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Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, agreed in [1], includes a use case of positioning accuracy enhancement, and the exact objectives are as follows: 
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced




In this contribution, we mainly focus on proposals that were not agreed and topics for further study indicated as part of the agreements which were made as part of the RAN1-110 meeting. We also discuss representative sub-use cases that could be considered as part of the study item. 
[bookmark: _Hlk510705081]Discussion on generic aspects related to AI/ML for positioning
In the following, a set of non-exhaustive representative sub use cases for AI/ML in positioning are identified. Specification impact is also discussed. 
Collaboration Levels
The following conclusion was made regarding collaboration levels during RAN1-110 meeting:
Conclusion
Defer the discussion of prioritization of AI/ML positioning based on collaboration level until more progress on collaboration level discussion in agenda 9.2.1.

While we await the conclusion of the topic as part of agenda item 9.2.1, it is important to highlight some aspects relevant specifically to the positioning use case. In order to enable direct and/or assisted AI/ML positioning, various gNB-UE collaboration levels may be supported. The necessity of collaborating may be assessed based on each use-case and may consider the following aspects:
1. Data collection and labeling: depending on which entity collects versus  which entity uses the training data, collaboration between gNB and the UE may be required for exchanging: a) all/some/none of the input features comprised in the training data and b) all/some/none of the labels of each training data point. Specifically, if (part of) training data is collected at side A (where side A may be gNB or UE) and labeled at side B (where side B may be UE or gNB), then some collaboration between side A and side B may be required so that correct labeling is ensured. 
2. Model (re)training at side A w/o assistance from side B. Specifically, if the model is trained at side A using assistance data from side B, some degree of collaboration may be expected between side A and side B, depending on at least:
a. the type of assistance data e.g. training data, model parameters, model constraints, etc.
b. The frequency with which assistance data is transferred.

Observation-1: For each positioning use-case, different collaboration levels may be considered, depending on the task to be solved for the use-case. For example, a task may be: 
· Training data collection and labeling
· Model training
· Model refinement, etc.
Proposal-1: RAN1 to study use-case-based collaboration levels between gNB and UE. Furthermore, RAN1 may assess whether different collaboration levels may be needed within one use-case for e.g., use-case and task-based collaboration level.
Model Terminology
On the topic of model terminology, the following conclusion was made during RAN1-110:
Conclusion
To use the following terminology defined in TS 38.305 when describe their proposed positioning methods
· UE-based
· UE-assisted/LMF-based
· NG-RAN node assisted
Note: companies are required to clarify their positioning method(s) when their approaches do not fall in one of the above 

Here, UE-based positioning method implies that UE computes its own position, UE-assisted/LMF-based implies that measurements are provided from the UE to the LMF which is used by the LMF to estimate the location. NG-RAN node assisted positioning method could include ones where certain measurements are provided by the serving gNB to the LMF, which is then used for positioning TS 38.305 [6].
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Fig. 1: Diagram with various positioning methods, such as UE-based, UE-assisted/LMF-based, NR RAN node-assisted, and LMF-assisted/UR-based positioning.
There are two possible scenarios in which a new positioning method could be applied, which is mainly considered for UE-based positioning where UE is also the node where the training and inference is conducted: (1) during the data collection and training phase where the training and testing/validation data has significant amount of noise; and (2) during the inference phase where the input data is noisy or there is high uncertainty related to the flags/indicators estimated by the UE (for e.g., LOS/NLOS flag). In these scenarios, a new positioning method could be considered where the UE could signal the noisy measurements or flags/indicators estimated by the UE to the LMF, which could then use AI/ML to provide corrected measurements back to the UE. The UE could use these corrected measurements or flags/indicators for inference or training. The UE could use the updated measurements to estimate the location using traditional methods as well. Such a positioning method could be described as LMF-assisted/UE-based, following the terminology used earlier. 
Observation-2: For UE-based positioning where UE is also the node where the training and inference is conducted, there are two scenarios in which a new positioning method could be applied: (1) during the data collection and training phase where the training and testing/validation data has significant amount of noise; and (2) during the inference phase where the input data is noisy or there is high uncertainty related to the flags/indicators estimated by the UE (for e.g., LOS/NLOS flag).
One of the key considerations for these scenarios is the network’s ability to possibly determine UE location. Here, it is important to consider that, in terms of UE privacy and LMF not being aware of UE location, since intermediate features / parameters are reported to the LMF, the network would still be unaware of the UE location.
Observation-3: From UE location privacy perspective, it is important to note that in these scenarios, since intermediate features / parameters are reported from the UE to the LMF, the network would still be unaware of the UE location.
Proposal-2: RAN1 to consider LMF-assisted/UE-based as a new positioning method.

