[bookmark: _Hlk37418177]3GPP TSG RAN WG1 #110-bis-e	R1-2209366
e-Meeting, October 10th – 19th, 2022

Agenda item:		9.2.1	
Source:	Nokia, Nokia Shanghai Bell
Title:	Further discussion on the general aspects of ML for Air-interface
Document for:		Discussion and Decision
Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, agreed in [1], includes a use case of positioning accuracy enhancement, and the objectives of the SI is as follows,
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on:
· Initial set of use cases includes:
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1]
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project.

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g.,
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation.
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations.
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study.
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases.
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1
· Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference), and management of data and AI/ML model, per RAN1 input
· Collaboration level specific specification impact per use case
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.

In this contribution, we further discuss the general aspects of AI/ML with respect to air interface.
[bookmark: _Hlk510705081]Discussion
Terminology
In RAN1#110 it was agreed to include the following into the working list of terminologies to be used for RAN1 AI/ML air interface SI:
	Terminology
	Description

	AI/ML model delivery
	A generic term referring to delivery of an AI/ML model from one entity to another entity in any manner.
Note: An entity could mean a network node/function (e.g., gNB, LMF, etc.), UE, proprietary server, etc.

In RAN1#109-e it was also agreed:
	AI/ML model transfer
	Delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

Based on the above definitions, AI/ML model transfer is AI/ML model delivery over the air interface. RAN1 #110 further discussed how to relate AI/ML model transfer to model delivery in a more specific manner (e.g., by adding “over the air-interface with 3GPP standardized mechanism to perform the transfer”), however changing the model transfer definition may not be feasible now as it is used in other agreements, and impacts on those shall be carefully checked.

Proposal 1: RAN1 may look into defining other terminologies to resolve ambiguities associated with Model transfer terminology.
Differentiate model transfer with a 3GPP standardized mechanism from model transfer without a 3GPP standardized mechanism.

Proposal 2: RAN1 to update the list of the terminologies with the following definitions
	Proprietary models
	The ML models of proprietary format, including the model structure and parameters descriptions, and run-time instructions
NOTE: The proprietary model can be supplemented with metadata that allows third parties to manage those with respect to the air interface without changing the model itself.

	Open-format models
	ML models of specified format that allow their interoperability among devices of different vendors.
NOTE: An example of an open format for ML models is ONNX.

	AI/ML model configuration
	A process to prepare the AI/ML model in an entity for life cycle management operations.

	AI/ML model registration
	A process to add a registration tag and related information to uniquely identify the AI/ML model.

	AI/ML model drift
	The performance variations of an AI/ML model due to changes in the environment over time.

	AI/ML model deployment
	A process to deliver a trained, validated, and tested AI/ML model to the model inference function.

Lifecycle management
	Agreements
Study the following aspects, including the definition of components (if needed) and necessity, in Life Cycle Management
· Data collection
· Note: This also includes associated assistance information, if applicable.
· Model training
· [Model registration]
· Model deployment
· Note: Terminology is to be defined. This includes process of compiling a trained AI/ML model and packaging it into an executable format and delivering to a target device.
· [Model configuration]
· Model inference operation
· Model selection, activation, deactivation, switching, and fallback operation
· Note: some of them to be refined
· Model monitoring
· Model update
· Note: Terminology is to be defined. This includes model finetuning, retraining, and re-development via online/offline training.
· Model transfer
· UE capability
Note: Some aspects in the list may not have specification impact.
Note: Aspects with square brackets are tentative and pending terminology definition.
Note: More aspects may be added as study progresses.

In our view, UE capability and model transfer are not parts of ML model LCM. However, those may impact the RAN1/RAN2 signaling required for supporting ML model LCM. In one example, UE capability may impact the distribution of LCM functions across UE and NW. e.g., UE with low capabilities may have a limited set of LCM functions compared to high-end UEs. In another example, UE capability signaling works as starting point when deciding on any required data collection, training, or inference-related configurations.
Observation 1: UE capability and model transfer are not parts of ML model LCM but are still related to the overall RAN1/RAN2 signaling framework of supporting ML model LCM.

