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[bookmark: _Hlk521259925]In RAN1#110 meeting [1], the following agreements for evaluation methodology and KPIs have been approved.
Agreement
 The following update based on the agreements in RAN1#109-e is adopted
	Parameters
	Values

	UE distribution

	· FFS 10 UEs per sector/cell for system performance related KPI (if supported) [e.g,, throughput] for full buffer traffic (if supported) evaluation (model inference). 
· X UEs per sector/cell for system performance related KPI for FTP traffic (if supported) evaluation (model inference). 
· 
· Other values are not precluded 
· Number of UEs per/sector per cell during data collection (training/testing) is reported by companies if relevant
· More UEs per sector/cell for data generation is not precluded. 


	UE Antenna Configuration
	· Antenna setup and port layouts at UE: [1,2,1,4,2,1,1], 2 panels (left, right)
· [Panel structure: (M,N,P) = (1,4,2)]
· panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams



Agreement
The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 3km/h(optional), 30km/h (baseline), 60km/h (optional), 90km/h (optional), 120km/h (optional)
· Other values are not precluded

	UE distribution
	· For spatial domain beam prediction: 
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor


	
Agreement
· If UE orientation is modeled, it can be independently modeled from UE moving trajectory model. 
· This is not precluded that UE orientation coupled with UE moving trajectory model. 

Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.

Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead can be further studied as one of KPI options. 
· FFS: number of UCI reports and UCI payload size
In this contribution, we concentrate on evaluation methodology and performance results of spatial-domain beam prediction. The generalization performance of AI model is also discussed.
KPI
In RAN1#109-e meeting [2], the following agreements were made for beam prediction accuracy related KPIs.
	Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 
· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 


For Top-K beam (pair) prediction, we assume the output of the AI model is the index of the Top-K beams (pairs).  As described in our contribution [3] of the spatial domain beam prediction procedure, the predicted Top-K beams (pairs) will be measured by the UE to obtain the accurate L1-RSRP and accurate QCL parameters. Therefore, Top-1 genie-aided beam can be correctly predicted as long as it is included in the Top-K predicted beams (pairs).
Proposal 1: The definition of beam prediction accuracy (%) for Top-1 and/or Top-K beams is:
·  Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
If the Top-1 genie-aided beam (pair) is not included in the Top-K predicted beam (pair), but the ideal highest L1-RSRP of the predicted Top-K beams (pairs) is within 1 dB of the L1-RSRP of the Top-1 genie-aided beam, the performance loss can be negligible. Therefore, we propose to define the KPI “Beam prediction accuracy (%) with 1dB margin for Top-K beam” as follows.
Proposal 2: The definition of beam prediction accuracy (%) with 1 dB margin for Top-K beams is:
·  The percentage of “the ideal highest L1-RSRP of the predicted Top-K beams is within 1 dB of the L1-RSRP of the Top-1 genie-aided beam” 
Evaluation results of spatial domain beam prediction
In this section, the selection scheme of Set B, the AI model structure and simulation results of spatial domain beam prediction are presented. The generalization evaluation of AI model is also presented.
Dataset generation and AI model
Evaluation assumptions on dataset generation is given as follows.
	Parameters
	Values

	UE distribution
	·  20 UEs per cell for dataset generation
·  80% indoor ,20% outdoor as in TR 38.901

	BS Antenna Configuration
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ 
TXRU weights mapping: (Mp, Np, P, Mg, Ng) = (1,1,2,1,1)
64 Tx beams with:
Azimuth angle φi = [-7*pi/16, -5*pi/16, -3*pi/16, -pi/16, pi/16, 3*pi/16, 5*pi/16, 7*pi/16] 
Zenith angle θj = [8*pi/16, 9*pi/16, 10*pi/16, 11*pi/16, 12*pi/16, 13*pi/16, 14*pi/16, 15*pi/16]

	UE Antenna Configuration
	(M,N,P) = (1,4,2)], (Mg, Ng) = (1, 1)
TXRU weights mapping: (Mp, Np, P, Mg, Ng) = (1,1,2,1,1)
4 Rx beams with:
Azimuth angle φi = [-3*pi/8, -pi/8, pi/8, 3*pi/8] 
Zenith angle θj = pi/2

