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Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, agreed in [1], includes a use case of positioning accuracy enhancement, and objectives of the SI is as follows,  
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced




In this contribution, we mainly focus on proposals that were not agreed and topics for further study indicated as part of the agreements which were made as part of the RAN1-110 meeting. Evaluation results for potential AI/ML based positioning accuracy enhancements are also presented.  
[bookmark: _Hlk510705081]General Evaluation Aspects
Deployment Scenarios and Simulation Assumptions
Deployment Scenarios 
Regarding the deployment scenario used for evaluations, the following agreement was made during RAN1-109-e meeting:
Agreement
For evaluation of AI/ML based positioning, at least the InF-DH sub-scenario is prioritized in the InF deployment scenario for FR1 and FR2.
As part of email discussions during the meeting, there were other scenarios considered such as InF-SH, DL and SL, along with UMi and UMa, as indicated in the following proposal that was discussed but not agreed.
[bookmark: _Hlk103700668]Proposal 2.1.4-3
For evaluation of AI/ML based positioning in InF scenario, which InF sub-scenario should be prioritized in addition to InF-DH?
Alt 1. None. (InF-DH with two clutter settings {60%, 6m, 2m} and {40%, 2m, 2m} are adequate)
Alt 2. InF-SH (i.e., same as in TR38.857)
Alt 3. InF-DL (e.g., BS height = 1.5 m as in TR38.901 calibration)
Alt 4. InF-SL (e.g., Clutter parameters = {20%, 2m, 10m} as in TR38.857, BS height = 1.5 m as in TR38.901 calibration)

Considering the significant number of aspects that needs to be considered as part of the study such as various simulation assumptions, methodology and performance aspects, it would be beneficial for RAN1 to limit the Rel-18 study on AI/ML for positioning accuracy enhancements to InF-DH sub-scenario. Thus, it could be agreed that other sub-scenarios would not be evaluated as part of the Rel-18 study item.
Observation-1: Considering the significant number of aspects that needs to be considered as part of the study such as various simulation assumptions, methodology and performance aspects, it would be beneficial for RAN1 to limit the Rel-18 study on AI/ML for positioning accuracy enhancements to InF-DH sub-scenario.
Proposal-1: For evaluation of AI/ML based positioning, only InF-DH sub-scenario should be considered as part of the Rel-18 study item.
[bookmark: _Hlk104367439]
Performance Targets and Key Performance Indicators (KPI)
Generalization of AI/ML Models
As part of RAN1-110 meeting, the following proposal was raised, however it was not agreed:
Proposal 7.2-2
For evaluation of AI/ML assisted positioning, the model generalization capability is investigated. The ML model is expected to be trained to handle both intra-site variations (e.g., moving objects) and inter-site variations.
· RAN1 discuss how to model inter-site variations.

One of the important aspect of model generalization relates to investigating how well a given AI/ML model performs within variations of the same scenario (also called in some cases intra-site variations). This aspect has been already agreed as part of the previous meeting. However, it is perhaps not practically feasible to evaluate the model performance using a wide variety of deployment types – for e.g., model trained using InF scenarios and tested using Umi, or vice versa. It is also challenging to estimate for e.g., how a direct AI/ML positioning model trained using an InF scenario could be tested using Umi scenario and be expected to provide accurate UE location. Thus, based on current agreements, it would be beneficial for RAN1 to limit the Rel-18 study on AI/ML for positioning accuracy enhancements to only intra-site variations, as previously agreed. RAN1 could also discuss and agree whether other approaches such as model update, finetuning or adapting the positioning method used, could be a better approach to handle possible variations within a particular scenario.

Observation-2: Evaluating the model performance using a wide variety of deployment types – for e.g., model trained using InF scenarios and tested using Umi, or vice versa, is not practically feasible.
Observation-3: It is unclear as to how a direct AI/ML positioning model trained using an InF scenario could be tested using Umi scenario and be expected to provide accurate UE location.
Proposal-2: RAN1 should agree to limit the Rel-18 study on AI/ML for positioning accuracy enhancements use case to only intra-site variations, as previously agreed.
Proposal-3: RAN1 to discuss and agree whether other approaches such as model update, finetuning or adapting the positioning method used, could be a better approach to handle possible variations within a particular scenario.