Discussion on key issues related to AI/ML for positioning
In this section, we discuss various key issues related to AI/ML for positioning.
Data Collection 
In this section, we consider the challenges related to data collection and labelling in order to generate training and test / validation datasets for AI/ML based positioning. In particular, we will focus on the following agreement from RAN1-110:
Agreement
Regarding data collection for AI/ML model training, to study and provide inputs on potential specification impact at least for the following aspects of AI/ML based positioning accuracy enhancement
· Ground truth label determination (e.g., based on UE/PRU/TRP measurement/report)
· Partial and/or noisy ground truth label
· Signaling for data collection
· Other aspects are not precluded


On-Demand Labelling and Data-Efficient Training
Most of current ML based positioning approaches are based on  supervised learning. Therefore, large volume of labelled data is required for model training or finetuning. With respect to different strategies of positioning, namely ML assisted positioning or direct ML based positioning, different types of labels are needed in practice. Take ML assisted  positioning with LOS/NLOS estimation (from ML) and legacy positioning approach as an example, ground truth of LOS/NLOS index needs to be measured and labelled in-filed. 
In practice, labelling is an expensive task, it requires devices like PRUs for in-field measurement either periodically or on-demand. Typically, it is difficult to decide how much data is needed and there is no controlling and assessment of the quality of data used for training. Therefore, it is probably to label and collect volume of data with low-value, and miss labeling data with high-value that can more effectively improve model’s accuracy than others.
Observation-4: For ML model training, the data has different value or importance in improving an AI/ML model’s estimation accuracy.
Proposal-3: RAN1 to study further potential impacts on data quality and on demand data labelling and selection.

The main idea here is that during the model training or refinement/finetuning phase, before the data is fed for model training, ML model assesses the value of the channel observation according to the uncertainty of ML model, only if current ML model is uncertain in determining its LOS/NLOS, then it will trigger PRU for on-demand labelling and then conduct model training or finetuning as shown in Fig.-2. There are various options for requesting the on-demand LOS/NLOS labelling :
· Option-1: LOS/NLOS detection model is deployed in UE, LOS/NLOS estimation uncertainty can be assessed in UE-based manner, UE report its uncertainty assessment to LMF, LMF requests PRU for labelling if it is uncertain on the estimation and newly labelled data will be used to trigger ML model refinement/finetuning.
· Option-2: LOS/NLOS detection model is deployed in UE, UE can detect LOS/NLOS but cannot assess its estimation uncertainty, UE request LMF to assist on the estimation uncertainty assessment. LMF requests PRU for labelling if needed and sequentially triggers model refinement/finetuning.
· Option-3: LOS/NLOS detection model is deployed in LMF, LMF can assess its estimation uncertainty, and requests PRU for labelling if needed and sequentially triggers model refinement/finetuning.
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Fig. 2: overview of on-demand labelling and data-efficient training
Observation-5: in ML model training, training efficiency in terms of accuracy climbing versus training data is sensitive to the  training dataset quality. 
Proposal-4: Model training, retraining or finetuning can be triggered when the model detects LOS/NLOS estimation uncertainty and subsequentially new data is labelled on-demand. 

Impacts related to noisy ground truth labels 
For machine learning, especially in the context of positioning, without manual intervention, it is challenging to derive ground truth or the correct labelling information of the training data especially for important parameters or intermediate features such as the LOS/NLOS indicator. This challenge is valid even considering the use of PRUs for obtaining such information, due to the dynamic nature of the environment in which these nodes would be deployed. Challenges related to dynamic LOS blockages, lack of correlation between spatially collocated UEs with respect to LOS/NLOS, etc., provide additional layers of complexity to this issue. As shown in Fig. 4, consider an example with three PRUs 1-3 deployed in a network. PRU-1 has a LOS link to the gNB/TRP, PRU-2 has a static blocker which implies that the particular gNB/TRP-PRU link will always be NLOS, and PRU-3 has a mobile block. During measurement-1 time instance, the link with gNB/TRP is LOS and during measurement-2, the gNB/TRP is NLOS (or potentially even obstructed LOS / OLOS), with the link becoming LOS again during measurement-3 time instance.
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Fig. 3: Practical Deployment Scenario with Challenging Ground Truth Estimation for LOS/NLOS
From RAN1 perspective, it is important to investigate solutions that would enable solutions to derive the correct labels of the ground truth data for positioning, without relying on manual intervention which might limit the scalability and applicability of AI/ML solutions. Such mechanisms are essential to ensure that the AI/ML based enhancements investigated as part of the study would closely reflect real-world deployments. It is also important to note that the accuracy of the labelled data would be the main factor that determines model performance.
One solution for the noisy ground truth label could be to utilize the known location attribute of PRUs in order to modify or correct the noisy label. The measurements, including the noisy label could be collected from the PRUs and provided to a one-step / direct positioning model. Using an iterative approach whereby the loss function between the predicted PRU location and actual/known PRU location is minimized by varying the values within the noisy label could be used to modify or correct the noisy label. The dataset with the corrected labels could be used for further processing, including training of AI/ML models for two-step / AI/ML assisted positioning methods, where the corrected labels could be used as the output parameter.
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Fig. 4: Overview of the solution for overcoming noisy label issue.

