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[bookmark: _Ref129681832]In RAN1#110, agreements and conclusions reached for evaluation of AI/ML for CSI feedback enhancement across companies [1] [2] are as follows. (Note: only those related to the sub use case of spatial-frequency domain CSI compression are extracted).Agreement:
· For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted
· The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B
· For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification
· 


Agreement (cont.):
· For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.
· For the evaluation of the AI/ML based CSI feedback enhancement, the throughput in the ‘Evaluation Metric’ includes average UPT, 5%ile UE throughput, and CDF of UPT.
· For the evaluation of the AI/ML based CSI compression sub use cases, companies are encouraged to report the specific quantization/dequantization method, e.g., vector quantization, scalar quantization, etc.
· For the evaluation of the AI/ML based CSI compression sub use cases, the capability/complexity related KPIs, including FLOPs as well as AI/ML model size and/or number of AI/ML parameters, are to be reported separately for the CSI generation part and the CSI reconstruction part.
Conclusion:
· For the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, it is up to companies to choose the error modeling method for realistic channel estimation and report by willingness.
· Note: It is not precluded that companies use ideal channel to calibrate.

In this contribution, we focus on discussing evaluation of spatial-frequency domain CSI compression using AI/ML based approach and share some initial evaluation results using agreed-upon assumptions and parameters from RAN1#109e and #110.

Continued discussion on evaluation methodology for AI/ML based CSI feedback compression
Training types
For Spatial-frequency domain CSI compression using two-sided AI model sub use case, during RAN1#110 meeting, companies discussed the following training types:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided 
· This type requires model transfer between the UE side and NW side.
· The two-sided AI model is either trained on the network side then transferred to the UE side, or first trained on the UE side then transferred to the network side
· Type 2: Joint training of the two-sided model at network side and UE side, respectively
· An example of joint training approach across Network and UE (i.e., distributed training) is that the UE-side CSI generation part and the Network-side CSI reconstruction part are trained in one forward propagation (FP) & backward propagation (BP) loop with necessary gradients exchange.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively
· An example of separate training approach is that the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE and network, respectively, in their own FP & BP loops. It may include two options: 
· Separate training of CSI generation parts: NW side, after finishing the complete training of the NW’s CSI reconstruction part and the CSI generation part, shares UE side with the dataset including the input (original CSI) and output (CSI feedback) of the NW’s CSI generation part for the purpose of training the UE’s CSI generation part, as input and labels, respectively.
· Separate training of CSI reconstruction parts: UE side, after finishing the complete training of the UE’s CSI reconstruction part and the CSI generation part, shares NW side with the dataset including the input (CSI feedback) and output (recovered CSI) of the UE’s CSI reconstruction part for the purpose of training the NW’s CSI reconstruction part, as input and labels, respectively.
Each of the training method has its own pros and cons:
· Type 1 approach
· Pros
· Training of the two-sided model, including CSI feedback generation part and CSI feedback reconstruction part, in one network entity is less complicated
· Cons:
· Overhead in model sharing/exchange
· Less flexible in differentiating vendor implementation
· Type 2 approach
· Pros
· Implementation of CSI feedback generation part and CSI feedback reconstruction part may remain vendor implementation dependent.
· Cons
· Air-interface overhead involved during the training procedure may not be trivial
· Repeated overhead involved when model needs updates
· Type 3 approach
· Pros
· Implementation of CSI feedback generation part and CSI feedback reconstruction part may remain vendor implementation dependent 
· Cons
· Even though no model exchange involved, overhead associated with training dataset and output exchange may be significant 
· Scalability when many vendors/versions (e.g., due to UE’s AI capability difference) of CSI feedback generation part and CSI feedback reconstruction part co-exist
In RAN1#110 meeting, companies have shared their view on the 3 different training approaches and their concerns for each method. Besides the air-interface overhead involved and vendor algorithm differentiation, we feel the scalability issue should be included as part of the evaluation discussion. For example, how each method handles the deployment scenario in which many different UE vendors and/or versions are interacting with different network vendors/base stations and how to ensure end to end performance.   
Proposal 1: When considering various training types applicable for spatial-frequency domain CSI compression, companies are encouraged to share the performance and overhead related to how the proposed method handles scalability issue in real deployment scenario.