Other Performance Metrics: Optional and Intermediate KPIs
The following agreement was made during RAN1-110 meeting, on the topic of intermediate KPIs:
Agreement
For evaluation of AI/ML assisted positioning, an intermediate performance metric of model output is reported.
· FFS: Detailed definition of the intermediate performance metric of the model output

Intermediate KPIs are particularly relevant in the context of two-step or AI/ML assisted positioning, where the output of an AI/ML model could be used for deriving the UE location. As discussed in [4], there are various scenarios where two-step or AI/ML assisted positioning could perform better than direct or one-step positioning method. Thus, for such scenarios, it is important to quantify the intermediate KPIs together with the final KPI of horizontal positioning accuracy. Reporting intermediate KPIs will also help in having a better understanding of their impact on the final KPI of horizontal positioning error.
Proposal-4: For evaluation of two-step or AI/ML assisted positioning, intermediate KPI(s) such as the accuracy of LOS/NLOS identification, accuracy of timing and/or angle of measurement, accuracy of the likelihood measurement, etc., should be reported together with the horizontal positioning accuracy.
On the topic of possible intermediate KPIs that could be reported, the following question was raised, however, no related agreements were made:
Question 4.4.1-2
Which of the following is considered a KPI for AI/ML based positioning, and expected to be reported?
(a) Latency
(b) Resource efficiency (e.g., amount of reference signal needed)
(c) UE feedback overhead
(d) Other

Various optional KPIs such as position estimation latency, radio resource efficiency – especially in terms of additional overhead for training/testing models and higher layer signaling overhead were proposed as part of the study. The position estimation latency is important since it provides additional clarity in terms of the cost of model complexity. For e.g., models with higher complexity and computational overhead could induce higher latency for position estimation. Radio resource efficiency KPI could take into account the overhead in terms of radio resource consumption for training and test data exchange between the network and the UE. It could also consider other factors such as positioning reference signal density. Higher layer signaling overhead could take into account the additional signaling required for a particular AI/ML based solution in comparison to the Rel-17 positioning mechanisms.
Proposal-5: Optional KPIs such as position estimation latency, radio resource efficiency and higher layer signaling overhead should be reported together with the horizontal positioning accuracy.

Dataset Related Aspects
During RAN1-110 meeting, the following proposal was made related to the use of a range of user densities, however it was not agreed:
Proposal 5.2-3
For evaluation of AI/ML based positioning, study the impact from the user area density in the training datasets. A range of user area density is to be evaluated. The user area density is reflected by training dataset size.

The availability of good quality data for model training and testing/validation is one of the key challenges in machine learning, especially in the context of positioning, where obtaining the ground truth labels in terms of UE location, LOS / NLOS condition, etc., is challenging. These challenges are best understood through the evaluation of model performance using real-world data from actual deployments. They could also be emulated in a simulated environment by assuming the availability of a limited dataset which could be a subset of the grid-based or uniform distribution of UEs. As discussed in Sec. 3.1.3 of [4], there are various techniques such as data augmentation that needs to be applied in such scenarios in order to ensure sufficient model performance. The evaluations related to lack of availability of diverse dataset on model performance is presented in Sec. 3.3 of this contribution, where it is shown that additional techniques might be required in scenarios with limited availability of diverse data. In terms of training dataset size as an indication of user area density, it is important to note that this assumption is valid only for uniform distribution of UEs within the simulation setting.
Observation-4: The availability of good quality data with sufficient diversity of positioning ground truth labels with accurate information, for model training and testing/validation is one of the key challenges in AI/ML based positioning.
Observation-5: It is important to note that training dataset size as an indication of user area density is valid only for uniform distribution of UEs within the simulation setting.
Proposal-6: For evaluation of AI/ML based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs, while evaluating model performance.

Model Refinement / Tuning
Related to model refinement or tuning, the following agreement was made during RAN1-110, and a question was raised related to RAN1 methods for performing model monitoring:
Agreement
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
· training dataset setting (e.g., training dataset size necessary for performing model finetuning)
· horizontal positioning accuracy (in meters) before and after model finetuning.

Question 3.3.3-2
Do you support that RAN1 evaluate methods for performing model monitoring for AI/ML based positioning? 