[image:]
Figure 1: An overview of life cycle management, which is a a simplified and adapted version of the diagram proposed in [4].
In this section, we will consider the life cycle management (LCM) of a machine learning model, define the necessary terminologies and functional description to accommodate LCM in the air interface. Figure 1 gives a simplified overview of different modules and the possible interactions among these modules.
Data collection
The data collection aspects contain data collection for training/validation/testing/inference/etc.., and data preprocessing steps (see Figure 1).
	Data collection
	A process of collecting data by the network nodes, management entity, or UE for the purpose of AI/ML model training, data analytics and inference

The data collection may reside on a data collection module that may include the data management functionalities for data quality validation, data pre-processing, generation of training, test, and validation split. In order to train a model, the data needs to be prepared as input for an ML model. The preparation phase includes several operations, such as, data quality verification, data cleansing, and data transformation. Moreover, the generation of ground truth labeled data for supervised training is another concern. After model training/inference, post-processing may be required. Moreover, a feedback response is also needed from ‘Model training’ to ensure the data quality requirements of the data collection module. Additionally, the output generated during model inference operation can be saved for future reference and/or for a model update, if applicable. Such situation can occur for instance, where the generation of ground truth data may be quite expensive and/or unavailable. The data collection module may include the data management functionalities for data quality validation, data pre-processing, generation of training, test, and validation split. These operations require different configuration settings for different models and can vary for each use case.
Another problem associated with data collection stems from the fact ML models are expected to be vendor-specific and thus trained on vendor-specific data. A foreseeable RAN outcome is that companies agree that a vendor-specific ML model is trained for the same RRM functions, using vendor-specific training data only, so that training data is not exchanged among vendors. It is anticipated that training data sharing among vendors is not a preferred solution since it:
· is UE-specific and in many cases sensitive.
· gives the vendors a competitive advantage w.r.t. obtaining robust and highly efficient ML solutions.
Observation 2: A natural consequence of the training data not being exchanged among vendors, is that data collection for training vendor-specific ML models is expected to become a lengthy and complex process, which probably will result in a suboptimal training dataset that remains:
· Imbalanced i.e., a large imbalance between minority and majority labels
· Sparse i.e., collected data does not characterize well all scenarios of interest

Proposal 3: To overcome the vendor-specific training data limitations and ensure that a robust, yet vendor-specific ML model can be trained with sufficient accuracy, vendor-specific data needs to be artificially diversified and enlarged, before used for training a vendor-based ML model. RAN1 to study how UE vendor-specific data can be diversified by means of sharing assistance data across UE vendors.
Model training
The model training may contains: model training, model validation, and model testing or evaluation steps. All of these could reside in a model training module. In one assumption, the ‘model training module’ receives a stored model from a “model management module”. This received model can be either an untrained model or a pretrained model selected by the ‘model management module’. This model is trained using training data in the ‘model training’ step. Then the trained model is then validated using the validation data at the ‘model validation’ step. If the validated model meets the validation KPI requirements, then this model goes to the ‘model testing’ step. Otherwise, a ‘model tuning feedback’ is sent to the ‘model training’ step for adjusting the hyperparameters. In the ‘model testing’ step, the model is evaluated using the test data. If the target KPI is not met, then feedback is sent to the ‘model management module’ and ‘data collection module’ either to change the model or the data. Otherwise, the model is ‘staged’ and sent to the ‘model management module’ for model registration and model deployment operations.
If the model training module resides in either UE or NW (“separate training”), then LCM signalling for the model training aspect can be limited to training data request; model download and upload/storing of the model; performance feedback response to ‘data collection module’ and ‘model management module’. However, if “joint training” collaboration is required, then it is necessary to define those signalling, including the length of the message, and the message type (request, response, feedback).
Proposal 4: For joint model training, related LCM signalling may be considered for standardization.
Proposal 5: For joint model training, KPIs related to model validation and model evaluation needed to be studied.
Proposal 6: RAN1 to prioritize model training at one side (UE or NW) without model exchange, and consider only the following aspects of LCM: model monitoring, switching, activation/deactivation of ML functions.