An additional problem related to noisy labels and labelling by PRU is about accuracy or quality of noisy labels. Specifically, a PRU may be able to extract labels for a data point from multiple sources, where such sources are all noisy. For example, a positioning measurement may be labelled with a location estimate obtained from both a RAT and a non-RAT (e.g., GNSS) source and both sources introduce errors to the location estimate. When this is the case, the PRU must decide which sample to use and report (if any) based on all the noisy labels. 
Observation-6: Answering the noisy label problem is expected to be use-case dependent and may require some assistance from the network. For example, the network may provide a set of rules for label quality evaluation, where the network may indicate one or more rules to reject/accept a sample with one or several noisy labels.  

Potential Specification Impact:
The potential specification impact due to the iterative ground truth label correction/modification mechanism would depend on the node where the model training is conducted. For network-side training, label correction/modification could be done without any specification impacts, as long as the network has sufficient information related to the location of the PRUs. For UE-based training, network assistance would be required for label correction/modification, since the UEs might not be aware of the PRU locations in order to implement the iterative mechanism. In this scenario, network-assistance could be requested for the ground truth label determination.
Observation-7: The potential specification impact from noisy ground truth labels during the data collection and model training phase could depend on whether UE-side or network-side training is considered.
Observation-8: For network-side training, label correction/modification could be done without any specification impacts, as long as the network has sufficient information related to the location of the PRUs.
Proposal-5: RAN1 to study further potential impacts from network assistance required for UE-side training with noisy labels.

1.1.1 Impacts related to availability of diverse data for AI/ML model
The performance of AI/ML model for positioning use case is highly dependent on the way training is realized beforehand: including the selection of the AI/ML model as well the collected labelled data used for training. As mentioned in Sec. 2.3 of [4], assuming the availability of data from uniform or grid-based distribution of UEs in practical deployments is impractical.
Considering the positioning use case where the given AI/ML model is deployed either at the UE or Network side, several challenges should be handled to perform efficient AI/ML model training and generalization: 
· Positioning related dataset is collected at limited set of spatial and temporal conditions. However, the target positioning AI/ML model may exist in a variety of conditions such as RF environment, location, time.
· The procedure of data collection performed by the UE or the network can be time-consuming until reaching the targeted training dataset (in terms of size and quality)
· The network can provide additional data for the UE if the AI/ML model details are known by the network. However, the quality of these provided additional data in terms of improving model performance is uncertain (for e.g., source, context). 

Therefore, in order to address such challenges, additional synthetically generated data, or data augmentation (DA) can be one possible way-forward. DA is well-known technique used in machine learning and can be used to increase the generalizability and robustness of trained data model, but the quality of the augmented data may be questionable.
Specifically, for AI/ML positioning, DA can be useful to estimate features related to localization such as LOS/NLOS classification or direct position estimation. For example, the target device may perform spatial interpolation and report corresponding quality of DA to NW to address challenges such as cost for positioning data collection, class imbalance and data scarcity.
Formally, if a set of data {A} is collected for model training, a second set {B} can be generated synthetically with DA technique and used to create variations on the same site but for different UE locations (Figure 5). Data set {B} can either be used:
· to enrich training dataset and realize the training on {A}+{B}, 
· Perform training on data set {A} and then realize AI/ML model test on data set {B} 
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Fig. 5: Data augmentation example 
Potential specification impact:
The mechanism for data augmentation is shown in Figure. 6, which requires network assistance in order to ensure efficient generation of the additional dataset. For example in order to perform the data augmentation following procedure may follow:
· UE send data augmentation request to the network with indication mentioning the required percentage of data for given ML model training.
· The network can then assess the request of the UE by providing directly the configuration or collected measurements from other UEs for data augmentation.  
· In case of direct measurements, the UE can tune the parameters of the data augmentation procedure such as the error between augmented data and data reported from other UEs is minimized 
· UE can then perform data augmentation based either on network recommendation or alone.
· Additionally, UE may report feedback message to the network indicating data augmentation performance such as achieved interpolation accuracy. 
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Fig. 6: Data Augmentation call flow 
Observation-9: The AI/ML model deployed at UE used for positioning could be vendor specific or proprietary algorithm (e.g., black box).
Observation-10: The challenges related to AI/ML model training related to dataset collection, quality and required network assistance could be addressed with the help of additional synthetic data or data augmentation.
Observation-11: AI/ML model generalization can be realized on the variations of the dataset on the same site/area but for unseen UE locations thanks to the use of DA technique.
Proposal-6: RAN1 to further study AIML model performance aspects considering data augmentation solutions and their possible specifications impact.

