor before pairing
· gNB’s gain: Performance of (encoder , decoder) compared to (encoder , decoder) which is the matched pair designed by gNB vendor before pairing
[bookmark: _Hlk115297314]Report UE’s gain/loss and gNB’s gain/loss separately for unmatched encoder-decoder pairs in any training strategy.
The UE’s and gNB’s gains for different pairs are shown in Table 2 and Table 3, respectively. It can be seen unmatched pairs suffer from performance loss compared to their paired designed either on UE or gNB sides. In average over all unmatched pairs, UE losses 2.23% GCS performance and gNB losses 2.26%. Also, the UE’s and gNB’s losses vary in a relatively large range, making some unmatched pairs more vulnerable than others in joint training.
[bookmark: _Ref115290270]Table 2: UE’s gain from the joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	0%
	-0.11%
	-1.64%
	-2.23%

	
	Model 2
	CNN
	-0.23%
	0%
	-3.28%
	-4.09%

	
	Model 3
	TF
	-6.12%
	-6.12%
	0%
	-9.68%

	
	Model 4
	TF
	2.88%
	3.36%
	0.48%
	0%

[bookmark: _Ref115080288]Table 3: gNB’s gain from joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	0%
	-0.35%
	-6.68%
	0.12%

	
	Model 2
	CNN
	0%
	0%
	-8.02%
	-1.56%

	
	Model 3
	TF
	-1.06%
	-1.29%
	0%
	-2.52%

	
	Model 4
	TF
	0.47%
	0.70%
	-6.90%
	0%

[bookmark: _Hlk115088878]UE and gNB vendors equally suffer from the performance loss of the unmatched pairs in the joint training. In average for all unmatched pairs, UE losses 2.23% performance and gNB losses 2.26%.
Overall, joint training on all pairs caused 1.68% performance loss.
Define a mechanism/threshold to identify and avoid certain vulnerable pairings of encoders and decoders.
UE-First Separate Training
Another approach for training a pair of encoder and decoder from different vendors is sequential separate training where each party has its own forward pass and back propagation loop for its AI/ML model. Based on the training order of parties, the sequential separate training can be implemented in UE-first and gNB-first manner. For UE-first separate training strategy, the UE trains its matched encoder-decoder pair regardless of the AI/ML model that gNB intend to train or fine tune. Upon successful training a model by the UE, a common dataset (may be different from what UE uses for training) is used and the UE shares the latent output of encoders for the common dataset. gNB leverages the shared dataset and corresponding latent outputs for training/tuning gNB’s decoder.
If UE-first separate training is adopted, the least requirements of the training are disclosing latent vector by UE and sharing a common dataset by both sides.
We measure and compare performance of different pairs of encoder-decoder with) the same pair trained via joint training (in Table 4),) corresponding matched pair of UE trained via joint training (to measure UE’s loss in Table 5), and) corresponding matched pair of gNB trained via joint training (to measure gNB’s loss in Table 6).
Looking into the diameter of Table 4, it is evident that UE-first separate training strategy is not necessarily underperforming compared to joint training. In fact, matched pairs achieved 1.2% higher reconstruction accuracy using UE-first separate training strategy. This observation is consistent over all four AI/ML models. Even unmatched pairs experience 0.93% improvement compared to their performance when joint training is adopted. Another interesting result is the similar performance loss for gNB and UE while UE had the opportunity of training first.
UE-first separate training does not necessarily reach an inferior performance compared to joint training. Matched pairs experience 1.2% improvement.
UE-first separate training does not degrade the performance of unmatched pairs (w.r.t. joint training). It shows a negligible improvement of 0.93%
In UE-first separate training, UE and gNB both experience 0.7% performance loss compared to their matched pairs which are trained via joint training strategy.
The major performance loss is from the pairs using Model 3’s TF-based architecture at the encoder. As shown in Table 5, once Model 3’s TF-based encoder is trained to provide some unique features to its paired decoder, other type of decoders having difficulty to interpret those features for CSI reconstruction. On average, both UE and gNB suffer from 2.78% performance loss for such pairings. Unlike Model 3’s TF-based encoders, CNN-based encoder offers stable pairing with other decoders.
In the UE-first separate training strategy, unmatched decoders may struggle to leverage the latent features provided by a pre-trained TF-based encoder.
In the UE-first separate training strategy, UE should inform gNB about the type of its architecture.

[bookmark: _Ref115086581]Table 4: UE-first separate training pair-to-pair comparison with joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.06%
	0.82%
	0.24%
	2.16%

	
	Model 2
	CNN
	1.99%
	1.64%
	1.57%
	3.90%

	
	Model 3
	TF
	0.23%
	0.47%
	0.67%
	0.99%

	
	Model 4
	TF
	-0.82%
	-1.39%
	0.95%
	1.44%

[bookmark: _Ref115086628]Table 5: UE’s gain from UE-first separate training (compared to its matched pair in the joint training)
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.06%
	0.70%
	-1.41%
	-0.12%

	
	Model 2
	CNN
	1.77%
	1.64%
	-1.76%
	-0.35%

	
	Model 3
	TF
	-5.90%
	-5.68%
	0.67%
	-8.80%

	
	Model 4
	TF
	2.04%
	1.92%
	1.44%
	1.44%

[bookmark: _Ref115086646]Table 6: gNB’s gain from UE-first separate training (compared to its matched pair in the joint training)
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.06%
	0.47%
	-6.46%
	2.28%