	Size of Dataset
	Training dataset: 47250 samples
Testing dataset: 5250 samples

	Set B selection
	Five fixed beam patterns:
NTx* NRx= 4*4, 8*4, 12*4


The AI model we applied is composed of CNN and fully connected layers. The input of AI model is the measured L1-RSRP of beam pairs in Set B. The output of AI model is the predicted L1-RSRP of all 64×4 beam pairs. Then, Top-K beam pairs are determined from all beam pairs based on the predicted L1-RSRP. During training phase of AI model, MSE is adopted as loss function.
 Evaluation results
In this subsection, we compare the average L1-RSRP difference of Top-1 predicted beam and beam prediction accuracy of AI based spatial domain beam prediction over traditional beam measurement. Both option 1 and option 2 of the baseline of BM-Case1 are considered in our simulations. Option 1 selects the best beam pair within Set A based on exhaustive beam sweeping in Set A. Option 2 selects the best beam based on the L1-RSRP measurement of beam pairs from Set B, where Set B is a subset of Set A. With option 2, the Top-1 measured beam pair in Set B is taken as the Top-1 beam pair in Set A. The beam prediction accuracy for Top-K beams is the percentage of “the Top-1 genie-aided beam in Set A is one of the Top-K measured beams in Set B”. 
In Fig.1, the average L1-RSRP difference of Top-1 predicted beam of our AI model is compared with baseline. It is shown that with the increase of the number of measured beam pairs, average L1-RSRP difference of Top-1 predicted beam of AI model reduces rapidly, while average L1-RSRP difference of Top-1 predicted beam of baseline option 1 is 0, average L1-RSRP difference of Top-1 predicted beam of baseline option 2 remains nearly the same.

Fig. 1 Average L1-RSRP difference of Top-1 predicted beam (dB)
In Fig. 2, 3 and 4, we compare beam prediction accuracy for Top-K (K=1, 2, …,5) beam pairs of our AI model, with baseline option 1 and option 2 under different beam measurement patterns. 

Fig. 2 Beam prediction accuracy for Top-K beams with 4*4 beam measurement pattern


Fig. 3 Bam prediction accuracy for Top-K beams with 8*4 beam measurement pattern


Fig. 4 Bam prediction accuracy for Top-K beams with 12*4 measurement pattern
With the increase of K, the prediction accuracy of AI model improves significantly, while the increased beam sweeping overhead is small. Selecting an appropriate value of K can achieve a trade-off between prediction accuracy and beam sweeping overhead.
For beam measurement pattern of 8*4 and 12*4, compared with baseline option 1, when K is larger than a specific value, the prediction accuracy of AI model is close to the result of exhaustive beam sweeping, but the beam sweeping overhead is much smaller. For example, for 8*4 measurement pattern, AI model has 5.5% loss of prediction accuracy for top-3 beams but can save 86.3% beam sweeping overhead. Compared with baseline option 2, AI model achieves much higher prediction accuracy under the same low beam sweeping overhead. 
Above all, AI based spatial beam prediction can largely reduce beam sweeping overhead with minor loss of prediction accuracy for Top-K beam pair, and can attain considerable gain on prediction accuracy for Top-K beam pair under the same beam sweeping overhead.
Observation 1: The increase of K significantly improves the prediction accuracy while leading to a small degree of increased beam sweeping overhead. 
Observation 2: Compared with baseline option 1, AI based spatial beam prediction has minor loss of prediction accuracy for Top-K beam pair but has large beam sweeping overhead reduction.
Observation 3: Compared with baseline option 2, AI based spatial beam prediction significantly enhances prediction accuracy for Top-K beam pair under the same beam sweeping overhead.
In Table 1, we compare computational complexity and parameter quantity of AI model under different measurement patterns. Since the network scale of AI model increase with the number of measured beam pairs, both FLOPs and trainable parameters increase with the number of measured beam pairs.
Table 1 Computational cost of AI model
	
	FLOPs(×107)
	Trainable Parameters(×106)

	12*4
	5.75
	2.85

	8*4
	3.84
	2.58

	4*4
	1.93
	2.32



Generalization capability of AI model
For AI-based spatial domain beam prediction, the scenarios and beam measurement configurations (including the number and the combination of measured beam pairs in set B) can be changed. The beam prediction AI model trained for a particular scenario/configuration may not be suitable for other scenario/configurations. To support beam prediction under different beam measurement scenarios/configurations, gNB or UE side may need to train and storage multiple AI models, hence the training and memory storage cost of AI model become large. To promote the practical application of AI-based spatial domain beam prediction and reduce the implementation cost of multiple models, we design a unified model which can be used for all beam measurement configurations. In our simulations, the training dataset is composed of the beam measurement patterns of NTx* NRx= 4*4, 6*4, 8*4, 10*4, 12*4.
In Fig. 5 and Fig. 6, we compare the beam prediction accuracy of the five separate AI models for each beam measurement patterns and the unified AI model when selecting Top-1 and Top-2 best beam pairs.