Model Monitoring and Update
Solutions addressing this agreement related to model monitoring and update will be discussed in this section:
Agreement
Regarding AI/ML model monitoring and update, to study and provide inputs on potential specification impact at least for the following aspects of AI/ML based positioning accuracy enhancement
· AI/ML model monitoring performance metrics
· Condition of AI/ML model update
· Reference signals and measurement feedback/report
· Other aspects are not precluded

Model transferability 
One of the problems of ML-based localization is that it does not account for specific RF limitations (also referred to as RF imperfections) of the deployed host types (e.g., handheld UE, RSU, gNB). Examples of RF limitations/imperfections are dependent on the HW limitations of the different antenna configurations and form factors, ADC resolutions, crystal oscillators. The various RF imperfections are known to introduce a combination of carrier frequency offset, sampling time offset, TX/RX beam offsets, clock offsets and drifts, phase noise, etc. 
Observation-12: Considerations related to RF limitations translate into an additional phase rotation and delays of the positioning signal by the RF chain, as observed at the baseband receiver. As a result, a positioning entity (UE, TRP, etc.) hosting the ML positioning function experiences certain RF-based signal distortions which are not considered when training the model and are wrongly absorbed into the positioning measurement. Such imperfections are different for different host type devices, for example a PRU or gNB hosting the model would require adapting the model to their own RF-specific characteristics.
There is a need therefore for a framework through which the generic ML positioning model is customized to the specific NR elements host types. Specifically, before the ML model is deployed on a large scale, it is refined based on at least intrinsic characteristics (e.g., RF limitations) of the NR element types, including target UE, PRU, or gNBs.
Proposal-7: RAN1 to consider a framework for positioning, through which the generic ML positioning model is customized to the specific NR elements host types - including target UE, PRU, or gNBs.
Potential specification impact:
Such refinement may be coordinated by a central unit e.g., LMF, which may select a head NR unit (NR-HU) to assist with such model tailoring. NR-HU becomes thus representative for a given NR element type, and thus for a given expected intrinsic distortion range. Then, the model is refined by/with help of NR-HUs so that it is best customized to compensate for the element-specific distortion. To perform the model adaptation, the central unit may provide to NR-HU the generic ML model and request that the model tailoring is performed by the NR-HU themselves. Alternatively, the central unit may request the NR-HU to collect, timestamp and transfer its training data and specify its model constraints (e.g., maximum number of inputs and their sampling resolution, depth and type of the neural network). The selection of NR-HU and the type of assistance information exchanged bidirectionally between the LMF and NR-HU is expected to require standardization by RAN1. 
Proposal-8: RAN1 to consider model refinement (monitoring/update) to be coordinated by the LMF with the support of the units where inference is expected to be conducted. RAN1 to assess the necessary support information that the units may provide to the LMF, depending on where the model refinement is performed. 
1.1.2 Impacts related to AI/ML model monitoring
As discussed in the Rel-18 study item [1], it is important study to the potential specification impact of the AIML model monitoring including testing and validation for the given use case.
Considering the UE-based or NW-based positioning use case where the given AI/ML model is deployed either at the UE side or network side, it is relevant to understand how to monitor test and validate the model potentially without knowing the model details. Specifically, it is expected that when the ML model is deployed at the UE side, there would be multiple challenges associated to monitor, test/validate the given UE AI/ML model. Few of them are listed here:
· UE vendor may not prefer to expose the details of used AI/ML model for positioning 
· The network would not able to monitor the positioning KPI (e.g., positioning accuracy) performance of the UE-based AI/ML model. 
· Dynamic characteristics of wireless environment make the trained UE AIML model to be specific to the given environment. In such scenarios, it would be beneficial for the network or UE to monitor, test and validate the   performance of the AI/ML model before using it for inference.

Therefore, network require to monitor, test and validate the given AIML model performance and may fine tune or update, re-select or deactivate the AI/ML model. For this propose, the required data or “labelled data” could be possibility make it available at the UE with assistance from the network to test/validate the accuracy performance of the model. 
Specifically for model monitoring, the one-step or two step positioning as mentioned in [5], testing and validation would be required. For example, in two-step positioning, to increase the confidence on the training data and the model output the intermediate feature extraction shall be test/validate against the “label data”. The “labels” represents the ground truth and example of such labels could be true LOS/NLOS classification or true location of UE. Data labelling is not for free, it typically requires external gears/devices support for an in-field measurement. Positioning reference unit (PRU) which was introduced and discussed in 3GPP Release 17 in RAN1 #105e, is intrinsically suitable to accommodate real-world measurement and provides labels for AIML based model. For example, network assistance can be used to provide the PRU positioning measurement report and their associated true labels to test/validate the given AIML model without knowing the details of AIML model at the UE. Moreover, the PRU positioning measurement and their corresponding labelled ground truth can also be used to fine tune the training of the AI/ML model at the UE. 
Observation-13: The AI/ML model deployed at UE used for positioning could be implementation-specific.
Observation-14: Labelled Ground truth data (for e.g., provided by PRU) is required to monitor the AI/ML model to increase the confidence of the model.