	
	Model 2
	CNN
	1.99%
	1.64%
	-6.57%
	2.28%

	
	Model 3
	TF
	-0.82%
	-0.82%
	0.67%
	-1.56%

	
	Model 4
	TF
	-0.35%
	-0.70%
	-6.01%
	1.44%

gNB-First Separate Training
In gNB-first separate training strategy, the gNB trains its matched encoder-decoder pair regardless of the AI/ML model that UE intend to train or fine tune. Upon successful training a model by gNB, a common CSI dataset is used by gNB to generate a latent dataset accordingly. gNB shares the CSI and latent datasets with the UE. The UE’s task is to train an encoder which imitates the gNB’s encoder sample-by-sample mapping from the CSI dataset to the latent one.
If gNB-first separate training is adopted, the least requirements of training are disclosing latent vector by gNB and sharing a common dataset by both sides.
We conduct similar evaluation to what presented for UE-first training strategy. We specifically compare performance of different pairs of encoder-decoder with: i) the same pair trained via joint training (in Table 7), ii) corresponding matched pair of UE trained via joint training (to measure UE’s loss in Table 8), and iii) corresponding matched pair of gNB trained via joint training (to measure gNB’s loss in Table 9).
[bookmark: _Ref115307334]Table 7: gNB-first separate training pair-to-pair comparison with joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.17%
	1.5%
	-10.50%
	1.8%

	
	Model 2
	CNN
	1.17%
	1.75%
	-9.56%
	3.29%

	
	Model 3
	TF
	1.90%
	2.85%
	0.55%
	5.18%

	
	Model 4
	TF
	0.93%
	1.28%
	-4.19%
	3.72%

[bookmark: _Ref115307728]Table 8: UE’s gain from gNB-first separate training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.17%
	1.41%
	-11.97%
	-0.47%

	
	Model 2
	CNN
	0.94%
	1.76%
	-12.53%
	-0.94%

	
	Model 3
	TF
	-4.34%
	-3.45%
	0.55%
	-5.01%

	
	Model 4
	TF
	3.84%
	4.68%
	-3.72%
	3.72%

[bookmark: _Ref115307737]Table 9: gNB’s gain from gNB-first separate training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.17%
	1.17%
	-16.48%
	1.92%

	
	Model 2
	CNN
	1.17%
	1.76%
	-16.81%
	1.68%

	
	Model 3
	TF
	0.82%
	1.52%
	0.55%
	2.52%

	
	Model 4
	TF
	1.40%
	1.99%
	-10.80%
	3.72%

As shown in Table 7, the gNB-first separate training is not intrinsically underperforming joint training strategy. Given the limits on the number of data samples and optimization steps, it shall not be viewed as a sub-optimal solution that always degrades the performance of matched and unmatched pairs compared to the joint training strategy. Considering the matched pairs of encoder-decoder in Table 7, the performance has improved by 1.79%. However, for unmatched pairs the performance is degraded by 0.36% compared to the joint training. This stands in contradiction of what has been observed for UE-first separate training strategy. Also, considering Table 8 and Table 9, UE and gNB almost equally suffer from performance degradation in gNB-first separate training. UE and gNB respectively experience 1.52% and 1.42% performance loss compared to their corresponding matched designed trained via joint training strategy, which are higher than degradations they experience through UE-first separate training strategy.
In gNB-first separate training, matched pairs not only do not experience performance loss, but they also reach a gain compared to joint training.
In gNB-first separate training, UE and gNB respectively experience 1.52% and 1.42% performance loss compared to their matched designed trained via joint training strategy.
Unlike UE-first separate training strategy, gNB-first separate training strategy degrades the performance of unmatched pairs.
Considering Table 8 and Table 9, we also identify vulnerable pairs in gNB-first separate training. Vulnerable pairs are the ones pairing Model 3’s TF-based decoder to an unmatched encoder. This problem roots in the high learning capacity of Model 3’s encoder and the complicate features it offers to its matched decoder. In this scenario, UE may fail to replace TF-based encoder (offer the same complex features in the latent space). Thereby, it would be beneficial if the gNB informs UE about the architecture type it uses. Also, we observe this problem is more severe for gNB-first separate training, adding another drawback to this training strategy. In brief, our observations are all inclined toward UE-first separate training strategy, if a down selection is required between UE-first and gNB-first separate training strategies.
In the gNB-first separate training strategy, unmatched encoders may fail to replace the gNB’s TF-based encoder (cannot establish similar mapping from CSI to latent space). A significant degradation of -12.05% is observed in the performance for such pairings.
In the gNB-first separate training strategy, gNB should inform UE vendor at least about the type of its dropped encoder’s architecture.
Give higher priority to UE-first separate training if separate training is adopted as the main training framework.
Multi-Encoder Single-Decoder Training
In a multi-encoder single-decoder training, a single decoder serves multiple encoders concurrently for training purposes. In this contribution, we limit our focus on joint training of encoders and the decoder at the same time and from scratch. We also assume a dataset is shared among all parties involved in the training. The UEs provide the latent vectors to gNB, and gNB shares its gradient of input layer with all the UEs. In our pilot study, we use a joint loss that is simply calculated by averaging over all individual losses of UEs. The results of our evaluations are presented in Table 10-Table 12, where decoder of each model is connected to encoders of all the AI/ML models (matched and unmatched encoders).
[bookmark: _Ref115340110]Table 10: Pair-to-pair comparison of multi-encoder single-decoder training vs. joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-0.82%
	-0.70%
	-0.83%
	-2.76%

	
	Model 2
	CNN
	-0.82%
	-0.93%
	0.72%
	-1.09%

	
	Model 3
	TF
	0.71%
	0.94%
	-1.11%
	0.12%

	
	Model 4
	TF
	-0.81%
	-0.93%
	-0.35%
	-2.52%

[bookmark: _Ref115346790]
Resorting to Table 10, multi-encoder training has inferior performance compared to joint training. This is expected as the optimization problem becomes more complex compared to a single-pair joint training as discussed in Section 2.5.1. Comparing to matched pairs in Error! Not a valid bookmark self-reference. and Table 12, both UE and gNB suffer from almost 2.4% performance loss, which is worse than both joint and separate training.
[bookmark: _Ref115436189]Table 11: UE’s gain from multi-encoder single-decoder training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-0.82%
	-0.820%
	-0.35%
	-0.35%

	
	Model 2
	CNN
	-1.05%
	-0.940%
	-0.35%
	-0.23%

	
	Model 3
	TF
	-7.46%
	-7.35%
	-1.11%
	-7.24%

	
	Model 4
	TF
	-2.64%
	-2.64%
	-2.40%
	-2.52%

[bookmark: _Ref115346799]Table 12: gNB’s gain from multi-encoder single-decoder training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-0.82%
	-1.05%
	-5.46%
	2.04%