Fig. 5 Bam prediction accuracy for Top-1 beams under different measurement patterns


Fig. 6 Bam prediction accuracy for Top-2 beams under different measurement patterns
It can be seen that the unified model achieves similar or better performance than the five models under each beam measurement configuration. The unified model achieves better performance on the average beam prediction accuracy of five beam measurement configurations. 
Observation 4: A unified AI/ML mode that can be used for all beam measurement configurations can achieve satisfactory beam prediction accuracy when compared with configuration-specific models.
Conclusion
Observation 1: The increase of K significantly improves the prediction accuracy while leading to a small degree of increased beam sweeping overhead. 
Observation 2: Compared with baseline option 1, AI based spatial beam prediction has minor loss of prediction accuracy for Top-K beam pair but has large beam sweeping overhead reduction.
Observation 3: Compared with baseline option 2, AI based spatial beam prediction significantly enhances prediction accuracy for Top-K beam pair under the same beam sweeping overhead.
Observation 4: A unified AI/ML mode that can be used for all beam measurement configurations can achieve satisfactory beam prediction accuracy when compared with configuration-specific models.
Proposal 1: The definition of beam prediction accuracy (%) for Top-1 and/or Top-K beams is:
·  Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
Proposal 2: The definition of beam prediction accuracy (%) with 1 dB margin for Top-K beams is:
· [bookmark: _GoBack] The percentage of “the ideal highest L1-RSRP of the predicted Top-K beams is within 1 dB of the L1-RSRP of the Top-1 genie-aided beam” 
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baseline option 1	
Top-1	Top-2	Top-3	Top-4	Top-5	1	1	1	1	1	AI	
Top-1	Top-2	Top-3	Top-4	Top-5	0.82299999999999995	0.94499999999999995	0.96899999999999997	0.97899999999999998	0.98599999999999999	baseline option 2	
Top-1	Top-2	Top-3	Top-4	Top-5	4.7E-2	5.8999999999999997E-2	8.7999999999999995E-2	0.112	0.14599999999999999	



Separate Model	4×4	6×4	8×4	10×4	12×4	Average	0.57599999999999996	0.63700000000000001	0.73899999999999999	0.76600000000000001	0.82299999999999995	0.70820000000000005	Unified Model	4×4	6×4	8×4	10×4	12×4	Average	0.55400000000000005	0.67600000000000005	0.746	0.79500000000000004	0.81399999999999995	0.71699999999999997	



Separate Model	4×4	6×4	8×4	10×4	12×4	Average	0.75600000000000001	0.871	0.90500000000000003	0.93500000000000005	0.94499999999999995	0.88239999999999996	Unified Model	4×4	6×4	8×4	10×4	12×4	Average	0.82899999999999996	0.93899999999999995	0.95699999999999996	0.97199999999999998	0.97499999999999998	0.93500000000000005	



baseline option 1	4*4	8*4	12*4	0	0	0	AI	4*4	8*4	12*4	7.2	0.63000000000000023	0.31000000000000011	baseline option 2	4*4	8*4	12*4	10.48	10.39	10.23	baseline option 1	
Top-1	Top-2	Top-3	Top-4	Top-5	1	1	1	1	1	AI	
Top-1	Top-2	Top-3	Top-4	Top-5	0.57599999999999996	0.75600000000000001	0.83	0.871	0.89900000000000002	baseline option 2	
Top-1	Top-2	Top-3	Top-4	Top-5	6.3E-2	7.6999999999999999E-2	9.2999999999999999E-2	0.109	0.13200000000000001	



baseline option 1	
Top-1	Top-2	Top-3	Top-4	Top-5	1	1	1	1	1	AI	
Top-1	Top-2	Top-3	Top-4	Top-5	0.73899999999999999	0.90500000000000003	0.94499999999999995	0.96	0.96499999999999997	baseline option 2	
Top-1	Top-2	Top-3	Top-4	Top-5	2.7E-2	3.3000000000000002E-2	5.3999999999999999E-2	7.4999999999999997E-2	0.105	
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