Model management (including deployment, selection, activation, deactivation, switching, monitoring)
The model management may consist of (1) model configuration, (2) model deployment, (3) model selection, activation, deactivation, switching, fallback, and (4) model monitoring and verification subfunctions.
All operations related to the model management have been described next.
a) Model configuration:
Before model training, a model needs to be initialized. Initialization typically includes setting the type of architecture, the hyperparameters, memory allocation, other hardware/software constraints, and the location for storing the model that is considered for a specific use case. Moreover, model configuration functions may also include any other operation related to transforming the model will require different configuration settings. If models are proprietary, RAN1 does not need to consider model configuration aspects in the study.
b) Model registration:
As discussed in the earlier meetings, a model needs to be clearly identified. There could be multiple models in different use cases and even within the same use case. Moreover, before downloading a model from a source (either vendor-server or gNB), the model needs to be reliable, protected, and secured. Therefore, there is a need for model registration to identify the model uniquely and efficiently execute the operations based on meta information. RAN1 needs to discuss how models can be registered and where those can be stored. The registered model can be stored in a central repository (say in a database, cloud server) along with the model ID and other meta information (model description, use case information, and so on). We may also need to determine whether only a production-ready model will be registered. Additionally, if a model is updated, the model can get a new registration or use the old registration information.
Proposal 7: RAN1 to define ML model ID and metadata details for model management purposes.
c) Model deployment:
ML model deployment is a function of delivering a trained, validated, and tested AI/ML model to the Model Inference function. The details of the model deployment are highly dependent on the target HW platform and should not be considered towards standardization in RAN1.
Proposal 8: Model deployment issues are addressed by vendors in a proprietary way, and RAN1 does not need to consider model deployment aspects in the study.
d) Model selection, activation, deactivation (fallback), switching:
If UE or gNB stores a set of models, there is a need to select the best model for a particular use case and time. The performance of ML-enabled functions (at gNBs or UEs) may degrade (the performance drops in a certain context or negatively impact the performance of other UEs, gNBs). If the Network detects performance issues due to an ML-enabled function of Level Y or Z, it should be able to switch to another ML-based function with better performance or deactivate an ML-based function (i.e., replace it with a non-ML fallback).
Proposal 9: NW should be able to control ML model switching, (de)activation at UE.
An ML model can be activated for inference operation either by NW or UE. If UE activates the model for inference, the network should allow this. During the activation phase, the ML-enabled functionalities (such as model configuration, inference configuration, and data collection procedure) need to be executed. The deactivation operation can be triggered either by gNB or UE. Activation, deactivation (fallback to a non-ML function), and switching of a model can be executed immediately or after a certain time.
Proposal 10: RAN1 to study signalling mechanism, criteria, and time delay of activation, deactivation (fallback to a non-ML function), switching of ML models and/or ML-enabled functions.
With the legacy non-ML algorithms, the processing capacity required at the gNB is linearly dependent on the number of UEs. When ML algorithms are introduced, the resource demand may vary significantly. For example, running a unique counterpart of the two-sided model for every UE may require more resources at gNBs. In some scenarios, gNB may have a shortage of resources.
Observation 3: gNB may run out of resources required for running two-sided ML models.
Due to an outage of resources, gNB may need to disable/deny ML functionalities at some UEs. Those UEs may experience worse service conditions (e.g., higher energy consumption).
Proposal 11: For a two-sided model, study how to limit the maximum number of ML models that need to be supported on the NW side.
e) Model monitoring:
If the original model is in a central node, then it is easy to monitor the model's performance by getting feedback from different UEs using the same model. The performance measurement KPIs (both model-related and system-level) can be used as indicators for the efficacy of an AI/ML model. The models should be monitored periodically. If a model is underperforming, then it is desirable to perform a model update or model switching. However, model monitoring can be more challenging due to the environment in which the model is deployed. The environment is highly dynamic due to factors like UE SW/HW configurations and other UE capability constraints. The implication of such a dynamic environment is likely to affect the performance of the deployed model, and as a result, the predictive capability of the model may degrade over time. This phenomenon is known as model drift, and a few solutions have been addressed in [3]. However, there is a need to study this in lieu of the NR air interface.
Proposal 12: RAN1 to study and address the concept of model drift for ML-enabled functions under model monitoring.
Additionally, it is necessary to monitor the intermediate performance of the model in both UE and NW.
Proposal 13: RAN1 to study the system-level and intermediate KPIs (or metrics) for model monitoring.
f) Model update:
Model update is a function to retrain a model in order to improve the performance of the model inference operation. There are several ways that a model update operation can be done: a) with new dataset, b) with new and old dataset, c) by changing the architecture of the model and training again. For the proprietary models, this should be left for implementation.
Model inference
The ‘model inference’ contain inference configuration operation inference operation, and post-processing subfunctions. The inference configuration will configure the model ready for inference operation, that is, load the model in memory; prepare if any additional assistance information required as model input and so on.
The model inference module runs the inference of the ‘downloaded model’ using data received from the ‘data collection module’ via the default controller/actor (this allows for the controller/actor to schedule the inference). The model performance results can also be feedback to the ‘model management module’.
Model inference can happen either in UE or gNB. Model inference module will download the requested model and other necessary meta information (such as memory footprint, performance KPIs, data configuration). Model inference module could decide to give feedback to model management module on the performance of the model as an indication of how well it performed. Based on the information, model management module can decide how frequently to update the model.
Additional post-processing may be needed to transform the output to a format requested by the controller/actor for further decision-making process.
[bookmark: _Ref115175915]Model transfer/delivery
In our opinion, it is important to distinguish proprietary models and models with standardized formats (open-format models). Some initial considerations on this are captured in [R1-2207223]. The proprietary model assumes that the format of the model is proprietary. The proprietary model can be supplemented with metadata that allows third parties to manage those with respect to the air interface without changing the model itself. The metadata can be used for model management by third parties, e.g., NW may manage proprietary models based on the metadata.
Enabling open-format models requires specification work to make them interoperable among devices of different vendors (e.g., by UE and NW). In our view, an ML model cannot be separated from the rest of the function that applies the ML model toward certain decision-making (inference). These may include, e.g., runtime instructions, input data pre-processing, and output data post-processing algorithms. One example of an open format for ML models is ONNX. Open-format models may support cross-vendor parameter updates and over-the-air training. Standardization of open-formats models in 3GPP requires significant specification efforts.
Proposal 14: Consider “proprietary model” and “open-format model” as two separate categories for RAN1 discussion.
To be considered for future specification, ML-enabled solutions with model transfer should be justified by significant benefits over non-ML algorithms and ML algorithms that do not use model transfer. We would prefer to avoid open-format models, at this stage. However, those could be still considered for study in further releases.
Proposal 15: RAN1 to deprioritize solutions that require 3GPP-specified open-format models unless there is a clear justification
UE capability
UE can be capable of LCM operations, such as model inference, model training, model update, and model delivery, if the UE can support the following aspects:
During model download operation, the UE chipset requires sufficient storage to accommodate the model for a particular use case.
During model inference operation, the UE chipset requires sufficient memory and storage to load the model and data and store the results. Moreover, UE needs to be capable of aiding assistance information needed by the model. UE is capable of providing pre-processing and post-processing operations if required.
The model training operation at UE has two aspects. The first one is for separate training, where we consider whether UE is capable of data collection. The second one is for the joint collaboration, where we consider whether UE is capable of data collection, training in synchronized manner, and interoperability between that UE and the gNB. In both aspects, UE needs to be checked for power consumption and memory footprint capabilities.
UE capability discussion should not be limited to ML-specific capabilities but include also telecom aspects that eventually impact ML applicability. For example, RedCap devices may have reduced radio capabilities that may impact the applicability of certain ML-based algorithms. These aspects should be studied under the UE ML-related capability discussion on per-use case basis.
Proposal 16: Companies are encouraged to describe UE capabilities related to the supported ML-enabled function(s) for each sub use case, including information such as system and intermediary KPIs (to be used for monitoring), configuration and control options, underlying ML model ID, etc.
[bookmark: _Ref109823184]Collaboration levels
During 3GPP RAN1#109, it was agreed to take the following network-UE collaboration levels:
Agreement
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1. Level x: No collaboration
1. Level y: Signaling-based collaboration without model transfer
1. Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary

Further, in 3GPP RAN#110 “Companies are encouraged to bring discussions on various options and their views on how to define Level y/z boundary in the next RAN1 meeting.”
In our understanding, the “no collaboration level” (Level x) assumes implementation-based ML-enabled solutions at the network or at the UE sides without introducing new signaling but may have an impact on the performance requirements (i.e., level x solutions may not meet some legacy RAN4/5 requirements).
Proposal 17: RAN1 to agree that Level x ML solutions are not visible from signalling point of view but may have an impact on the performance requirements (i.e., RAN4/5 specifications)
We expect that signaling-based collaboration at Level y may include the following:
· Capability information UE or gNB indicates that some functions are driven by ML
· Assistance information. This may include any data that support the ML-enabled function but is not used for training or inference. E.g., inform about the selected ML model, and inform about the modification of the context or environment to support ML-enabled function operation.
· Data collection from UE or gNB for training ML model or/and inference. The data collection can be controlled via an existing signaling interface, such as RRC (e.g., the data collection control message could specify triggers, volume, periodicity, criteria, filtering, storage, formats, validation, etc.).
NOTE: For the two-sided model the inference output of one entity (e.g., UE) could also be communicated via data collection interface if it is used as inference input at another entity (e.g., gNB)
· Performance monitoring
· Model management. Including model selection, switching, and falling back to a non-ML algorithm.

In addition to that, new signaling is expected to be introduced due to the use of ML outcomes. For example, new formats and messages for compressed CSI feedback reporting.