	
	Model 2
	CNN
	-0.82%
	-0.94%
	-5.23%
	2.40%

	
	Model 3
	TF
	-2.46%
	-2.58%
	-1.11%
	0.12%

	
	Model 4
	TF
	-4.93%
	-5.15%
	-9.58%
	-2.52%

In overall, multi-encoder training strategy have inferior performance compared to joint and separate training strategies.
In pair-to-pair comparison with joint training strategy, multi-encoder training strategy causes 0.7% performance loss.
Employing multi-encoder training strategies, UEs and gNBs lose ~2.4% performance in average.
[bookmark: _Hlk115350440]Single-Encoder Multi-Decoder Training
In single-encoder multi-decoder training, a single encoder serves multiple decoders concurrently for training purposes. We limit our focus on joint training of the encoder and decoders at the same time. We also assume a dataset is shared among all parties involved in the training. The UE provide the latent vector to gNBs, and each gNB shares its gradient of input layer with the UE. In our pilot study, we use a joint loss that is simply calculated by averaging over all individual losses of gNBs. The results of our evaluations are presented in Table 13-Table 15, where encoder of each model is connected to decoders of all models (matched and unmatched decoders).
As shown in Table 13, on average over all test settings, we observe 0.3% performance loss compared to the joint training, which is lower than the loss observed for multi-encoder single-decoder training. Considering Table 14 and Table 15, we calculate UE’s and gNBs’ gain from participating in single-encoder multi-decoder training. The performance degradation for both UE and gNBs are almost equal to 2.0%, which again confirms superiority of single-encoder multi-decoder training to multi-encoder single-decoder training. On the other hand, given the larger number of UE vendors compared to gNB vendors, single-encoder multi-decoder training is more feasible.
[bookmark: _Ref115348993]Table 13: Pair-to-pair comparison of single-encoder multi-decoder training vs. joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-1.88%
	-1.64%
	0.72%
	0.12%

	
	Model 2
	CNN
	-0.94%
	-1.40%
	2.30%
	2.07%

	
	Model 3
	TF
	-2.13%
	-2.13%
	-4.67%
	1.85%

	
	Model 4
	TF
	-0.35%
	-0.58%
	2.03%
	1.80%

[bookmark: _Ref115350364]Table 14: UE’s gain from single-encoder multi-decoder training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-1.88%
	-1.76%
	-0.94%
	-2.11

	
	Model 2
	CNN
	-1.17%
	-1.41%
	-1.05%%
	-2.11

	
	Model 3
	TF
	-8.13%
	-8.13%
	-4.68%
	-8.02

	
	Model 4
	TF
	2.52%
	2.76%
	2.52%
	1.8%

[bookmark: _Ref115348996]Table 15: gNB’s gain from single-encoder multi-decoder training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-1.88%
	-1.99%
	-6.01%
	0.24%

	
	Model 2
	CNN
	-0.94%
	-1.41%
	-5.90%
	0.48%

	
	Model 3
	TF
	-3.17%
	-3.40%
	-4.68%
	-0.72%

	
	Model 4
	TF
	0.12%
	0.12%
	-5.01%
	1.80%

 In single-encoder multi-decoder training strategy, we observe 0.3% performance loss compared to the joint training. Also, degradation for both UE and gNB vendors are ~2.0%.
Assign higher priority to multi-decoder training compared to multi-encoder training strategy.
We also observed for both multi-encoder single-decoder and single-encoder multi-decoder training strategies, there are cases that the matched encoder-decoder pairs promote themselves at the cost of degrading the performance of unmatched encoders or decoders. In this regard, we believe a simple average has the risk of biasing the common encoder/decoder to its matched decoder/encoder. It should be further studied how to avoid such biases when many parties are involved at UEs’ or gNBs’ side.
 In both multi-decoder and multi-encoder training strategies, matched encoder-decoder pairs may promote themselves at the cost of degrading the performance of unmatched encoder or decoder.
Discuss how to calculate a joint loss to avoid adverse bias toward the matched pairs.

CSI Prediction
[bookmark: _Ref111192998]CSI prediction in time domain
CSI prediction in time domain is one of the sub-use cases of R18 AI/ML SI. It can overcome the CSI aging problem to prevent the inaccurate channel conditions. Figure 19 shows the CSI reporting scheme, assuming CSI feedback delay of 5 slots. When the UE receives the CSI in the 7th slot, the channel information will be delayed by 6 slots and reflected in the 13th PDSCH slot. If the channel changes rapidly in a high mobility scenario, it may cause distortion.
[image:]
[bookmark: _Ref115424397]Figure 19: CSI reporting scheme

If the CSI prediction scheme is applied (see Figure 20), UE can predict the next cycle of CSI (e.g., the 12th slot) by the historical CSI channel response and report the corresponding feedback information (e.g., PMI, CQI, etc.) based on the predicted results. If the prediction is highly reliable, UE can reflect the channel condition faster and more accurately, which provides advantages for mobile users, especially for a large CSI periodicity. This in turn may also save the reporting overhead (for example, UE may not need to feed back the CSI information in the 12th slot).
[image:]
[bookmark: _Ref111116662][bookmark: _Ref111116659]Figure 20: CSI reporting scheme (with CSI prediction)
Prediction can be performed based on raw CSI channel response to allow more timely decisions for future channel conditions. When the UE receives the CSI-RS signal, it will perform the post-processing through descrambling, channel estimation, etc. Then, the UE can obtain the channel information, which can be CIR (channel impulse response) or CFR (channel frequency response) of CSI-RS. It can be an option for AI/ML model’s preprocessing.
Although CSI prediction has many advantages, it is quite difficult to predict the future CSI. Since each CSI instance is a complex-valued matrix with dimensions , where and are the numbers of RX and TX antennas, respectively, and is the number of elements in the frequency dimension, which could be on subcarrier or PRB level. In other words, the number of parameters to be predicted for constructing future CSI is quite large. Besides, the periodicity of CSI-RS also affects the accuracy of prediction significantly. Figure 21 shows the prediction results by sample-and-hold method, which directly copies previous CSI measurement, with different CSI-RS periodicities. The NMSE indicates the error between the predicted CSI and the actual CSI, and the magnitude of the real part and imaginary part are shown in the figure as well. We can observe that when the CSI-RS periodicity increases, the NMSE become larger. To sum up, the potential gains accrued from CSI prediction warrants further investigation.
[image:]
[bookmark: _Ref111124204]Figure 21: CSI prediction with different CSI-RS Periodicities
[bookmark: _Ref115267520]The UE speed will affect the tradeoff between CSI prediction length and CSI-RS periodicity.
In the discussion below, we show our initial results for AI/ML-based CSI prediction and compare its performance with a non-AI based technique.
CSI prediction can be performed based on a given recent history of CSI samples, which forms a sequence. The following figure shows an example of CSI availability (in yellow) in a time-slotted grid. The problem can be expressed as follows:
Problem statement: Given a sequence of CSI values, Predict future CSI.
[image: A picture containing rectangle