As discussed in [3], for ML model training, the network or UE may use a pre-trained base (initial) ML model instead of a model with random weights. The base model can be refined/tuned using a small training dataset measured in the environment. The base model can be obtained from training with samples measured/simulated in an echo-chamber. In this case, the model is only trained in the LOS condition, and reusing the learned weights can be seen as transfer learning (domain adaptation). Although an echo-chamber is a general source domain, adaptation to new environment may need a large dataset measured in the deployed environment. Another option of obtaining base ML model is to use meta learning approach. Here, a general (meta) model is trained using the training samples measured in different environments.
Proposal-7: For evaluation of AI/ML based positioning, RAN1 should assess the need for standardizing the procedures for triggering and/or controlling and/or monitoring the ML model adaptation and fine-tuning after model deployment.

One-Sided vs. Two-Sided Models
On the topic of one-sided and two-sided models, the following proposal was discussed during RAN1-110 meeting, however no related agreements were made:
Proposal 3.2.1-2
For evaluation of AI/ML-based positioning, one-sided model is prioritized over two-sided model.
Here one-sided models imply that only one AI/ML model is deployed, with applicable positioning methods including direct and AI/ML-assisted positioning methods. Two-sided models imply that there are two AI/ML models, possibly deployed at the UE-side and network-side, with the output of the first model provided as the input for the second model. Most of the solution approaches that were presented so far as part of this study have been considered one-sided models, with the out of AI/ML model either directly indicating the UE location or providing intermediate features that are used by classical positioning approaches in order to estimate the UE location. The potential benefits of two-sided models as compared to one-sided model is also unclear. Taking these factors into consideration, it would be beneficial if the Rel-18 study on AI/ML for positioning use case focus only on one-sided models.
Observation-6: The solution approaches that were presented so far as part of this study have been considered one-sided models, with the out of AI/ML model either directly indicating the UE location or providing intermediate features that are used by classical positioning approaches in order to estimate the UE location.
Proposal-8: RAN1 to further study one-sided models in Rel-18, and two-sided models could be considered as deprioritized.

Model Input Related Discussions
On the topic of model input, the following proposal was made during RAN1-110, however it was not agreed:
Proposal 7.2-3
For evaluation of AI/ML assisted positioning, as a baseline, CIR is used as model input.
The topic of baseline model input is relevant, since it ensures that the model could be deployed at the UE-side or network-side without any potential impacts to standards in terms of defining new measurements or signaling. However, on the use of CIR as model input, currently, the UE/TRP can report only the timing and RSRP values, and the signaling of CIRs from the UE to the network is not supported. Thus, if CIR is agreed as a baseline model input, that would imply that only UE-based direct or AI/ML assisted positioning methods are considered. However, in such a scenario, there might be challenges related to acquiring labeled training data from other UEs or from the network. Thus, it would be beneficial for RAN1 to consider received signal / RSRP as a baseline model input.
Observation-7: The UE/TRP can report only the timing and RSRP values, and the signaling of CIRs from the UE to the network is not supported.
Observation-8: If CIR is agreed as a baseline model input, that would imply that only UE-based direct or AI/ML assisted positioning methods are considered. However, in such a scenario, there might be challenges related to acquiring labeled training data from other UEs or from the network.
Proposal-9: RAN1 to consider RSRP as a baseline model input for evaluation of direct and AI/ML assisted positioning.