Proposal 18: Collaboration level Y includes any new signaling for new reporting, data collection, capability information, assistance information, performance monitoring, proprietary model delivery, and model management.

Based on the discussion captured in Section 2.2.5, considering the “proprietary model” and “open-format model” as two separate categories for RAN1 discussion. Proprietary model delivery does not require a standardization of the model and should be considered under Level Y. The details of proprietary model management, including activation/deactivation, monitoring, and model switching, are also to be of Y collaboration level.
The ML-enabled solution is considered to be level Z if it requires specifying the format of the ML model (open-format ML model). Open-format models may enable the use of the same model by devices of different vendors, joint training, and other applications.
Proposal 19: An ML solution is considered to be level Z if it requires the 3GPP-specified open-format ML model.
Proposal 20: RAN1 to endorse the following collaboration levels
1.	Level x: No collaboration, but specification impact on the performance requirements is possible (i.e., RAN4/5)
2.	Level y: Signaling-based collaboration and proprietary format of ML models
3.	Level z: Signaling-based collaboration and open-format ML models

Complexity and signalling overhead
	Agreement
The following is an initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
· Performance
· Intermediate KPIs
· Link and system level performance
· Generalization performance
· Over-the-air Overhead
· Overhead of assistance information
· Overhead of data collection
· Overhead of model delivery/transfer
· Overhead of other AI/ML-related signaling
· Inference complexity
· Computational complexity of model inference: FLOPs
· Computational complexity for pre- and post-processing
· Model complexity: e.g., the number of parameters and/or size (e.g. Mbyte)
· Training complexity
· LCM related complexity and storage overhead
· FFS: specific aspects
· FFS: Latency, e.g., Inference latency
Note: Other aspects may be added in the future, e.g. training related KPIs
Note: Use-case specific KPIs may be additionally considered for the given use-case.

In this section we address the overhead and complexity analysis of an ML-enabled solution. We consider the overhead and complexity analysis of an ML-enabled solution primarily to be an average estimation vs. time. For example, peak computational requirements can be estimated separately, depending on the needs of the specific (sub) use cases.

Observation 4: The overhead and complexity analysis of an ML-enabled solution primarily is an average complexity estimation vs. time.

It is beneficial to differentiate between the analysis of NG-RAN and UE side ML-enabled solutions such that the embedded system particularities can be described. For collaboration-based solutions (Level y or z), the analysis of the aggregated complexity of the algorithms at the NG-RAN and UE sides needs to be provided. For an ML-enabled solution that requires training of the ML algorithm at the UE, the complexity analysis should consider the training and inference separately. For example, when training of such algorithms is performed typically ‘off-line’ using dedicated, and high compute solutions, the inference is executed in NG-RAN and/or UE network nodes with more limited computational resources. Nevertheless, if the training is performed at the network (gNB or CN) the training requires potentially large amounts of input data (cleaned, formatted, and labeled), which need to be collected by NG-RAN and/or UE, these might imply a large signaling/traffic overhead on the air interface. Considering that re-training is likely require even for “offline” solutions, a radio resource and signaling demanding training in the end limits the overall benefits of adopting the ML-enabled solution.

Observation 5: When an ML-enabled solution assumes that the underlying ML model training (or partial model training) is performed at the UE side, the overall complexity analysis must also include the complexity estimation of the training process, with similar metrics as listed for the analysis of the inference process.

Furthermore, the ML-enabled solutions which, for the purpose of generalization, require frequent changes in the parameters (re-configurations), and/or switches between different ML models, to be signaled from the gNB, would lead to solution with potentially high signaling overhead. In cases when the required adaptation of the ML-enabled function is executed in the UE without involvement of the gNB and air-interface signaling, the procedures might still be time consuming, potentially beyond the time budget allowed to maintain a certain performance level.

Observation 6: For RAN1 ML-enabled solutions purposes, the complexity and over-the-air signaling overhead of an ML-enabled function can negatively bias the overall benefits of adopting the ML-enabled solution.

The ML model complexity is typically expressed in tensor operation (TOP), floating-point (FLOP), or multiply and cumulate (MAC) operations all being indicative only of the platform-independent complexity and optimization. Platform-dependent and implementation (hardware and software) optimization solutions are not in the scope of RAN1 studies, although these can significantly impact the overall solution complexity and required compute. For example, a difference of x1000’s TOP/FLOP/MACs between two solutions might be rendered irrelevant due to different hardware optimizations and acceleration solutions.
A similar remarque is applicable also for the size of the ML model or the number of parameters. Platform-dependent and implementation (hardware and software) optimization solutions can render differences of 10’ or 100’ of Mbytes irrelevant for all practical purposes. What is important to be considered in RAN1 is the number of bits/bytes which need to be transferred between the gNB and UE for the purpose of the correct operation of the ML-enabled function.