Description automatically generated]
[bookmark: _Ref115449509]Figure 22: Illustration of CSI samples
As depicted in Figure 22, CSI may not be available at every time slot. By ignoring the slots without CSI, we obtain the Figure 23, where is the length of the input CSI sequence, and is the length of the predicted CSI sequence.
[image:]
[bookmark: _Ref115449547]Figure 23: Illustration of revised CSI samples
CSI samples:
We treat each CSI instance as a 2-dimensional (2D) image, where:
1. The first axis is the frequency (or delay tap) dimension.
2. The second axis is the antenna (beam) dimension.
Figure 24 shows an example of a CSI instance in the beam–delay domain.
[image:]
[bookmark: _Ref111120106]Figure 24: CSI sample as 2D image
A sequence of CSI instances forms the input to our AI/ML-based model and is depicted in Figure 25 below. We treat the CSI sequence as frames in a video, and the prediction problem becomes a frame prediction problem. Therefore, the 3-D convolutional neural network (CNN) can be adopted.
[image:]
[bookmark: _Ref111120269]Figure 25: CSI input sequence
[bookmark: _Hlk111120788]To assess the performance of AI/ML-based prediction, we compare it against a non-AI based prediction method. The simulation parameters are shown in Table 28 in Section 6.2. The results are shown in Table 16, which depicts the performance results of an intermediate KPI (NMSE). In addition, we also provide the number of parameters and FLOPs for complexity analysis of the neural network model. For the AI/ML-based model architecture, we provide two kinds of neural network models, both are based on CNN architecture. But one of them is CNN plus residual neural network, expressed as “CNN-res”. Residual architecture trains the delta term of input data and is mainly used for extracting deeper features. Therefore, the performance will be better than the traditional CNN architecture, but the computational complexity is also higher than original CNN. For the non-AI based model architecture, we use the sample-and-hold and the auto-regression (AR) methods to compare the results with the AI/ML-based model. It should be noted that AR method needs to perform matrix inversion on each gNB and UE antenna port and each RB on-the-fly to obtain the corresponding coefficients. Therefore, the order of AR and its computational complexity need to be carefully considered.
Our performance results of NMSE show that the AI/ML-based solutions outperform the non-AI solutions about 13% to 27%. Even if we use a simple CNN, we will get better performance than AR results. These initial results show that AI/ML-based CSI prediction may be superior to non-AI prediction solutions.

[bookmark: _Ref115425344]Table 16: Performance and complexity of AI/ML models vs Non-AI based methods for CSI prediction
	
	AI/ML-based
	Non-AI based

	
	CNN
	CNN-res
	Sample-and-hold
	Auto-regression (order-10)

	NMSE (dB)
	-8.13
	-9.67
	0.67
	-7.05

	Param (M)
	0.38
	0.326
	
	

	FLOPs (M)
	0.41
	3.14
	0
	0.84

Depending on the requirements on CSI prediction, for example the required prediction length, AI/ML-based solutions provide superior performance compared to classical non-AI based methods.
For AI/ML-based CSI prediction, a CNN-based AI/ML model can be applied for training.
For AI/ML-based CSI prediction, residual neural networks architecture can be applied to enhance the accuracy of prediction.
The number of FLOPs to perform the AI/ML-based (CNN) prediction is less than the auto-regression-based prediction with order-10.
For fair and proper assessment of AI/ML-based CSI prediction, comparison with a benchmark classical solution is needed. Classical non-AI based prediction methods are numerous. This includes a potential 3GPP solution following the RAN#94e work item (WI) “NR MIMO evolution for downlink and uplink” for Release-18, which includes the following objective:
“Study, and if justified, specify CSI reporting enhancement for high/medium UE velocities by exploiting time-domain correlation/Doppler-domain information to assist DL precoding, targeting FR1”.
Assuming that one of the objectives of CSI prediction is for transmit precoding, this 3GPP WI objective provides a clear, concise, and relevant benchmark for AI/ML-based CSI prediction assessment.
AI/ML-based CSI prediction for transmit precoding enhancement should use the outcome of the CSI enhancement objectives in 3GPP WI as a classical benchmark solution for performance evaluation.
[bookmark: _Ref111193025]Generalization of CSI Prediction
In this section, we discuss the generalization performance of the CSI prediction. The simulation parameters are shown in Table 28 in Section 6.2. For the following results, the length of the observation window is 15 and the length of prediction window is 1.
Generalization over RB
First, we want to observe the generalization characteristics over different RBs. Figure 26 shows our concept of experiment. In the figure, the x-axis is the time samples, and the y-axis is the frequency domain granularity, which can be the subcarrier, RB, or SB. For training step, the first RB is applied to the training. Then the AI/ML training model will be tested on the middle and last RBs to investigate the effectiveness. Figure 27 shows the performance of the training RB and inference RB. We use NMSE to evaluate the performance. From the results, we can conclude that the AI/ML models used in a specific RB can be applied to whole band because the performance is similar. In other words, in the whole frequency band, we can train only one AI model by a specific RB (or a subcarrier) and use the same AI/ML model for other RBs. In this way, we can save the memory and computation complexity in the UE side.
For CSI prediction, the AI/ML model trained on a certain RB (or SB) can be generalized to other RBs (or SBs).
[image:]
[bookmark: _Ref115426012]Figure 26: Illustration of training and inference
[image:]
[bookmark: _Ref111130018]Figure 27: Performance of training RB and inference RB
In another experiment, we use an SB as the training granularity. The input of the AI/ML model is an SB (4 RBs in our setting), then output the one SB result of the predicted time samples as shown in Figure 28. We expect that the joint prediction will have better results than the single RB prediction. However, we can see the results in Figure 29; the SB predication results are worse than the single RB results. The possible reason is that training multi-RB scenarios needs a larger input-output space and requires more complex AI/ML models for a better performance. Therefore, the trade-off between single RB and joint RBs needs to be further studied.
Compared with training at single RB, more complex models need to be considered when training at multiple RBs, otherwise the performance cannot be improved.
The AI/ML model trained on joint RBs can be generalized and inferenced on other joint RBs.
Further study the trade-off between single RB and joint RBs.
[image:]
[bookmark: _Ref115426769]Figure 28: Illustration of training and inference of multiple RBs