Model Generalization Evaluation
During the RAN1#110 meeting, AI/ML model generalization received a lot of attention and was heavily discussed among companies. For CSI feedback enhancement use case, agreements were reached to verify the generalization performance of an AI/ML model over various scenarios, e.g., deployment scenarios like UMa/UMi/InH, outdoor/indoor UE distribution for UMa/UMi, carrier frequencies, and to verify the generalization performance over various configurations, e.g., various bandwidths, various sizes of CSI feedback payloads, various antenna port layouts.
Companies may choose one or more of the scenarios/configurations in their study. To facilitate the performance evaluation discussion, we feel there is a need to align some performance reporting attributes. Table 2.2-1 provides an example of performance report.

Table 2.2-1: Performance evaluation report attributes
	Training type
	Model input type
	Model output type
	CSI payloads
	Training scenario / config.
	Testing scenario/ config.
	Dataset size
	Perf. KPIs
	Other overhead
	Mechanism applied

	
	
	
	
	
	
	Train
	Test
	
	
	

	
	
	
	
	
	
	
	
	
	
	


 
Proposal 2: When reporting AI/ML model generalization evaluation results for CSI feedback enhancements, companies are encouraged to align the reporting attributes and format as depicted in Table 2.2-1. 

Model Generalization Performance Evaluation Results
In this sub section, we discuss some model generalization evaluation results for AI/ML-based CSI feedback compression. The generalization scenarios considered in this section include:
a) Deployment scenarios: UMa and UMi
b) Frequencies: 2GHz and 4GHz
Dataset construction
For dataset construction, we use the agreed-upon assumptions and simulation parameters from RAN1#109e as depicted in Table 2.1 of Appendix I: R16 EVM for CSI enhancement [2]. Table 3.1-1 depicts some major parameters used UMa dataset generation for 2GHz and 4GHz and Table 3.1-2 depicts some major parameters used in UMi dataset generation for 2GHz and 4GHz dataset generation.

Table 3.1-1: parameters for UMa dataset generation
	Parameter
	Value

	Duplex, Waveform 
	FDD, OFDM 

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	FR1 only, 2GHz and 4GHz.

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ 

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), , (dH,dV) = (0.5, 0.5)λ for (rank 1-2)

	BS Tx power 
	47dBm for 40MHz

	Numerology: SCS
	30kHz for 2GHz and 4GHz

	UE distribution
	100% outdoor (30km/h) 



Table 3.1-2: parameters for UMi dataset generation
	Parameter
	Value

	Duplex, Waveform 
	FDD, OFDM 

	Scenario
	Dense Urban (Micro only)

	Frequency Range
	FR1 only, 2GHz and 4GHz.

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ 

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1-2)

	BS Tx power 
	47dBm for 40MHz

	Numerology: SCS
	30kHz for 2GHz and 4GHz

	UE distribution
	100% outdoor (30km/h) 



AI/ML Model related details
To reduce CSI feedback overhead, we investigated using an autoencoder-based AI/ML model to first compress the CSI feedback at the UE side, followed by vector quantization and lossless encoding to generate a stream of bits as the output at the UE side to be sent as the CSI feedback bits. On the gNB side, the procedures are reversed; the received bits first go through lossless decoding, followed by de-quantization, then the de-quantized output is used as input to the AI/ML decoder to reconstruct the original CSI feedback. The study results discussed in this document is based on training Type 1 (Joint training of the two-sided model at a single side/entity, i.e., the network side). Figure 3.2-1 depicted the high-level functional flow diagram of our AI/ML-based CSI feedback compression and reconstruction study. 
The input type for the AI/ML autoencoder model is raw CSI feedback / channel matrix the UE intends to send, and the output of prediction is the reconstructed raw CSI feedback / channel matrix. We use CNN-based neural network for the encoder and decoder.Figure 3.2-1: High-level functional flow diagram of AI/ML-based CSI feedback compression


Other modeling related parameters and configurations are listed in Table 3.2-1.
Table 3.2-1: AI/ML model related configurations 
	[bookmark: _Hlk110499082]AI/ML model details
	Value

	AI/ML model type
	CNN-based

	Batch size
	32

	Epoch
	200

	Encoder output size
	128

	Quantization method
	Vector quantization

	Quantization codebook size
	1024



AI/ML Model Training and Testing for Generalization Verification
Baseline performance for model generalization between UMa and UMi
Before AI/ML model generalization evaluation, we evaluation scenario-based AI/ML model baseline performance using intermediate KPIs as shown in Table 3.3.1-1. Note that all the performance results included in this document are the results after vector quantization using the configuration specified in Table 3.2-1 and the functional flow is shown in Figure 3.2-1.