Evaluation Results for Positioning Sub-Use Cases
On-demand LOS/NLOS labelling
For many traditional positioning methods (including TDOA, TOA, AOA), line-of-sight (LOS) propagation condition is a prerequisite. The positioning accuracy will deteriorate if wrongly used for non-line-of-sight (NLOS) conditions. Therefore, ML based LOS/NLOS classification is the first and critical step for a 2-step positioning approach. Considering data-intensity in ML model training and in-field labelling of LOS/NLOS requires devices like positioning reference unit (PRU) for in-field measurement, we propose to assess the necessity of requesting LOS/NLOS labelling before requesting a PRU for in-field measurement and labelling. That is, for ML model training or finetuning, the ML model takes in a channel observation (like CIR) and assess its estimation uncertainty on the LOS/NLOS classification, if and only if current ML model is not confident on the estimation output, it will request for a PRU for in-field measurement on ground-truth LOS/NLOS-tag, otherwise, for CIR that current ML model can estimate LOS/NLOS with high confidence, no labelling is required. With the selectively labelled data, training can become more efficient (in terms of required data size) in model training. On-demand labelling and training can be beneficial in making data labelling and training high-efficient, avoiding unnecessary labelling and improve the training efficiency in terms of training data size. 
Deployment Scenario and Simulation Assumptions 
To study the necessity of LOS/NLOS estimation uncertainty assessment in a 2-step positioning, an evaluation comparison is conducted following the workflow in Fig.1. As on-demand labelling and training shows on left, in step-1, in which the input is the channel observation (e.g., CIR) and the ML model outputs both LOS/NLOS estimation and the estimation uncertainty. If and only if the estimation uncertainty is higher than a threshold, PRU is requested on-demand for LOS/NLOS labelling and then ML model training/finetuning is activated with on-demand labelled dataset. Step-1 will repeat until ML model training is accomplished. For comparison, on the right side, the model training using randomly labelled data is also evaluated where all CIRs are labelled without regarding estimation uncertainty. 
In step-2, which is same for both cases, based on the LOS/NLOS classification result by the ML models (trained in step-1), either traditional TDOA or fingerprint-based approach is used for position estimation for LOS and NLOS, respectively.
In step-1, the data used for training is collected from an agreed simulation environment of InF-DH scenario with clutter setting of {40%, 2m, 2m}, which is detailed in Table 1. The CIR from 18 TRPs are combined for a generic model training using supervised learning. The two of the above-mentioned training approaches (training with on-demand labelling and regular labelling) are conducted in parallel with their estimation accuracy monitored with the increase of training data with the results shown in Fig.2. 
There are multi methods that can be used to evaluate the method, like k-nearest neighbors (KNN), the other model is fully connected neural network (FCNN) and Random Forests (RF). KNN is evaluated herein as an example:
· Input of KNN: CIR of [100,1] vector;
· In KNN, Euclidian distance is used as the metric to measure the distance of x to its k nearest neighbours that falls respectively to LOS (as class-0) and NLOS (as class-1). The hyperparameter k in KNN is set as 32.
· Output of KNN is the LOS/NLOS detection results.
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Fig. 1 comparison of 2-step positioning with on-demand labelling and training (left) and regular data labelling (right) in step-1 and same step-2 for positioning


Table 1: Parameters used in the simulation setup.
	
	FR1 Specific Values

	Channel model
	InF-DH

	Layout
	Hall size
	InF-DH: 120x60 m

	
	BS locations
	18 BSs on a square lattice with spacing 20m, located 10m from the walls.
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	Room height
	10m

	Number of macro sectors per site
	1

	Penetration loss
	0dB

	Path loss model
	NR_InF_DH

	UE horizontal drop procedure
	UE's are dropped in a uniform random fashion across the entire layout while adhering to specified constraints on minimum distances.

	UE antenna height
	Baseline: 1.5m

	UE mobility
	3km/h

	Min gNB-UE distance (2D), m
	Random circle (gNBs are placed in a random circle located a given distance from the site location with min distance 1m.)

	gNB antenna height
	Baseline: 8m
(Optional): FFS

	Clutter parameters: {density: r, height: h, size: d}
	{40%, 2m, 2m}

	Note 1: According to Table A.2.1-7 in 3GPP TR 38.802




Performance Evaluation 
Performance comparison between training with random data selection and with on-demand labelled data are illustrated in Fig. 2. With the increase of data volume used for training, the LOS/NLOS estimation accuracy climbs for both approach and on-demand labelling approach is always leading. To reach a close-to-optimal accuracy level of 81 % for training based on random data selection, the number of required labelled data for training can be reduced by approximately 65% using on-demand labelling. It’s understandable for on-demand labelling has selective skipped the CIR that current ML model can already estimate with high confidence, therefore only high-informative data are selected for model training.
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Fig. 2: LOS/NLOS detection accuracy versus required labelled data volume in training between two approaches, random data labelling and on-demand labelling 
Observation-9: for example, with the increase of data volume used for training, the LOS/NLOS estimation accuracy climbs accordingly. To reach a close-to-optimal accuracy level of training based on random data selection like 81%, the number of required labelled data for training can be roughly reduced by 65% using on-demand labelling. 
Proposal-10: RAN1 to investigate further the use of on-demand labelling mechanisms for LOS/NLOS detection for it could effectively reduce the required LOS/NLOS labelling by PRU. 
It is noteworthy that for LOS/NLOS classification using KNN typed ML model, KNN’s intermedia results can be used directly to assess its estimation uncertainty without introducing extra computational complexity. While for FCNN typed ML model, taking the FCNN structure presented as option-b in Sec. 3.1.1 of [4] as an example, most of original NN parameters and intermediate results could be reused and only the last layer should be recalculated for estimation uncertainty assessment. As listed in Table 2, parameter number will increase from 0.24M (using random data selection) to 0.31M (using on-demand data selection) and FLOPs will increase from 2.38M to 4.33M accordingly. The gross number of training data for both training approaches is the same (13k samples). 