Potential specification impact:
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Fig. 7: Mechanism to monitor model performance and trigger possible actions.
The mechanism for model performance monitoring is as shown in the figure above. Here we consider the scenario where UE is the node responsible for model training and inference. In case the UE moves to a new network coverage area or to a different region within the same network which possibly might impact the model performance, the UE could request the LMF to share possible ML test or validation data. The LMF could then collect the data from the PRU or other “trusted” devices and share with the UE. The UE could use the received test/validation data to monitor the model performance. The UE could compute and report model monitoring metric to the LMF, where the details of the metric could depend on whether direct or AI/ML assisted positioning method. Based on the reported model monitoring performance metric, the LMF could trigger actions such as finetuning or updating the model, model deactivation and switching to classical positioning methods, etc.
Observation-15: In the scenario where the UE moves to a new network coverage area or to a different region within the same network which possibly might impact the model performance, the UE could request the LMF to share possible ML test or validation data, which is then used to monitor model performance.
Proposal-9: RAN1 to study further solutions for the monitoring and update of UE-based AI/ML model by employing PRU measurement and their corresponding labelled ground truth. 


Impacts on applicable positioning methods based on scenarios
As discussed earlier, there are two potential approaches for AI/ML solutions being discussed in 3GPP RAN1, which includes the one-step / direct and two-step / indirect positioning [5]. While the main goal of both of these approaches is to derive UE location with high accuracy, there are various ways in which this objective could be achieved. Currently, it is expected that each positioning approach would be considered for a particular scenario, and performance evaluated in terms of model complexity and positioning accuracy. However, such considerations do not take into the fact that different UEs might be traversing through different scenarios as part of its normal operation. Thus, evaluating positioning approaches from the standpoint of a particular scenario might not provide the complete picture.
As the evaluation results related to scenario dependence of positioning approaches shown in [4] indicate, there is significant scenario dependence – in terms of data used for model training as well as the overall radio environment in terms of clutter and NLOS occurrence. This problem requires further investigation, especially in the context of enabling the network and the UE to determine the appropriate positioning approach, depending on KPIs such as positioning accuracy and QoS, as well as UE capabilities. An example for the scenario-dependent configuration of positioning method is as shown in the figure below. Here the assumption is that with the changes in clutter density, the network could configure different positioning methods.
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Fig. 8: Overview of scenario-dependent configuration of positioning methods.
Observation-16: There is significant scenario dependence – in terms of data used for model training as well as the overall radio environment in terms of clutter and NLOS occurrence.
Proposal-10: RAN1 to study further performance metrics and model update criteria that enable the network and the UE to determine the appropriate positioning approach, depending on KPIs such as positioning accuracy and QoS, as well as UE capabilities.
Potential Specification Impact:
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Fig. 9: Scenario for model and positioning method update.
An example scenario for possible model and positioning method update is as shown in the figure above. Here the UE-1 has moved from a heavy clutter zone to a low clutter zone. In this scenario, the LMF-based direct positioning method is the most optimal solution for the heavy clutter zone, whereas the UE-based direct AI/ML positioning method is seen as the best approach. In this scenario, the network could signal the positioning method, along with the model or inference node update signaling to the UE. It is important to note that the scenario dependence of AI/ML models and related specification impacts would mainly depend on whether direct or AI/ML assisted positioning is used, and the type of positioning method applied (for e.g., UE-based, UE-assisted/LMF-based or NG-RAN node assisted). For UE-based positioning method, the network could provide assistance information in terms of whether direct or AI/ML assisted positioning method could provide better performance in a given scenario. As discussed in Sec 2.2, in some scenarios where UEs have limited AI/ML capabilities, new positioning methods such as the LMF-assisted/UE-based approaches could also be considered where the AI/ML model could be hosted at the LMF, providing assistance information to the UE for localization. The network could also provide the AI/ML model monitoring metrics – such as the ratio of observed LOS/NLOS links, estimated horizontal positioning accuracy, etc., along with potential conditions for performing the model update – such as the estimated deterioration in positioning accuracy estimates, significantly high variation in observed LOS/NLOS links, etc. 
Observation-17: The scenario dependence of AI/ML models and related specification impacts would mainly depend on whether direct or AI/ML assisted positioning is used, and the type of positioning method applied (for e.g., UE-based, UE-assisted/LMF-based or NG-RAN node assisted).
Observation-18: For UE-based positioning method, the network could provide assistance information in terms of whether direct or AI/ML assisted positioning method could provide better performance in a given scenario, and in some cases where UEs have limited AI/ML capabilities, new positioning methods such as the LMF-assisted/UE-based approaches could also be considered where the AI/ML model could be hosted at the LMF, providing assistance information to the UE for localization.
Proposal-11: RAN1 to further study mechanisms for signaling model and AI/ML based positioning method update, due to various criteria such as mobility and positioning accuracy estimation quality deterioration.
In the above discussion, AI/ML based positioning method and model update has been used synonymously. However, it is important to clarify whether depending on scenario-related factors, if the AI/ML based positioning method is changed from direct positioning to AI/ML assisted positioning, where the model output, possible measurement report/feedback is changed could be considered as model update.
Proposal-12: RAN1 to discuss and agree whether switching the AI/ML based positioning method could be considered as model update.