Baseline performance
Table 3.3-1: Scenario-based AI/ML model baseline performance for spatial-frequency CSI feedback compression 
	Training scenario
	Testing scenario
	Dataset size
	Avg. CSI payloads (bits)
	SGCS on testing data
	NMSE on testing data (dB)

	
	
	Training
	Testing
	
	
	

	UMa 2GHz
	UMa 2GHz
	8,000
	2,000
	9.92
	0.94
	-1.50

	UMa 4GHz
	UMa 4GHz
	8,000
	2,000
	9.90
	0.94
	-2.20

	UMi 2GHz
	UMi 2GHz
	8,000
	2,000
	9.86
	0.92
	-1.55

	UMi 4GHz
	UMi 4GHz
	8,000
	2,000
	9.92
	0.92
	-0.33




Model generalization between UMa and UMi
In this sub-section, we describe model generalization between UMa and UMi scenarios. The purpose is to verify whether the AI/ML model for spatial-frequency domain CSI feedback compression trained using dataset generated from UMa scenario can generalize to dataset generated from UMi scenario. 
Description of dataset and experiments  
The following dataset sizes are used for UMa and UMi:
· Dataset size from UMa scenario 2GHz: 10,000
· Dataset size from UMi scenario 2GHz: 10,000
For each scenario, 80% of the data is saved for model training purpose and the rest 20% is saved for model testing purpose.
The following experiments are conducted:
· Scenarios: UMa (S1) and UMi (S2)
· AI/ML model includes the CSI feedback generation part and CSI feedback reconstruction part.
· Evaluations:
· Baselines: using scenario-based modeling approach
· Model 1: trained using dataset from S1 only and tested using dataset from S1.
· Model 2: trained using dataset from S2 only and tested using dataset from S2.
· Naïve generalization approach
· Use Model 1 directly to test using dataset from S2
· Use Model 2 to directly test using dataset from S1
· Generalization using mixed dataset approach
· Model 3: trained using datasets from S1 + S2 (similar # of samples in both scenarios) 
· Model 3 is tested using dataset from S1 and dataset from S2 separately.
· Generalization via model fine-tuning
· Fine-tune Model 1 using a subset of the training data from S2, e.g., 50%.
· The fine-tuned model is tested using dataset from S2.

Performance evaluations
In this sub-section, we discuss the evaluation results for the experiments specified in the previous sub-section. 
Model generalization performance
Table 3.3.2.2-1: AI/ML model generalization evaluation for cross scenarios
	Approach
	Training scenario
	Testing scenario
	Dataset size
	Avg. CSI payloads (bits)
	SGCS on testing data
	NMSE on testing data (dB)

	
	
	
	Training
	Testing
	
	
	

	Naïve 
	UMa 2GHz
	UMi 2GHz
	8,000
	2,000
	9.90
	0.45
	9.41

	
	UMi 2GHz
	UMa 2GHz
	8,000
	2,000
	9.86
	0.51
	9.92

	
	UMa 4GHz
	UMi 4GHz
	8,000
	2,000
	9.87
	0.45
	8.90

	
	UMi 4GHz
	UMa 4GHz
	8,000
	2,000
	9.90
	0.50
	10.01

	Mixed dataset
	UMa 2GHz + 
UMi 2GHz
	UMa 2GHz
	UMa 2GHz: 8000
UMi 2GHz: 8000
	2,000 UMa 2GHz
	9.80
	0.87
	-0.10

	
	
	UMi 2GHz
	
	2,000 UMi 2GHz
	9.80 
	0.89
	-1.32

	
	UMa 4GHz + 
UMi 4GHz
	UMa 4GHz
	UMa 4GHz: 8000
UMi 4GHz: 8000
	2,000 UMa 4GHz
	9.88
	0.89
	0.30

	
	
	UMi 4GHz
	
	2,000 UMi 4GHz
	9.88
	0.83
	1.85

	Fine-tuning
	UMa 2GHz + 
UMi 2GHz
	UMi 2GHz
	UMa 2GHz: 8000 
UMi 2GHz: 5000
	2,000 UMi 2GHz
	9.90
	0.45
	9.70