Table 2: Model information and evaluation results for AI/ML model for on-demand labelling and random labelling. 
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Required training data size to reach accuracy at 82%

	
	
	
	
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 1 BS
	Classification 0/1
	LOS (1) / NLOS (0)
	40%
	10K including evaluation
	2K 
	0.31M
	4.33M flops
	680 (red line in Fig. 2)

	
	Degree of classification confidence
	
	
	
	
	
	
	

	CIR from 1 BS
	Classification 0/1
	LOS (1) / NLOS (0)
	40%
	10K including evaluation
	2K 
	0.24M
	2.38M flops
	2010 (blue line in Fig. 2)



It’s noteworthy that the benefits from such on-demand labelling is 2-folds, reduced requirement on the training data size and augmented LOS/NLOS classification accuracy. As shown in Fig. 1, with such ML-assisted 2-step positioning scheme, if the intermedia result of LOS/NLOS classification is LOS in step-1, traditional TOA based approach will be used in the step-2 for positioning calculation, otherwise fingerprint based positioning will be considered. Therefore, if NLOS is wrongly classified as LOS, it will cause considerable positioning error by using LOS-dedicated approaches like TDOA based positioning. 
In step-2, based on the LOS/NLOS detection result, if CIRs from 3 gNB are classified as LOS, TOA of 3 UE-gNB will be used for position estimation. Since for different gNB selection and combination, LOS/NLOS classification gain diverse, we simply denote x% as the percentage of NLOS that is wrongly classified as LOS by random labelling scheme and is correctly classified by on-demand labelling. Since 3 gNBs are required for positioning, we assume classification results of UE-gNB1 and UE-gNB2 is 100% trustworthy while x% of NLOS of UE-gNB3 is wrongly estimated as LOS. 
In the simulation evaluation, we evaluated CDF of positioning accuracy with x = 5, 10, 20, 30, respectively, in Fig. 3. As the results indicate, with higher LOS/NLOS classification accuracy, TDOA/TOA based traditional approach brings considerable positioning accuracy with respect to the LOS/NLOS classification gain using on-demand labelling for ML model training.

[image: ]
Fig. 3: positioning accuracy comparison with different ratio (x%) of NLOS being wrongly classified as LOS (x = 5, 10, 20, 30)

Evaluations Related to Model Generalization
On the topic of model generalization, the following agreement was made during RAN1-110:
Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
1. Different drops
0. Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
1. Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
1. Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.

In this section, we will evaluate the model generalization capability of a one-step positioning method with different clutter parameters. The evaluations are a continuation of the ones presented in R1-2206972 [5], where the model generalization performance between different drops were done.

Deployment Scenario and Simulation Assumptions 
The scenario is based on the parameters described in Table 1, which are related to industrial simulation scenarios setup with 18 BSs. The users are dropped in the industrial hall area following a uniform distribution, the channel is Inf-DH and pathloss NR_InF_DH according to 3GPP TR 38.802. 
In this specific generalization analysis, the key parameters are related to the following cluttering parameters:
· Scenario 1 is defined by a clutter density of 40%, clutter height of 2 meters, clutter ceiling height of 10 meters, and clutter size of 2 meters; and
· Scenario 2 is defined by a clutter density of 60%, clutter height of 6 meters, clutter ceiling height of 10 meters, and clutter size of 2 meters.