[image:]
[bookmark: _Ref111131340]Figure 29: Performance of single RB and MultiRBs
[bookmark: _Ref115250645]Generalization Over Speed
[bookmark: _Hlk115188537]In this section, we evaluate the generalization performance for UE’s speeds. Both uni-speed and mixed-speed datasets are used. UE speed is leveraged for evaluation with 10, 20, 30, 60, 120km/h. We consider the following three cases agreed at RAN WG1 #110 [3]:
• Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
For this case, the upper bound of the performance reference can be obtained. Table 17 shows the performance of CSI prediction over speed. We can observe that when the UE’s speed is larger than (or equal to) 30km/h, the performance degrades rapidly. The reason may be the Doppler effect and the corresponding coherence time of the channel. In our simulation, the CSI-RS periodicity is 5ms, and the coherence time of UE moving at 30km/h is about 5ms also. However, if the coherence time of the channel is less than CSI-RS periodicity, the channel variation will be more significant between two observed CSIs. This means the AI/ML is more difficult to learn the correlation between the CSI sets. Therefore, if we want to get better prediction accuracy at high speeds, the periodicity of CSI-RS should also be considered.
In addition, according to the results in Table 17, we can also observe the AI/ML-based approach outperforms the AR method, with 27% improvement at the medium speed and 35% improvement at the high speed. Only at very low speeds, the AR method is superior to the AI/ML-based method, but in this case, both can achieve NMSE less than 30dB.
[bookmark: _Ref115426221]Table 17: Case 1 performance results for CSI prediction over speed
	
	Speed (km/h)
	10
	20
	30
	60
	120

	AI/ML
	NMSE (dB)
	-35.21
	-23.37
	-9.67
	-5.02
	-4.24

	AR
	NMSE (dB)
	-68.67
	-17.09
	-7.05
	-4.04
	-2.03

For CSI prediction, the Doppler effect and the coherence time are critical factors for AI/ML model’s prediction accuracy.
When the coherence time is less than the CSI-RS periodicity, the CSI prediction performance will degrade rapidly.
• Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
For this case, the lower bound of the performance reference can be obtained. We conducted two experiments, namely training at 30km/h speed and training at 120km/h speed, and inference at all the candidate speeds. The NMSE performance results are shown in Table 18. Although training at medium speed can achieve robust performance at low speed, the training model cannot work at higher speed. In addition, if training at high-speed channel, the performance will decrease a lot at low speed, while at high speed, the performance will not change a lot, because the features are similar and match to the training model. To sum up, if we train at a specific speed and inference at other speeds, the performance results will be much worse than the upper bound.
[bookmark: _Ref115250593]Table 18: Case 2 performance results for CSI prediction over speed
	
	Training at speed 30 (medium speed)

	Speed (km/h)
	10
	20
	30
	60
	120

	NMSE (dB)
	-17.46
	-13.96
	-9.67
	4.61
	5.56

	
	Training at speed 120 (high speed)

	Speed (km/h)
	10
	20
	30
	60
	120

	NMSE (dB)
	-8.37
	-6.14
	-5.18
	-4.63
	-4.24

 For CSI prediction, the AI/ML model trained on a certain speed may not be generalized to other speeds.
• Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a dataset different than Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations
For this case, we use the mixed speed dataset for training, and the contribution of each speed is equal into the mixed dataset. That is, the sub-dataset of each speed forms 1/5 of the mixed dataset, which will be shuffled before the training stage. As can be seen from Table 19, compared with the upper bound performance, the NMSE difference is about 1 to 13dB (performance loss is about 20% to 30%), depending on the UE speed. Considering that it is difficult to train different AI/ML models for different speeds at UE side or gNB side, mixed dataset training is an effective approach.
[bookmark: _Ref115250623]Table 19: Case 3 performance results for CSI prediction over speed
	
	Training at mixed [10, 20, 30, 60, 120] km/h

	Speed (km/h)
	10
	20
	30
	60
	120

	NMSE (dB)
	-22.9
	-18.79
	-6.56
	-4.56
	-3.3

Using mixed datasets over UE speed for AI/ML model training is helpful to improve the generalization.
Generalization Over Carrier Frequency
In this section, we evaluate the generalization performance over carrier frequency. The analysis is similar to Section 3.2.2, because the carrier frequency is also one of the main factors causing the Doppler effect. In this section, we set the UE speed at 30km/h and observe the performance changes under different carrier frequency values (including 2, 3 and 3.5GHz). Table 20 shows the performance results of case 1 over carrier frequency, which means we train based on a certain carrier frequency and then inference on the same carrier frequency. Therefore, the upper bound of the performance reference can be obtained. Table 21 shows the performance results of case 2, that is, we train based on the training dataset of 3GHz carrier frequency and inference on other carrier frequencies. Table 22 shows the performance results of case 3, we use the mixed carrier frequency dataset for training, and the ratio of each carrier frequency is equal. Same as the strategy of UE speed, because the case 2 performance of carrier frequency is not performed well, a mixed training of Doppler frequency (including the carrier frequency and UE speed) is proposed.
[bookmark: _Ref115250875]Table 20: Case 1 performance results for CSI prediction over carrier frequency
	