	
	UMa 4GHz + 
UMi 4GHz
	UMi 4GHz
	UMa 4GHz: 8000 
UMi 4GHz: 5000
	2,000 UMi 4GHz
	9.87
	0.46
	9.01

	
	UMi 2GHz + 
UMa 2GHz
	UMa 2GHz
	UMi 2GHz: 8000 
UMa 2GHz: 5000
	2,000 UMa 2GHz
	9.86
	0.49
	10.01

	
	UMi 4GHz + 
UMa 4GHz
	UMa 4GHz
	UMi 4GHz: 8000 
UMa 4GHz: 5000
	2,000 UMa 4GHz
	9.89
	0.48
	11.50



Based on the experiments for cross scenario generalization between UMa and UMi using the datasets generated according to the configurations specified in the Data Construction section, the results in Table 3.3.2.2-1 indicate the following:
· For cross scenario generalization, the AI/ML model trained using dataset from UMa 2GHz can NOT directly generalize to dataset from UMi 2GHz, and the AI/ML model trained using dataset from UMa 4GHz can NOT directly generalize to dataset from UMi 4GHz.
· For cross scenario generalization, the AI/ML model trained using dataset from UMi 2GHz can NOT directly generalize to dataset from UMa 2GHz, and the AI/ML model trained using dataset from UMi 4GHz can NOT directly generalize to dataset from UMa 4GHz.
· The performance of the AI/ML model trained using mixed datasets from both scenarios (i.e., UMa 2GHz and UMi 2GHz, or UMa 4GHz and UMi 4GHz), is significantly better compared to naïve transfer. 
Note that we used the same number of epochs, i.e., 200, in the training phase across all the experiments. The performance when using mixed datasets appears to be slightly worse than scenario-based modelling approach. This may be due to that the training dataset size is double compared to the scenario-based baseline. Additional study may be performed to understand if more training epochs would achieve comparable performance.
· The performance of fine-tuning approach for cross scenario generalization between UMa and UMi is not much different than naïve transfer. This may be due to the amount of dataset sizes for training and fine tuning are relatively small and/or additional techniques may be required. Further study is needed to draw conclusion. 
Model generalization between 2 GHz and 4 GHz 
This sub-section, we describe model generalization between 2 GHz and 4 GHz scenarios. The purpose is to verify whether the AI/ML model for spatial-frequency domain CSI feedback compression trained using dataset generated from 2 GHz scenario can generalize to dataset generated from 4 GHz scenario. 
The evaluation procedures are the same as the evaluation steps performed for model generalization between scenarios UMa and UMi as described in the previous sub-section.
Description of dataset and experiments  
The following dataset sizes are used for 2 GHz and 4 GHz:
· Dataset size from UMi 2 GHz scenario: 10,000
· Dataset size from UMi 4 GHz scenario: 10,000
For each scenario, 80% of the data is saved for model training purpose and the rest 20% is saved for model testing purpose.
The following experiments are conducted:
· Scenarios: UMi 2GHz (S1) and UMi 4GHz (S2)
· AI/ML model includes the CSI feedback generation part and CSI feedback reconstruction part
· Evaluations:
· Baselines: using scenario-based modeling approach
· Naïve generalization approach
· Generalization using mixed dataset approach
Performance evaluations
In this sub-section, we discuss the evaluation results for the experiments specified in the previous sub-section. 
Model generalization performance
Table 3.3.3.2-1: AI/ML model generalization evaluation for cross carrier frequencies
	Approach
	Training scenario
	Testing scenario
	Dataset size
	Avg. CSI payloads
	SGCS on testing data
	NMSE on testing data

	
	
	
	Training
	Testing
	
	
	

	Naïve 
	UMa 2GHz
	UMa 4GHz
	8,000
	2,000
	9.93
	0.94
	-2.30dB

	
	UMa 4GHz
	UMa 2GHz
	8,000
	2,000
	9.90
	0.94
	-2.40dB

	
	UMi 2GHz
	UMi 4GHz
	8,000
	2,000
	9.86
	0.91
	-0.05dB

	
	UMi 4GHz
	UMi 2GHz
	8,000
	2,000
	9.90
	0.91
	-0.08dB

	Mixed dataset
	UMa 2GHz + 
UMa 4GHz
	UMa 2GHz
	UMa 2GHz: 8000
UMa 4GHz: 8000
	2,000 UMa 2GHz
	9.91
	0.94
	-0.03dB