One dataset was generated for each scenario, this dataset contains features, such as channel impulse response (CIR) for each link between each BS and the specific UE (18 CIRs per UE), ground truth of UE 2D location, LOS/NLOS flag for each link between.
In the case of Scenario 1, the density of LOS links is almost 43%, this metric changes dramatically for Scenario 2 with a LOS density of less than 2%.
The performance analysis considers two different generalization approaches. The first one is the typical generalization analysis that aims to test the previously trained AI/ML model in a subset of samples of dataset related to Scenario 1 that were not used in the training/validation stage. The second custom generalization analysis aims to test using a dataset related to Scenario 2 in a model trained with a dataset related to Scenario 1. A vice versa scenario was also considered.
An illustrative description of both generalization analysis is done in Fig 4, in which the typical and custom generalization approaches are differentiated.
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Fig. 4: A generic description of typical and custom generalization analysis used in the simulation.
Performance Evaluation 
As part of our contribution R1-2206972 [5], we had evaluated the ML-based one-step and two-step positioning method with data randomly selected from multiple drops, as well as model trained using a particular drop and tested using a different drop. The results in terms of normalized mean horizontal positioning error values are as shown in the figure below. From the figure, we can observe that the one-step positioning model performance remains relatively the same for scenarios 1 and 2, with the use of random data selected from different drops and with the use of testing and training datasets from different drops.
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Fig. 5: Summary of normalized mean horizontal positioning error values.
In this section, we conduct further performance evaluations by training and testing an AI/ML model with dataset from different scenarios and clutter parameters. The performance evaluation is done based on the accuracy of the 2D error obtained by the AI/ML model used in the inferring stage. This error was a simple Euclidian distance between the ground truth labelling and the UE position inferred by the AI/ML model. 
In Fig. 6 and Fig. 7, the blue line represents the traditional generalization outcome and the red line represent the custom generalization approach for both, Scenario 1 and Scenario 2 respectively.
In both cases the generalization analysis indicates a slight degradation in performance. In the case of a AI/ML model trained with an entire dataset related to Scenario 1, the performance is degraded by 5 meters of error at 80% CDF performance compared to the performance of the same AI/ML model tested with a dataset related to Scenario 2 (Fig. 6). Following a similar analysis, in the case that an AI/ML model previously trained with a dataset related to Scenario 2 obtained a degradation of 6 meters of error at 80% CDF performance when tested with a dataset related to Scenario 1 (Fig. 7).
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Fig. 6: CDF of the 2D positioning error originally trained with Dataset 1 (density cluttering of 40% in Industrial scenarios). The Generalization capabilities of the AI/ML model already trained is tested a dataset 2 (density cluttering of 60%).


[image: ]
Fig. 7: CDF of the 2D positioning error originally trained with Dataset 2 (density cluttering of 60% in Industrial scenarios). The Generalization capabilities of the AI/ML model already trained is tested a dataset 1 (density cluttering of 40%).

A summary of the evaluation result of generalization is presented in Table 3, here, it is important to highlight that the input parameter was the CIR coming from 18 BSs and the ground truth were related to 2D position of individual UE.
Table 3. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters. 
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 18 BSs
	2D position (X, Y)
	True 2D position (X, Y)
	40%
	10K+ (90%) including evaluation
	10K (10%)
	1.9M
	19.2M flops
	Typical generalization: 6.62517  (blue line Fig. 6)
Custom generalization: 11.56156 (red line Fig. 6)

	CIR from 18 BSs
	2D position (X, Y)
	True 2D position (X, Y)
	60%
	10K+ (90%) including evaluation
	10K (10%)
	1.9M
	19.2M flops
	Typical generalization: 8.70181 (blue line Fig. 7)
Custom generalization: 14.36727 (red line Fig. 7)



It is important to note that the key indicator of the model performance in terms of generalization could depend significantly on the model complexity, and various other factors.
Observation-10: Models trained and tested using different clutter parameters could lead to degradation in model performance in terms of horizontal positioning accuracy.
Proposal-11: RAN1 to consider the trade-offs between the generalization performance of ML-based approaches in terms of horizontal positioning accuracy with the cost in terms of model and computational complexity, as part of solution evaluations.

Evaluations Related to Diverse Data Availability
In this section, we will present some evaluations related to the impact of lack of diverse data availability, and the application of data augmentation as a potential solution to this problem.
Deployment Scenario and Simulation Assumptions 
We consider scenario 1 defined by a clutter density of 40%, with a clutter height of 2 meters, clutter ceiling height of 10 meters and clutter size of 2 meters. Further details of the deployment scenario and related assumptions are as shown in Table 1 in Sec. 3.1.1.
The generated dataset contains features, such as Time of Arrival (ToA) for each link between each BS and the specific UE (18 ToAs per UE) as well the ground truth of UE 2D location.