Model Inference Input and Output 
During RAN1-109e meeting, the following agreement was made (relevant portion highlighted):
Agreement
Companies are encouraged to study and provide inputs on potential specification impact at least for the following aspects of AI/ML approaches for sub use cases of AI/ML for positioning accuracy enhancement.
· AI/ML model training
· training data type/size
· training data source determination (e.g., UE/PRU/TRP)
· assistance signalling and procedure for training data collection
· AI/ML model indication/configuration
· assistance signalling and procedure (e.g., for model configuration, model activation/deactivation, model recovery/termination, model selection)
· AI/ML model monitoring and update
· assistance signalling and procedure (e.g., for model performance monitoring, model update/tuning)
· AI/ML model inference input
· report/feedback of model input for inference (e.g., UE feedback as input for network side model inference)
· model input acquisition and pre-processing
· type/definition of model input
· AI/ML model inference output
· report/feedback of model inference output
· post-processing of model inference output
· UE capability for AI/ML model(s) (e.g., for model training, model inference and model monitoring)
· Other aspects are not precluded
· Note: not all aspects may apply to an AI/ML approach in a sub use case
· Note2: the definitions of common AI/ML model terminologies are to be discussed in agenda 9.2.1

A related agreement on the node for model inference and related specification impact was made during RAN1-110:
Agreement
Study aspects in terms of potential benefit(s) and requirement(s)/specification impact(s) of AI/ML model training and inference in AI/ML for positioning accuracy enhancement considering at least
· UE-side or Network-side training
· UE-side or Network-side inference
· Note: model inference at both UE and network side is not precluded where proponent(s) are encouraged to clarify their AI/ML approaches
Note: companies are encouraged to clarify aspects of their proposed AI/ML approaches for positioning when AI/ML model training and inference are not performed at the same entity 

Based on the above agreements, it is important to clarify the need for possible inputs from the network to the UE – in the form of new signaling, especially in scenarios where UE-based model inference is done. In this section, we focus possible issues that might arise in case of UE-based model inference, and possible signaling support that the network can provide to the UE. 

Network-based Feature Selection for UE-based Positioning Accuracy Improvements
AI/ML algorithms for classifying the channels as LOS or NLOS typically make use of the fact that the channel measurements or CIRs look different for LOS and NLOS links. Such differences are numerically expressed through the values of relevant features extracted from CIRs. For example, NLOS CIRs are usually associated to a higher delay spread, a less peaky CIR shape, a lower strongest-to-mean power ratio, a higher rise time, etc. Such features could be measured signal parameters such as RSRP, or can be derived using measured signals such as RMS delay spread.
However, the radio environment can be very diverse among different scenarios such as due to size, distribution, and material of the objects or blockers leading to differences in penetration, reflection, and diffraction of radio signals from such objects. Furthermore, available bandwidth, e.g., depending on the capability of the UE, impacts the shape of the CIRs significantly by determining their time resolution and further affecting the features extracted from CIRs.
To illustrate, as can be seen from Fig. 7, RMS delay spread can be used as a distinguishing channel feature for LOS/NLOS classification when 500 MHz of BW is available in Scenario 1 (Fig. 7.a). Whereas its distinguishing ability is degraded for 50 MHz or lower BW in Scenario 1. On the other hand, in Scenario 2 (Fig. 7.b), RMS delay spread is not a good feature for classification even for a 500 MHz of available bandwidth.
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(a) Scenario 1
 [image: ]
(b) Scenario 2
Fig. 10: Distribution of RMS delay spread for LOS vs NLOS measurements with different available bandwidths in (a) Scenario 1 and (b) Scenario 2.
It is evident from the above discussion that the optimal selection of channel features to be used for LOS/NLOS classification is highly dependent on the environment setting and the available bandwidth of the channel for the measurements. 
Observation-19: LOS/NLOS classification using AI/ML depends on the environmental setting as well as the bandwidth capabilities of the UE.
To mitigate the impact of diverse environmental setting and bandwidth capabilities on the effectiveness of AI/ML-based NLOS classification, the network may adapt the channel features used for the classification based on the identified conditions and capabilities. That is, the network can determine a set of features associated with a given setting (e.g., a specific set of cells) and the bandwidth reported by the UE that is best suitable for LOS/NLOS classification purposes using AI/ML models. As an example, the network can signal to the UE that a certain set of features (e.g., Kurtosis, RMS delay spread or mean excess delay) should be used for the classification. 
Observation-20: For optimal NLOS/LOS classification, the channel features used may not be static but dynamically updated based on the identified environmental conditions and UE capabilities.
Nevertheless, environmental conditions may change during a positioning session meaning that the proper set of channel features should be updated as well. In such case, and in order to avoid additional signalling with respect to the channel feature updates, the network may provide to the UE not just a single set of channel features but rather a superset (i.e, a list) of channel feature sets. This list of feature sets should apply to multiple environmental scenarios (e.g., based on the cell the UE is residing) and the UE bandwidth capabilities, and thus may be ranked as such. By obtaining such ranked feature set list, the UE may be configured in advance with the set of channel features to be used for AI/ML NLOS classification. 
Proposal-13: Network should be able to assist UE for LOS/NLOS classification by means of providing to the UE a ranked list of channel features. The ranked list should based on the UE bandwidth capabilities as well as the environmental setting. 
In order to provide the ranked list of channel features, LPP protocol should be extended to include this information as part of the assistance data.
Proposal-14: RAN1 to consider and agree on possible extensions to LPP protocol with enhanced assistance data.