	
	
	UMa 4GHz
	
	2,000 UMa 4GHz
	9.92
	0.94
	0.05dB

	
	UMi 2GHz + 
UMi 4GHz
	UMi 2GHz
	UMi 2GHz: 8000
UMi 4GHz: 8000
	2,000 UMi 2GHz
	9.91
	0.92
	-1.90dB

	
	
	UMi 4GHz
	
	2,000 UMi 4GHz
	9.91
	0.92
	-0.16dB



Based on the experiments for cross frequency generalization using the datasets generated according to the configurations specified in the Data Construction section, the results in Table 3.3.3.2-1 indicate the following:
· The AI/ML model trained using dataset from UMa 2GHz can generalize to dataset from UMa 4GHz, and the AI/ML model trained using dataset from UMa 4GHz can generalize to dataset from UMa 2GHz without significant performance difference.
· The AI/ML model trained using dataset from UMi 2GHz can generalize to dataset from UMi 4GHz, and the AI/ML model trained using dataset from UMi 4GHz can generalize to dataset from UMi 2GHz without significant performance difference.
· The performance results from mixed datasets do not show significant difference compared to naïve transfers for cross frequency scenarios between 2GHz and 4GHz in both UMi and UMa scenarios. 
Note that we used the same number of epochs, i.e., 200, in the training phase across all the experiments. The performance when using mixed datasets appears to be slightly worse than naïve transfer in some cases (e.g., in NMSE for UMa 2GHz and UMa 4GHz) which may be due to that the training dataset size is double compared to the baseline and naïve transfer, which may require more training epochs to achieve comparable performance.
From our study on model generalization across various scenario/frequency combinations, it appears that in some cases AI/ML model trained using dataset generated for one scenario can generalize to the other scenario, e.g., between different carrier frequencies (at least between 2GHz and 4GHz) while in some other cases AI/ML model trained using dataset generated from one scenario only cannot generalize to the other scenario, e.g., between different deployment scenarios (at least between UMi and UMa). Additional study on model generalization mechanisms is needed to understand the appropriate techniques that can be leveraged for different generalization aspects.   
Observation 1: For AI/ML model generalization across different deployment scenarios in spatial-frequency domain CSI compression sub use case, our experiments showed:
· The AI/ML model trained using dataset generated for UMa 2GHz CANNOT directly generalize to UMi 2GHz, and the AI/ML model trained using dataset generated for UMa 4GHz CANNOT generalize to UMi 4GHz.
· The AI/ML model trained using dataset generated for UMi 2GHz CANNOT directly generalize to UMa 2GHz, and the AI/ML model trained using dataset generated for UMi 4GHz CANNOT generalize to UMa 4GHz.
· The performance results from mixed datasets show significant improvement over the naïve transfer approach between Umi and Uma scenarios in both 2GHz and 4GHz carrier frequencies. 
Observation 2: For AI/ML model generalization across different frequencies in spatial-frequency domain CSI compression sub use case, our experiments showed:
· The AI/ML model trained using dataset generated for UMa 2GHz CAN generalize to UMa 4GHz, and the AI/ML model trained using dataset generated for UMa 4GHz CAN generalize to UMa 2GHz without significant performance difference.
· The AI/ML model trained using dataset generated for UMi 2GHz CAN generalize to UMi 4GHz, and the AI/ML model trained using dataset generated for UMi 4GHz CAN generalize to UMi 2GHz without significant performance difference.
· The performance results from mixed datasets do not show significant difference compared to naïve transfers for cross frequency scenarios between 2GHz and 4GHz in both UMi and UMa scenarios.  
Observation 3: When considering spatial-frequency domain CSI compression, in some cases, AI/ML model trained using dataset from one scenario can generalize to another scenario (e.g., at least between 2GHz and 4GHz), while in some other cases, AI/ML model trained using dataset from one scenario cannot generalize to another scenario (e.g., at least between UMa and UMi).
[bookmark: _Hlk115184358]Proposal 3: In AI/ML model generalization across different scenarios/configurations for spatial-frequency domain CSI compression, further study the applicable generalization mechanism(s) that can be applied to different scenario/configuration combinations.  
AI/ML Model Complexity
We evaluated the AI/ML model complexity using total number of parameters in the AI/ML model and total number of floating-point operations (FLOPs) as described in Table 3.4.-1. Table 3.4-1: AI/ML model complexity