	Carrier frequency
	2GHz
	3GHz
	3.5GHz

	
	Doppler frequency (Hz)
	55.6
	83.3
	97.3

	AI/ML
	NMSE (dB)
	-30.59
	-9.67
	-6.01

	AR
	NMSE (dB)
	-16.67
	-7.05
	-5.37

[bookmark: _Ref115423916]Table 21: Case 2 performance results for CSI prediction over carrier frequency
	
	Training at 3GHz carrier frequency

	Carrier frequency
	2GHz
	3GHz
	3.5GHz

	NMSE (dB)
	-13.55
	-9.67
	4.04

[bookmark: _Ref115250880]Table 22: Case 3 performance results for CSI prediction over carrier frequency
	
	Training at mixed carrier frequency

	Carrier frequency
	2GHz
	3GHz
	3.5GHz

	NMSE (dB)
	-16.91
	-8.93
	-4.46

For CSI prediction, the AI/ML model trained on a certain carrier frequency may not be generalized on other carrier frequencies.
Using mixed datasets over Doppler frequency for AI/ML model training is helpful to improve the generalization.
Generalization Over Deployment
[bookmark: _Hlk115190038]In this section, we evaluate the generalization performance for the deployment. Based on the channel model in 3GPP 38.901, we consider two deployment scenarios for training: Urban macro (UMa) and Urban micro (UMi). Table 23 shows the performance results of each deployment in case 1. We can observe that the performance result of the UMi is better than the UMa, one of the reasons may be the multipath effect. For UMa development, because the NLOS ratio is higher than the UMi development, more multipath effects will be introduced in UMa channel, resulting in greater channel variation. It will be more difficult to accurately predict the rich multipath channels.
[bookmark: _Ref115250937]Table 23: Case 1 performance results for CSI prediction over deployment
	
	Deployment
	UMi
	UMa

	AI/ML
	NMSE (dB)
	-9.67
	-5.88

	AR
	NMSE (dB)
	-7.05
	-1.85

Table 24 and Table 25 show the performance of each deployment in case 2 and case 3, respectively. Whether it is UMa or UMi channel in the training phase, the performance mainly depends on the input of the inference phase, and the performance is similar with the upper bound results. Therefore, the training of AI/ML model may not need to consider the different deployment modes. In other words, the generalization over deployment is good.
[bookmark: _Ref115250962]Table 24: Case 2 performance results for CSI prediction over deployment
	Deployment
	Training at UMi
Inference at UMa
	Training at UMa
Inference at Umi

	NMSE (dB)
	-9.65
	-5.42

[bookmark: _Ref115250963]Table 25: Case 3 performance results for CSI prediction over deployment
	
	Training at mixed UMi and UMa

	Deployment
	UMi
	UMa

	NMSE (dB)
	-9.45
	-5.39

For CSI prediction, the AI/ML model trained on a certain deployment (e.g., UMa/UMi) can be generalized and performed inference on other deployment (e.g., UMa/UMi).
Length of Observation and Prediction Windows
In this section, we simulate the different observation and prediction windows of the CSI prediction. The simulation parameters are shown in Table 28 in Section 6.2. Figure 30 shows the illustration of the observation window and the prediction window. We use “L” to represent the length of observation window and “P” to represent the length of prediction window. We want to observe the appropriate prediction length under different CSI-RS time distances and different observation windows. It should be noted that in our simulation results, we assume the time distance of CSI-RS in the observation window and prediction window is the same.
[image:]
[bookmark: _Ref115251731][bookmark: _Ref115251727]Figure 30: Illustration of the observation and prediction windows
The simulation results of 5ms time distance are shown in Figure 31, which depicts the NMSE of the predicted samples vs. the prediction length (units of ms). In this case, time distance of observation window and prediction window is 5ms. Since the AR prediction results of more than 30ms are poor, we do not show it in the figure. According to simulation results, we have the following observations:
1. As the prediction length increases (i.e., as we predict samples further into the future), the performance gap between AI/ML-based and non-AI based will become larger in favor of AI/ML-based prediction.
2. If we increase the length of the observation window from 10 to 25, the performance gain will improve by 25% on average, and the maximum gain can achieve 48%. However, the memory overhead will increase by 150%. And the computation complexity of training and inference will also increase.
3. If we want to keep the NMSE result below -5dB, the appropriate prediction window is equal to 2 (i.e., prediction of CSI within 10ms) at the 5ms time distance.
[image:]
[bookmark: _Ref115252333]Figure 31: Prediction results under 5ms time distance
Next, we provide the simulation results of 4ms time distance, as shown in Figure 32. In this case, time distance of observation window and prediction window is 4ms. According to simulation result, we can obtain the following observations:
1. Performance will be enhanced as the observation window increases. However, the gain mainly comes from the nearest CSI. To predict farther CSI, increasing the observation window has no obvious gain
2. If we want to keep the NMSE result below -5dB, the appropriate prediction window can be increased to 4 (i.e., prediction of CSI within 16ms) at the 4ms time distance.
Finally, we provide the simulation results of 1ms time distance, as shown in Figure 33. In this case, time distance of observation window and prediction window is 1ms. According to simulation result, we can obtain the following observations:
1. In the very near future, the non-AI solution performs better than our AI/ML-based solution (within 6ms). However, as the prediction length increases, the AI based model becomes superior. The performance results indicate that AI/ML-based CSI predictions may be more robust than the non-AI based predictions.
2. As in the previous figure, the performance will be greatly improved with the increase of the observation window for predict the near CSI. When the observation window length is from 10 to 25, the maximum gain can achieve 66%, but the memory overhead will also increase by 150%, which cannot be ignored.
3. Appropriate prediction windows needs further testing. From the current results, the CSI within 15ms can be predicted well.