Observation 7: For RAN1 ML-enabled solutions purposes, the inference complexity in terms of ML TOP/FLOP/MACs and ML model size might be less relevant due to the platform-dependent and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.

Proposal 21: For RAN1 ML-enabled solutions purposes, the TOP/FLOP/MACs and memory footprint estimates should include also the processing required to pre-process the input data, process the signaling, and post-processing the output from the ML algorithm.

The ML model inference execution time alone (ML inference latency) is rather platform dependent and is only one part of the entire execution delay of the ML-enabled function. The importance of the underlying ML inference latency depends also on the specific use case and the way the ML inference output is used in the ML-enabled function e.g., beam selection, channel prediction reports, etc.

Observation 8: The ML algorithm inference latency is not a good indicator of the performance of a specific ML-enabled function in the context of the RAN1 air-interface solutions. Instead, the execution latency of the ML-enabled function needs to be analyzed, including the latency of the input and output data pre/post-processing operations, and required signaling.

The delay budget (maximum allowed time) for the execution of the ML-enabled function (data collection, pre-processing, inference, post-processing, signaling) is a key parameter which influences the performance of the solution in the RAN1 and RAN2 context.

Proposal 22: For RAN1 ML-enabled solutions purposes, to include in the over-the-air overhead analysis the time delay budget allowed for the potential model transfer, control signaling (activation/deactivation/switch), data collection, data pre/post processing, and inference procedures.

Testability of ML-enabled functions
RAN4 work will start only when there is sufficient progress on use cases in the other working groups. Nevertheless, we believe that it is beneficial to exchange views between the companies on what could be a general approach to the formulation of requirements and testing of ML-enabled features in the early design phase of the ML-enabled solutions.

All the newly specified ML-enabled functions/features to be supported by UE and BS need to be testable in RAN4 & RAN5 scope to ensure that new implementations meet or exceed the existing minimum requirements. Thus, in parallel with the development of the ML-enabled solutions in RAN1, which require collaboration between UE and gNB, there is also a need to define how to specify UE and BS core and performance requirements and corresponding conformance testing of such solutions. These requirements are of high importance because MNOs would also use them as a reference to test the performance, before allowing or activating new functions in their live networks.

In the earlier contribution [4], we have raised some initial questions on RAN4 interoperability and testability aspects and shared our initial considerations on those. In this contribution we provide more details and further analysis while we reiterate some of the earlier proposals.

In our view, the goal of RAN4 minimum requirements should not primarily focus on the verification of ML models parameters, such as input features, artificial/deep/convolutional neural network (ANN/DNN/CNN) architecture, output inference accuracy, hyperparameters, etc. Each ML model implemented in the UE or gNB products will be vendor specific. It cannot be expected that proprietary implementations of ML models will be publicly disclosed. In contrast, each ML-enabled function in the UE or gNB must comply, in general, with three groups of RAN4 requirements:
1. UE RRM requirements specified in TS 38.133
2. UE CSI reporting and performance requirements specified in TS 38.101-4
3. BS performance requirements specified in TS 38.141-1/2

Proposal 23: The UE performance requirements and testing methodology should not aim at testing the ML model or ML algorithm/architecture implementation (input features, inference output, hyperparameters, etc.), but rather at testing the output/outcome of the overall ML-enabled function, which is supported or assisted by the ML algorithm.

The type of RAN4 requirements to be defined (RRM, demodulation, CSI reporting, performance) depends on the specification of each use case. For example, the ML-enabled CSI compression solutions will certainly need to comply with BS demodulation requirements and UE reporting and performance requirements; the ML-enabled beam management solutions will need to comply at least with UE RRM requirements; for ML-enabled positioning, at least measurement accuracy in RRM performance requirements should be considered.
The need for new requirements should be studied case by case, especially depending on the type/level of collaboration between the gNB and UE.
For one-sided ML solutions (in the UE or gNB), the performance requirements and testing methodology might not differ from current methodologies for certain use cases. However, the probabilistic nature of the output/outcome of the overall ML-enabled function (due to the underlying ML algorithm inference) cannot be ignored, and the generalisation of the solutions must be ensured. Hence the testing procedure needs to be tailored accordingly (specific set of input test signals/conditions, specific method to estimate the output accuracy, etc.).