Performance Evaluation 
We consider a Neural Network based positioning method (num_hidden_layers = 2, num_hidden_nodes = 500) which considers as input ToA from 18 TRPs and the 2D UE position as output.
[image: ]
Fig. 8: ML based positioning example 
The evaluation of the performance is realized for three cases (see Figures 10, 11 and 12) on the way the total collected data from scenario 1 is handled for the evaluation:
· Case 1: 5% Training data & 95% Test data
· Case 2: 50% Training data & 50% Test data
· Case 3: Additional data with intentionally added error is combined to the initial 5% Training set following the below scheme: 

[image: ]
Fig. 9: Data preparation scheme for Case 3
Case 1 evaluates the model performance in case of training done using an extremely sparse and limited dataset. Case 2 assumes the availability of a balanced training and test datasets, with significantly diverse data. Case 3 considers the availability of a sparse training dataset, which is used to augment.
Please do note that the split at each step is made randomly with no overlapping positions (using train_test_split function from sklearn). The below figures show the positions of the different data set Training and Test in each case. 
[image: ][image: ]
Fig. 10: Case 1 (5% Training data & 95% Test data) (Left) & Case 2 (50% Training data & 50% Test data) (Right)

[image: ] [image: ]
Fig. 11: Case 3: 5% Training data set (Left) & the Augmented training set (Right) 
[image: ]
Fig. 12: Case3: Test data set  
Table 4. Evaluation results for AI/ML model deployed on UE-side, without model generalization, taking into consideration the impact of diverse data for model training and testing. 


	Case
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	Model Complexity 
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	1
	TOA from 18 TRPs  
	2D position (x,y)
	True 2D position (x,y)
	40%
	~600
(5%)
	~ 11K (95%)
	261K
	521K
	Training accuracy = 1,69
Test accuracy = 136,7

	2
	TOA from 18 TRPs  
	2D position (x,y)
	True 2D position (x,y)
	40%
	~ 6K (50%)
	~ 6K (50%)
	261K
	521K
	Training accuracy = 1,19
Test accuracy = 2,59

	3
	TOA from 18 TRPs  
	2D position (x,y)
	True 2D position (x,y)
	40%
	~ 6K (5% + 47% with Error)  
	~ 6K (47%) 
	261K
	521K
	Training accuracy = 1,74
Test accuracy = 4,83
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Fig. 13: CDF horizontal positioning accuracy for Case 1 (Left) and Case 2 (Right)

[image: ]
Fig. 14: CDF horizontal positioning accuracy for Case 3
The obtained results (Table 4 and Figures 13-14) show that: 
· The size of the training set is important to ensure targeted ML model performance during inference phase. Case 1 shows clearly that the Neural Network trained on only 5% of the total collected data provides acceptable positioning accuracy of 1,69m for the considered training dataset. However, this trained model performs very poorly on the rest of 95% test data with a horizontal accuracy of 136m. This is clearly unacceptable performance. 

· In case 2, the total data is split equally among training and test data set (but with non-overlapping positions): The horizontal accuracy obtained for training and test data is respectively 1,19 and 2,59 m. This clearly shows that even if the performance for training is similar to case 1, there is a huge difference in terms of accuracy for test data which clearly shows the importance of the training data quality during ML training phase. 

Then the question to be raised with regards to case 1 and case 2 is the following: In case of unavailability of enough ‘true’ labelled data for training, is it still useful to consider additional labelled data with lower quality (e.g. including measurement errors)? 
· To answer this question, we propose the case 3 where initially case 1 is considered with 5% of data used for training and 95% for test. Thereafter, the later test data is again split into two separate sets: (1) The first is kept unchanged and considered as Test data and (2) The second set is intentionally altered with the addition of random error varying between 0 and 50% of the maximum ToA value. Then, this altered set is combined with the initial training set. The same ML model as case 1 and 2 is trained with the later augmented training set and the performance is again evaluated on the separate test dataset. The obtained positioning accuracy for training set is again acceptable and close to what is obtained in cases 1 and 2. However, the improvement for test data positioning accuracy compared to case 1 reaches 90% passing from 136 m to 4,8m. This proves that it may be worthwhile to account for low quality data in the training. 