[image:]
[bookmark: _Ref115255545]Figure 32: Prediction results under 4ms time distance
[image:]
[bookmark: _Ref115256263]Figure 33: Prediction results under 1ms time distance
Table 26 summarizes the performance of observation windows (OW) and prediction window (PW) at different time distances. To compromised between complexity and performance, the proposed observation window should be less than 15. However, the tradeoff between the observation length and prediction length still needs to be studied.
[bookmark: _Ref115264648]Table 26: Summary for the performance gain of different observation windows at different time distances
	Time distance of OW and PW
	Performance gain:
L from 10 to 15
(Memory overhead 50%)
	Performance gain:
L from 10 to 25
(Memory overhead 150%)
	Appropriate prediction length
(to keep NMSE < -5dB)

	5ms
	max 36.3%, avg 16.5%
	max 48.1%, avg 24.9%
	2 (i.e., 10ms)

	4ms
	max 38.2%, avg 14.7%
	max 72.7%, avg 47.8%
	4 (i.e., 16ms)

	1ms
	max 32.1%, avg 49.8%
	max 65.8%, avg 43.6%
	> 15 (i.e., > 15ms)

[bookmark: OLE_LINK1]AI/ML-based CSI prediction will have more benefits than non-AI based prediction for longer time distances of OW and PW.
If we want to predict the CSI at the same time, observe more intensive CSI-RS can obtain better prediction results.
Use 15 as a baseline observation window length and other candidates are not precluded.
The tradeoff between the observation length and prediction length should be further studied.

Conclusion
In summary, based on the above discussion, we have the following observations:
1. On average over evaluation settings with 100~300 bits of CSI feedback, AI/ML models achieve 5.43% GCS gain over eType II codebook in terms of CSI feedback accuracy. The GCS gain ranges from 3.75% to 6.47% for 100~300 bits of CSI feedback.
At 0.85 GCS, the AI/ML model is able to approximately reduce feedback overhead by 36%.
Layer-common AI/ML model respectively achieves 1.18% and 1.55% SGCS gain for layer 0 and layer 1 of rank-2 channels compared to layer-specific AI/ML models.
For rank-2 channels in Dataset 1-Dataset 3, EVs of layer 0 are more correlative across frequency and antenna domains compared to EVs of layer 1.
The data samples in a sparse domain (e.g., delay-beam domain) lack a strong autocorrelation but still can be effectively compressed.
On average over evaluation settings with 100~300 bits of CSI feedback, re-usage of AI/ML models (case 2 of generalization) at layer level causes 1.29% GCS degradation.
On average over evaluation settings with 100~300 bits of CSI feedback, re-usage of AI/ML models (case 2 of generalization) at rank level causes 1.13% GCS degradation.
It is feasible to generalize a layer-common AI/ML model across ranks with negligible performance loss
On average over all datasets in Table 27, a unified AI/ML model (generalization case 3) not only does not degrade the feedback accuracy, but it also achieves 0.46% higher GCS accuracy compared to the dedicated AI/ML models for both layers.
On average over all datasets in Table 27, a unified AI/ML model (generalization case 3) shows 5.8% higher GCS accuracy for EVs of layer 0 compared to those belonging to layer 1. The similar trend has also been observed among the dedicated AI/ML models.
UE and gNB equally suffer from the performance loss of the unmatched pairs in the joint training. In average for all unmatched pairs, UE losses 2.23% performance and gNB losses 2.26%.
Overall, joint training on all pairs caused 1.68% performance loss.
UE-first separate training does not necessarily reach an inferior performance compared to joint training. Matched pairs experience 1.2% improvement.
UE-first separate training does not degrade the performance of unmatched pairs (w.r.t. joint training). It shows a negligible improvement of 0.93%
In UE-first separate training, UE and gNB both experience 0.7% performance loss compared to their matched pairs which are trained via joint training strategy.
In the UE-first separate training strategy, unmatched decoders may struggle to leverage the latent features provided by a pre-trained TF-based encoder.
In gNB-first separate training, matched pairs not only do not experience performance loss, but they also reach a gain compared to joint training.
In gNB-first separate training, UE and gNB respectively experience 1.52% and 1.42% performance loss compared to their matched designed trained via joint training strategy.
Unlike UE-first separate training strategy, gNB-first separate training strategy degrades the performance of unmatched pairs.
In the gNB-first separate training strategy, unmatched encoders may fail to replace the gNB’s TF-based encoder (cannot establish similar mapping from CSI to latent space). A significant degradation of -12.05% is observed in the performance for such pairings.
In overall, multi-encoder training strategy have inferior performance compared to joint and separate training strategies.
In pair-to-pair comparison with joint training strategy, multi-encoder training strategy causes 0.7% performance loss.
Employing multi-encoder training strategies, UEs and gNBs lose ~2.4% performance in average.
 In single-encoder multi-decoder training strategy, we observe 0.3% performance loss compared to the joint training. Also, degradation for both UE and gNB vendors are ~2.0%.
 Assign higher priority to multi-decoder training compared to multi-encoder training strategy.
 In both multi-decoder and multi-encoder training strategies, matched encoder-decoder pairs may promote themselves at the cost of degrading the performance of unmatched encoders or decoders.
The UE speed will affect the tradeoff between CSI prediction length and CSI-RS periodicity.
Depending on the requirements on CSI prediction, for example the required prediction length, AI/ML-based solutions provide superior performance compared to classical non-AI based methods.
For AI/ML-based CSI prediction, a CNN-based AI/ML model can be applied for training.
For AI/ML-based CSI prediction, residual neural networks architecture can be applied to enhance the accuracy of prediction.
The number of FLOPs to perform the AI/ML-based (CNN) prediction is less than the auto-regression-based prediction with order-10.
For CSI prediction, the AI/ML model trained on a certain RB (or SB) can be generalized to other RBs (or SBs).
Compared with training at single RB, more complex models need to be considered when training at multiple RBs, otherwise the performance cannot be improved.
The AI/ML model trained on joint RBs can be generalized and inferenced on other joint RBs.
For CSI prediction, the Doppler effect and the coherence time are critical factors for AI/ML model’s prediction accuracy.
When the coherence time is less than the CSI-RS periodicity, the CSI prediction performance will degrade rapidly.
 For CSI prediction, the AI/ML model trained on a certain speed may not be generalized to other speeds.
For CSI prediction, the AI/ML model trained on a certain carrier frequency may not be generalized on other carrier frequencies.
For CSI prediction, the AI/ML model trained on a certain deployment (e.g., Uma/UMi) can be generalized and performed inference on other deployment (e.g., Uma/UMi).
AI/ML-based CSI prediction will have more benefits than non-AI based prediction for longer time distances of OW and PW.
If we want to predict the CSI at the same time, observe more intensive CSI-RS can obtain better prediction results.
We have also the following proposals based on observations:
1. [bookmark: _In-sequence_SDU_delivery]For generalization study, the mixed datasets should be subject of further discussions to determine the exact contribution of each sub-dataset into the mixed one according to real-world settings.
1. Considering the potential number of mixing dimensions, offer public datasets to facilitate study on generalization aspects of AI/ML models.
1. To appreciate low-complex, yet high-performing, AI/ML model designs, a KPI measuring throughput per complexity unit would be beneficial.
1. Number of training samples to reach a certain performance KPI can itself be used as a KPI to quantify trainability of AI/ML models.
1. Use the performance of matched/unmatched encoder-decoder trained via joint training strategy as the baseline for evaluation of other training strategies.
1. Between layer-specific and layer-common AI/ML models settings for rank>1, down select layer-common.
1. For training a layer-common AI/ML models for rank>1 channel, the training loss should be simply averaged across the layers.
1. Between all options of AI/ML models settings for rank>1, down select layer-common setting.
1. If joint training is adopted, the least requirements of the training are disclosing gradient by gNB, disclosing latent vector by UE, and sharing a common dataset by both sides.
1. Report UE’s gain/loss and gNB’s gain/loss separately for unmatched encoder-decoder pairs in any training strategy.
1. Define a mechanism/threshold to identify and avoid certain vulnerable pairings of encoders and decoders.
1. If UE-first separate training is adopted, the least requirements of the training are disclosing latent vector by UE and sharing a common dataset by both sides.
1. In the UE-first separate training strategy, UE should inform gNB about the type of its architecture.
1. If gNB-first separate training is adopted, the least requirements of training are disclosing latent vector by gNB and sharing a common dataset by both sides.
1. In the gNB-first separate training strategy, gNB should inform UE at least about the type of its dropped encoder’s architecture.
1. Give higher priority to UE-first separate training if separate training is adopted as the main training framework.
1. Discuss how to calculate a joint loss to avoid adverse bias toward the matched pairs.
1. AI/ML-based CSI prediction for transmit precoding enhancement should use the outcome of the CSI enhancement objectives in 3GPP WI as a classical benchmark solution for performance evaluation.
1. Further study the trade-off between single RB and joint RBs.
1. Using mixed datasets over UE speed for AI/ML model training is helpful to improve the generalization.
1. Using mixed datasets over Doppler frequency for AI/ML model training is helpful to improve the generalization.
1. Use 15 as a baseline observation window length and other candidates are not precluded.
1. The tradeoff between the observation length and prediction length should be further studied.