For two-sided ML solutions, the performance requirements and testing methodology need to be revised compared to the existing non-ML solutions. One of the main challenges is that traditionally only the device under test (DUT) is a real device, whereas the other side is usually a specially designed test equipment (TE). Therefore, the TE will need to support some ML capabilities as well. Then, the complexity of test setup will be strongly impacted by the level of cooperation, e.g., whether there is a need to exchange ML models or model parameters in between the DUT and TE. In these cases, in addition to the specific set of input test signals/conditions and specific method to estimate the output accuracy, there is also necessary to verify the ML-coordination (timing, signalling) between the two sides.

Proposal 24: RAN1 to analyse for each use case the need to set requirements and testing methods for the LCM procedure(s) in the UE, including ML model training and ML model deployment, as part of the ML-enabled function under test.

Another important aspect when it comes to testing UE ML-enabled functions, is the potential requirement to test the ‘generalisation’ performance of the underlying ML models. This topic is being addressed in RAN1 when developing and evaluating the solutions and is likely to be also one of the new RAN4 requirements for certain use cases. The generalisation problem can be solved either by gNB-UE signalling (reconfiguration, model activation/deactivation/switch, LCM) or by vendor specific adaptation algorithms (not under the control of the gNB). In both cases, is important to be able to test the correct operation of UE ML-enabled function, at least as minimum requirements, in well-defined test scenarios including non-stationary radio conditions and fall-back mode conditions.

Proposal 25: For all use cases studied in the context of RAN1 ML-enabled solutions, consider discussing the introduction of corresponding test requirements that capture non-stationary radio environment conditions that may imply switching and/or updating of underlying ML model.

Conclusion
In this contribution, we discuss further aspects related to AI/ML for air-Interface, with the following observations and proposals.

Proposal 1: RAN1 may look into defining other terminologies to resolve ambiguities associated with Model transfer terminology.
Differentiate model transfer with a 3GPP standardized mechanism from model transfer without a 3GPP standardized mechanism.

Proposal 2: RAN1 to update the list of the terminologies with the following definitions
	Proprietary models
	The ML models of proprietary format, including the model structure and parameters descriptions, and run-time instructions
NOTE: The proprietary model can be supplemented with metadata that allows third parties to manage those with respect to the air interface without changing the model itself.

	Open-format models
	ML models of specified format that allow their interoperability among devices of different vendors.
NOTE: An example of an open format for ML models is ONNX.

	AI/ML model configuration
	A process to prepare the AI/ML model in an entity for life cycle management operations.

	AI/ML model registration
	A process to add a registration tag and related information to uniquely identify the AI/ML model.

	AI/ML model drift
	The performance variations of an AI/ML model due to changes in the environment over time.

	AI/ML model deployment
	A process to deliver a trained, validated, and tested AI/ML model to the model inference function.

Observation 1: UE capability and model transfer are not parts of ML model LCM but are still related to the overall RAN1/RAN2 signaling framework of supporting ML model LCM.

Observation 2: A natural consequence of the training data not being exchanged among vendors, is that data collection for training vendor-specific ML models is expected to become a lengthy and complex process, which probably will result in a suboptimal training dataset that remains:

Proposal 3: To overcome the vendor-specific training data limitations and ensure that a robust, yet vendor-specific ML model can be trained with sufficient accuracy, vendor-specific data needs to be artificially diversified and enlarged, before used for training a vendor-based ML model. RAN1 to study how UE vendor-specific data can be diversified by means of sharing assistance data across UE vendors.
Proposal 4: For joint model training, related LCM signalling may be considered for standardization.
Proposal 5: For joint model training, KPIs related to model validation and model evaluation needed to be studied.
Proposal 6: RAN1 to prioritize model training at one side (UE or NW) without model exchange, and consider only the following aspects of LCM: model monitoring, switching, activation/deactivation of ML functions.
Proposal 7: RAN1 to define ML model ID and metadata details for model management purposes.
Proposal 8: Model deployment issues are addressed by vendors in a proprietary way, and RAN1 does not need to consider model deployment aspects in the study.
Proposal 9: NW should be able to control ML model switching, (de)activation at UE.
Proposal 10: RAN1 to study signalling mechanism, criteria, and time delay of activation, deactivation (fallback to a non-ML function), switching of ML models and/or ML-enabled functions.