Observation-11: ML model trained using a sparse dataset (case 1) performs poorly in terms of horizontal positioning accuracy, especially in comparison to the scenario with much larger training and test dataset (case 2).
Observation-12: Augmenting the sparse dataset with noisy labels could provide significant improvements in terms of the positioning accuracy of the AI/ML model.
Proposal-12: RAN1 to further study ML model performance with sparse datasets, including possible solutions such as data augmentation.
Conclusion
In this contribution we make the following observations and proposals:
Observation-1: Considering the significant number of aspects that needs to be considered as part of the study such as various simulation assumptions, methodology and performance aspects, it would be beneficial for RAN1 to limit the Rel-18 study on AI/ML for positioning accuracy enhancements to InF-DH sub-scenario.
Observation-2: Evaluating the model performance using a wide variety of deployment types – for e.g., model trained using InF scenarios and tested using Umi, or vice versa, is not practically feasible.
Observation-3: It is unclear as to how a direct AI/ML positioning model trained using an InF scenario could be tested using Umi scenario and be expected to provide accurate UE location.
Observation-4: The availability of good quality data with sufficient diversity of positioning ground truth labels with accurate information, for model training and testing/validation is one of the key challenges in AI/ML based positioning.
Observation-5: It is important to note that training dataset size as an indication of user area density is valid only for uniform distribution of UEs within the simulation setting.
Observation-6: The solution approaches that were presented so far as part of this study have been considered one-sided models, with the out of AI/ML model either directly indicating the UE location or providing intermediate features that are used by classical positioning approaches in order to estimate the UE location.
Observation-7: The UE/TRP can report only the timing and RSRP values, and the signaling of CIRs from the UE to the network is not supported.
Observation-8: If CIR is agreed as a baseline model input, that would imply that only UE-based direct or AI/ML assisted positioning methods are considered. However, in such a scenario, there might be challenges related to acquiring labeled training data from other UEs or from the network.
Observation-9: for example, with the increase of data volume used for training, the LOS/NLOS estimation accuracy climbs accordingly. To reach a close-to-optimal accuracy level of training based on random data selection like 81%, the number of required labelled data for training can be roughly reduced by 65% using on-demand labelling. 
Observation-10: Models trained and tested using different clutter parameters could lead to degradation in model performance in terms of horizontal positioning accuracy.
Observation-11: ML model trained using a sparse dataset (case 1) performs poorly in terms of horizontal positioning accuracy, especially in comparison to the scenario with much larger training and test dataset (case 2).
Observation-12: Augmenting the sparse dataset with noisy labels could provide significant improvements in terms of the positioning accuracy of the AI/ML model.

Proposal-1: For evaluation of AI/ML based positioning, only InF-DH sub-scenario should be considered as part of the Rel-18 study item.
Proposal-2: RAN1 should agree to limit the Rel-18 study on AI/ML for positioning accuracy enhancements use case to only intra-site variations, as previously agreed.
Proposal-3: RAN1 to discuss and agree whether other approaches such as model update, finetuning or adapting the positioning method used, could be a better approach to handle possible variations within a particular scenario.
Proposal-4: For evaluation of two-step or AI/ML assisted positioning, intermediate KPI(s) such as the accuracy of LOS/NLOS identification, accuracy of timing and/or angle of measurement, accuracy of the likelihood measurement, etc., should be reported together with the horizontal positioning accuracy.
Proposal-5: Optional KPIs such as position estimation latency, radio resource efficiency and higher layer signaling overhead should be reported together with the horizontal positioning accuracy.
Proposal-6: For evaluation of AI/ML based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs, while evaluating model performance.
Proposal-7: For evaluation of AI/ML based positioning, RAN1 should assess the need for standardizing the procedures for triggering and/or controlling and/or monitoring the ML model adaptation and fine-tuning after model deployment.
Proposal-8: RAN1 to further study one-sided models in Rel-18, and two-sided models could be considered as deprioritized.
Proposal-9: RAN1 to consider RSRP as a baseline model input for evaluation of direct and AI/ML assisted positioning.
Proposal-10: RAN1 to investigate further the use of on-demand labelling mechanisms for LOS/NLOS detection for it could effectively reduce the required LOS/NLOS labelling by PRU. 
Proposal-11: RAN1 to consider the trade-offs between the generalization performance of ML-based approaches in terms of horizontal positioning accuracy with the cost in terms of model and computational complexity, as part of solution evaluations.
Proposal-12: RAN1 to further study ML model performance with sparse datasets, including possible solutions such as data augmentation.
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