References
[bookmark: _Ref111196573][bookmark: _Ref174151459][bookmark: _Ref189809556]RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, 3GPP RAN Plenary #94, Dec 2021.
[bookmark: _Ref110819554]R1-2205492, FL Summary of [109-e-R18-AI/ML-03], Moderator (Huawei), May 2022.
[bookmark: _Ref115254049]R1-2207840, Summary#5 for CSI evaluation of [110-R18-AI/ML], Moderator (Huawei), August 2022.
[bookmark: _Ref110339113]TR 38.901, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3GPP Release 16, Dec 2019.
[bookmark: _Ref110819422]R1-2205100, Evaluation on AI/ML for CSI feedback enhancement, MediaTek Inc., 3GPP TSG RAN WG1 #109-e, May 2022.
Appendix
[bookmark: _Ref111112082]Simulation Assumptions for CSI Compression
[bookmark: _Ref110339377][bookmark: _Ref111117830]Table 27. SLS/LLS parameter configuration used in generating datasets for CSI Compression
	
	Dataset 1
	Dataset 2
	Dataset 3

	Carrier frequency
	4 GHz
	3.5 GHz
	3.5 GHz

	Bandwidth
	10MHz
	10MHz
	10MHz

	SCS
	15 kHz
	15 kHz
	15 kHz

	PRB
	52
	48
	48

	Sub-band
	13
	12
	12

	Channel model
	UMa
	CDL-A (30ns delay spread)
	CDL-C (300ns delay spread)

	UE distribution
	80% indoor + 20% outdoor
	N/A
	N/A

	UE speed
	3 km/h indoor,30 km/h outdoor
	3 km/h
	3 km/h

	Tx antennas
	32 Tx ports: (8,8,2,1,1,2,8)
	32 Tx ports: (8,8,2,1,1,2,8)
	32 Tx ports: (8,8,2,1,1,2,8)

	Rx antennas
	4 Rx ports: (1,2,2,1,1,1,2)
	4 Rx ports: (1,2,2,1,1,1,2)
	4 Rx ports: (1,2,2,1,1,1,2)

	Rank
	1, 2
	1, 2
	1, 2

	Estimation
	ideal
	ideal
	ideal

[bookmark: _Ref111112156]Simulation Assumptions for CSI Prediction
[bookmark: _Ref111188417]Table 28. SLS parameter configuration used in generating datasets for generalization study of CSI prediction
	
	Dataset 4

	Channel model
	TR 38.901 UMa/UMi (@3GHz)

	Sub-carrier spacing
	15kHz

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ, Cross-polarization

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ, Cross-polarization

	Operating BW
	10MHz

	UE distribution
	100% outdoor (10, 20, 30, 60, 120km/h)

	Number of input CSI samples
	15

	Number of output CSI samples
	1

	4/4	
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image1.png

image2.png