Observation 3: gNB may run out of resources required for running two-sided ML models.
Proposal 11: For a two-sided model, study how to limit the maximum number of ML models that need to be supported on the NW side.
Proposal 12: RAN1 to study and address the concept of model drift for ML-enabled functions under model monitoring.
Proposal 13: RAN1 to study the system-level and intermediate KPIs (or metrics) for model monitoring.
Proposal 14: Consider “proprietary model” and “open-format model” as two separate categories for RAN1 discussion.
Proposal 15: RAN1 to deprioritize solutions that require 3GPP-specified open-format models unless there is a clear justification
Proposal 16: Companies are encouraged to describe UE capabilities related to the supported ML-enabled function(s) for each sub use case, including information such as system and intermediary KPIs (to be used for monitoring), configuration and control options, underlying ML model ID, etc.

Proposal 17: RAN1 to agree that Level x ML solutions are not visible from signalling point of view but may have an impact on the performance requirements (i.e., RAN4/5 specifications).

Proposal 18: Collaboration level Y includes any new signaling for new reporting, data collection, capability information, assistance information, performance monitoring, proprietary model delivery, and model management.

Proposal 19: An ML solution is considered to be level Z if it requires the 3GPP-specified open-format ML model.
Proposal 20: RAN1 to endorse the following collaboration levels
1.	Level x: No collaboration, but specification impact on the performance requirements is possible (i.e., RAN4/5)
2.	Level y: Signaling-based collaboration and proprietary format of ML models
3.	Level z: Signaling-based collaboration and open-format ML models

Observation 4: The overhead and complexity analysis of an ML-enabled solution primarily is an average complexity estimation vs. time.

Observation 5: When an ML-enabled solution assumes that the underlying ML model training (or partial model training) is performed at the UE side, the overall complexity analysis must also include the complexity estimation of the training process, with similar metrics as listed for the analysis of the inference process.

Observation 6: For RAN1 ML-enabled solutions purposes, the complexity and over-the-air signaling overhead of an ML-enabled function can negatively bias the overall benefits of adopting the ML-enabled solution.

Observation 7: For RAN1 ML-enabled solutions purposes, the inference complexity in terms of ML TOP/FLOP/MACs and ML model size might be less relevant due to the platform-dependent and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.

Proposal 21: For RAN1 ML-enabled solutions purposes, the TOP/FLOP/MACs and memory footprint estimates should include also the processing required to pre-process the input data, process the signaling, and post-processing the output from the ML algorithm.

Observation 8: The ML algorithm inference latency is not a good indicator of the performance of a specific ML-enabled function in the context of the RAN1 air-interface solutions. Instead, the execution latency of the ML-enabled function needs to be analyzed, including the latency of the input and output data pre/post-processing operations, and required signaling.

Proposal 22: For RAN1 ML-enabled solutions purposes, to include in the over-the-air overhead analysis the time delay budget allowed for the potential model transfer, control signaling (activation/deactivation/switch), data collection, data pre/post processing, and inference procedures.

Proposal 23: The UE performance requirements and testing methodology should not aim at testing the ML model or ML algorithm/architecture implementation (input features, inference output, hyperparameters, etc.), but rather at testing the output/outcome of the overall ML-enabled function, which is supported or assisted by the ML algorithm.

Proposal 24: RAN1 to analyse for each use case the need to set requirements and testing methods for the LCM procedure(s) in the UE, including ML model training and ML model deployment, as part of the ML-enabled function under test.

Proposal 25: For all use cases studied in the context of RAN1 ML-enabled solutions, consider discussing the introduction of corresponding test requirements that capture non-stationary radio environment conditions that may imply switching and/or updating of underlying ML model.
References
[1] RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” 3GPP RAN #94-e.
[2] [bookmark: _Ref114580235]RP-222486, “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface - Status report to TSG”, 3GPP RAN #97-e.
[3] Žliobaitė, Indrė. "Learning under concept drift: an overview." arXiv preprint arXiv:1010.4784 (2010).
[4] [bookmark: _Ref115078654]R1-2206967, “Further discussion on the general aspects of ML for Air-interface”, TSG RAN WG1 #110, August 22 – 26, 2022.

image1.png
Data for action/storing
observations

Inference

Default requestiresponse

Environment
controller/Actor

Controller module

Inference data
requestiresponse Inference Model Data po:
leonfiguration| | inference | | processing

Data
colection

Data pre-
processing

Model inference module

Data collection module
Benchmarked
data for
verfication

Model download,
performance feedback. control
commands (actvation,
switching, etc)

Training data
requestiresponse

Nodel registration

Deployment | [selection/ Update
(dejactivation/
Monitoring switching | [Configuration

Training Valigation | | Evaluation

Model, metadata
Model training module

Model management module