Positioning Accuracy Improvement Under Heavy NLOS Using Reinforcement Learning based Positioning Anchor Selection
One of the challenges in positioning is selection of positioning anchors to do positioning measurements. Various factors related to anchors have a direct impact on the positioning accuracy. These include the channel quality between the target UE and the anchors (e.g., LOS/NLOS, SINR), geometric arrangement of anchors impacting the geometric dilution of precision (GDOP), confidence of anchor locations, relative distance and/or speed between the anchors and the target UE. The anchor selection problem is further complicated when a set of heterogeneous anchors having different mobility and characteristics available at a given time:
· Mobility: Mobility conditions constantly impact the above factors, thus requiring optimization of dynamic selection of anchors for a mobile target UE. Further, new nodes enter and exit the range of the target UE as it moves.
· Heterogeneity of anchors: When combined with mobility, a variety of anchor types may become available at a given time: gNB/TRP, GNSS, UE, RSU, PRU, etc. Different anchor types might have different characteristics such as being static or mobile, having a known/not known location, or different interfaces (UL/DL/SL) to the target UE. Further, depending on the scenario, UEs might make use of different types of anchors. For example, when there is not sufficient number of TRPs available, UEs can resort to other UEs for positioning. Similarly, for ranging purposes, which is of high importance for V2X use cases, UEs can simply select other UEs nearby as anchors to do relative distance and/or angle estimations using sidelink.

Common approaches to solve the anchor selection problem rely on various channel metrics between the UEs and anchors, such as LOS/NLOS classification, ToA, etc. Based on such metrics, anchors are then (not) selected if they (not) satisfy certain criteria, e.g., a channel metric value below/above threshold. However, such approaches might become inefficient under mobile conditions, where the thresholds need to be dynamically adjusted, e.g., according to the varying channel conditions.
To help make efficient decisions on anchor selection under dynamically mobile conditions with a multitude of candidate anchors available, AI/ML methods could be instead utilized. In particular, reinforcement learning (RL) based methods have been shown to be successful in handling tasks in time-varying dynamic environments under uncertainty, and have recently found promising applications in the wireless communications domain, making them a strong candidate for this problem.
The RL agent would make decisions on anchor selection -- defined as actions, based on its observations from the mobile environment – defined as the state of the environment. The environment state would consist of several features of potential anchor(s) for selection, such as channel conditions and mobility status of the anchors. The decisions on anchor selection are based on the agent’s policy, which can be represented by a deep neural network processing the input environment state. The agent’s policy is trained with the use of a reward signal provided upon its each action. The reward signal indicates how good the action selection was, which could, e.g., reflect the positioning QoS, such as in terms of accuracy.To enable such RL-based solution, information conveying the environment state, action, and reward needs to be signaled between the entities, also depending on whether the RL agent is implemented at the UE or the network side. In particular, requesting of an anchor selection from the entity maintaining the RL agent, and the related response (namely, the selected action) needs to be signaled. In addition, the reward signal, such as specified in terms of a positioning accuracy metric, needs to be signaled from the entity that can calculate it, e.g., LMF, to the target UE, if the model is trained at the UE side. In order to construct the state information, the entity where RL model is located also needs to gather related information from other entities. For example, the target UE may request information from potential anchors regarding their mobility, e.g., if their static or not, and whether they have a known location or not.
Proposal-15: Study required signaling mechanisms between the network entities (e.g., UE and LMF) to support requesting/responding for selecting anchor(s) for a positioning session, indication of a reward metric to train a reinforcement learning (RL) model for the anchor selection, as well as exchange of information required to construct the state that is input to the RL model.

Conclusion
In this contribution we make the following observations and proposals:

Observation-1: For each positioning use-case, different collaboration levels may be considered, depending on the task to be solved for the use-case. For example, a task may be: 
· Training data collection and labeling
· Model training
· Model refinement, etc.
Observation-2: For UE-based positioning where UE is also the node where the training and inference is conducted, there are two scenarios in which a new positioning method could be applied: (1) during the data collection and training phase where the training and testing/validation data has significant amount of noise; and (2) during the inference phase where the input data is noisy or there is high uncertainty related to the flags/indicators estimated by the UE (for e.g., LOS/NLOS flag).
Observation-3: From UE location privacy perspective, it is important to note that in these scenarios, since intermediate features / parameters are reported from the UE to the LMF, the network would still be unaware of the UE location.
Observation-4: For ML model training, the data has different value or importance in improving an AI/ML model’s estimation accuracy.
Observation-5: in ML model training, training efficiency in terms of accuracy climbing versus training data is sensitive to the  training dataset quality. 
Observation-6: Answering the noisy label problem is expected to be use-case dependent and may require some assistance from the network. For example, the network may provide a set of rules for label quality evaluation, where the network may indicate one or more rules to reject/accept a sample with one or several noisy labels.  
Observation-7: The potential specification impact from noisy ground truth labels during the data collection and model training phase could depend on whether UE-side or network-side training is considered.
Observation-8: For network-side training, label correction/modification could be done without any specification impacts, as long as the network has sufficient information related to the location of the PRUs.
Observation-9: The AI/ML model deployed at UE used for positioning could be vendor specific or proprietary algorithm (e.g., black box).
Observation-10: The challenges related to AI/ML model training related to dataset collection, quality and required network assistance could be addressed with the help of additional synthetic data or data augmentation.
Observation-11: AI/ML model generalization can be realized on the variations of the dataset on the same site/area but for unseen UE locations thanks to the use of DA technique.
Observation-12: Considerations related to RF limitations translate into an additional phase rotation and delays of the positioning signal by the RF chain, as observed at the baseband receiver. As a result, a positioning entity (UE, TRP, etc.) hosting the ML positioning function experiences certain RF-based signal distortions which are not considered when training the model and are wrongly absorbed into the positioning measurement. Such imperfections are different for different host type devices, for example a PRU or gNB hosting the model would require adapting the model to their own RF-specific characteristics.
Observation-13: The AI/ML model deployed at UE used for positioning could be implementation-specific.
Observation-14: Labelled Ground truth data (for e.g., provided by PRU) is required to monitor the AI/ML model to increase the confidence of the model.
Observation-15: In the scenario where the UE moves to a new network coverage area or to a different region within the same network which possibly might impact the model performance, the UE could request the LMF to share possible ML test or validation data, which is then used to monitor model performance.
Observation-16: There is significant scenario dependence – in terms of data used for model training as well as the overall radio environment in terms of clutter and NLOS occurrence.
Observation-17: The scenario dependence of AI/ML models and related specification impacts would mainly depend on whether direct or AI/ML assisted positioning is used, and the type of positioning method applied (for e.g., UE-based, UE-assisted/LMF-based or NG-RAN node assisted).
Observation-18: For UE-based positioning method, the network could provide assistance information in terms of whether direct or AI/ML assisted positioning method could provide better performance in a given scenario, and in some cases where UEs have limited AI/ML capabilities, new positioning methods such as the LMF-assisted/UE-based approaches could also be considered where the AI/ML model could be hosted at the LMF, providing assistance information to the UE for localization.
Observation-19: LOS/NLOS classification using AI/ML depends on the environmental setting as well as the bandwidth capabilities of the UE.
Observation-20: For optimal NLOS/LOS classification, the channel features used may not be static but dynamically updated based on the identified environmental conditions and UE capabilities.

Proposal-1: RAN1 to study use-case-based collaboration levels between gNB and UE. Furthermore, RAN1 may assess whether different collaboration levels may be needed within one use-case for e.g., use-case and task-based collaboration level.
Proposal-2: RAN1 to consider LMF-assisted/UE-based as a new positioning method.
Proposal-3: RAN1 to study further potential impacts on data quality and on demand data labelling and selection.
Proposal-4: Model training, retraining or finetuning can be triggered when the model detects LOS/NLOS estimation uncertainty and subsequentially new data is labelled on-demand. 
Proposal-5: RAN1 to study further potential impacts from network assistance required for UE-side training with noisy labels.
Proposal-6: RAN1 to further study AIML model performance aspects considering data augmentation solutions and their possible specifications impact.
Proposal-7: RAN1 to consider a framework for positioning, through which the generic ML positioning model is customized to the specific NR elements host types - including target UE, PRU, or gNBs.
Proposal-8: RAN1 to consider model refinement (monitoring/update) to be coordinated by the LMF with the support of the units where inference is expected to be conducted. RAN1 to assess the necessary support information that the units may provide to the LMF, depending on where the model refinement is performed. 
Proposal-9: RAN1 to study further solutions for the monitoring and update of UE-based AI/ML model by employing PRU measurement and their corresponding labelled ground truth. 
Proposal-10: RAN1 to study further performance metrics and model update criteria that enable the network and the UE to determine the appropriate positioning approach, depending on KPIs such as positioning accuracy and QoS, as well as UE capabilities.
Proposal-11: RAN1 to further study mechanisms for signaling model and AI/ML based positioning method update, due to various criteria such as mobility and positioning accuracy estimation quality deterioration.
Proposal-12: RAN1 to discuss and agree whether switching the AI/ML based positioning method could be considered as model update.
Proposal-13: Network should be able to assist UE for LOS/NLOS classification by means of providing to the UE a ranked list of channel features. The ranked list should based on the UE bandwidth capabilities as well as the environmental setting. 
Proposal-14: RAN1 to consider and agree on possible extensions to LPP protocol with enhanced assistance data.
Proposal-15: Study required signaling mechanisms between the network entities (e.g., UE and LMF) to support requesting/responding for selecting anchor(s) for a positioning session, indication of a reward metric to train a reinforcement learning (RL) model for the anchor selection, as well as exchange of information required to construct the state that is input to the RL model.
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