	Encoder output size
	Number of AI/ML model parameters
	FLOPs

	
	CSI generation part
	CSI reconstruction part
	

	128
	518,080
	668,258
	40.665 M



Conclusions
In this contribution, we discussed our study on model generalization evaluation results of AI/ML-based CSI feedback compression in spatial-frequency domain on both performance and AI/ML model complexity; our observations are as follows.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Observation 1: For AI/ML model generalization across different deployment scenarios in spatial-frequency domain CSI compression sub use case, our experiments showed:
· The AI/ML model trained using dataset generated for UMa 2GHz CANNOT directly generalize to UMi 2GHz, and the AI/ML model trained using dataset generated for UMa 4GHz CANNOT generalize to UMi 4GHz.
· The AI/ML model trained using dataset generated for UMi 2GHz CANNOT directly generalize to UMa 2GHz, and the AI/ML model trained using dataset generated for UMi 4GHz CANNOT generalize to UMa 4GHz.
· The performance results from mixed datasets show significant improvement over the naïve transfer approach between Umi and Uma scenarios in both 2GHz and 4GHz carrier frequencies. 
Observation 2: For AI/ML model generalization across different frequencies in spatial-frequency domain CSI compression sub use case, our experiments showed:
· The AI/ML model trained using dataset generated for UMa 2GHz CAN generalize to UMa 4GHz, and the AI/ML model trained using dataset generated for UMa 4GHz CAN generalize to UMa 2GHz without significant performance difference.
· The AI/ML model trained using dataset generated for UMi 2GHz CAN generalize to UMi 4GHz, and the AI/ML model trained using dataset generated for UMi 4GHz CAN generalize to UMi 2GHz without significant performance difference.
· The performance results from mixed datasets do not show significant difference compared to naïve transfers for cross frequency scenarios between 2GHz and 4GHz in both UMi and UMa scenarios.  
Observation 3: When considering spatial-frequency domain CSI compression, in some cases, AI/ML model trained using dataset from one scenario can generalize to another scenario (e.g., at least between 2GHz and 4GHz), while in some other cases, AI/ML model trained using dataset from one scenario cannot generalize to another scenario (e.g., at least between UMa and UMi).
Proposal 1: When considering various training types applicable for spatial-frequency domain CSI compression, companies are encouraged to share the performance and overhead related to how the proposed method handles scalability issue in real deployment scenario.
Proposal 2: When reporting AI/ML model generalization evaluation results for CSI feedback enhancements, companies are encouraged to align the reporting attributes and format as depicted in Table 2.2-1. 
Table 2.2-1: Performance evaluation report attributes
	Training type
	Model input type
	Model output type
	CSI payloads
	Training scenario / config.
	Testing scenario/ config.
	Dataset size
	Perf. KPIs
	Other overhead
	Mechanism applied

	
	
	
	
	
	
	Train
	Test
	
	
	

	
	
	
	
	
	
	
	
	
	
	


Proposal 3: In AI/ML model generalization across different scenarios/configurations for spatial-frequency domain CSI compression, further study the applicable generalization mechanism(s) that can be applied to different scenario/configuration combinations.  
 
References
[bookmark: _Ref45631853][bookmark: _Ref6583376][bookmark: _Ref167612875][bookmark: _Ref167612671]R1-2208145, “Session notes for 9.2 (Study on AI/ ML for NR air interface)”, Ad-hoc Chair (CMCC).
R1-2207839, “Summary#4 for CSI evaluation of [110-R18-AI/ML]”,	Moderator (Huawei)
image1.png
-
Csl feedback
matrix

AIML
encoder

Vector
quantizer

Lossless
encoder

Feedback
>

Lossless
decoder

De-
quantizer

AI/ML
decoder

-

Predicted CSI
feedback

matrix




image2.png
-
Csl feedback
matrix

AIML
encoder

Vector
quantizer

Lossless
encoder

Feedback
>

Lossless
decoder

De-
quantizer

AI/ML
decoder

-

Predicted CSI
feedback

matrix




