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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In RAN 94-e meeting [1], study on artificial intelligence (AI) / machine learning (ML) for multiple use cases was approved considering aspects such as performance, complexity, and potential specification impact. The following gives the detailed scope for the study. 
Regarding multiple use cases:
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signaling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference), and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.

In this contribution, we focus on the use case of beam management, including spatial domain beam prediction and time domain beam prediction. Simulation results, corresponding comparisons and observations are provided to verify the rationality and validity of the proposed beam management enhancements based on artificial intelligence (AI) / machine learning (ML).
Evaluation methodology
In RAN1#109-e meeting, the following agreements were approved for SLS simulation assumption,
Agreement 
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS
Table 1.2-1b Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded. 
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB


Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of a time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within a time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation

· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area


where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 
Agreement
· For UE trajectory model, UE orientation can be independent from UE moving trajectory model. FFS on the details. 
· Other UE orientation model is not precluded.
Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.
Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  
Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
· Description of AI/ML model, e.g, NN architecture type
· Model inputs/outputs (per sub-use case)
· Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors             
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded
We present our views on further details of evaluation methodology for BM use case.
UE distribution
For UE distribution, we believe 10 UEs per sector/cell is a standard deployment for evaluation purpose in system performance comparison. For dataset generation purpose, the number of UEs per sector/cell for data generation is not a critical issue. On the other hand, it is important to guarantee a sufficiently large number of samples, for example at least 200000 samples, used for AI model training for improving performance and avoiding overfitting. These samples can be generated by either deploying more UEs per sector/cell or running more drops with smaller UE number per cell. 
Support to deploy 10 UEs per sector/cell for performance evaluation purpose in system level.
Generate at least a certain number of samples for AI model training for improving performance and avoiding AI model overfitting.
[image: ]
Figure 1: CDF of RSRP with 80% indoor UEs
Besides, two options of indoor/outdoor distribution have been made in spatial domain beam prediction. In the above figure, 50% L1-RSRPs in all data are less than -140 dB, while 50% maximum L1-RSRPs per sample are no large than -110dBm. Both of them seem unreasonable due to high penetration loss and more N-Los paths for indoor UEs in FR2. Although such RSRP distribution may not impact on AI model performance in early study if we ignore RSRP quantization, it may lead to the situation that most of the measured or predicted RSRPs are below noise level, and thus difficult to be quantized and reported. Hence, we prefer to adopt the more reasonable UE distribution that is 100% outdoor in spatial domain beam prediction to facilitate performance evaluation and cross-check in RAN1. 
Support UE distribution with 100% outdoor in spatial domain beam prediction.
Trajectory model
Three trajectory models have been agreed, i.e.,
· Option #2: Linear trajectory model with random direction change.
· Option #3: Linear trajectory model with random and smooth direction change.
· Option #4: Random direction straight-line trajectories.
Only option #4 explicitly mention that the initial UE location as well as the initial moving direction are randomly selected, and there is a clear clarification in the configuration of inter-cell handover/switching and the action after UE trajectory hitting cell boundary. However, option #2 or #3 lacks such definitions. Therefore, we support option #4 considering the completeness of UE trajectory modelling.
Support option #4, i.e. random direction straight-line trajectories, in UE trajectory modelling.
Orientation model
For UE trajectory model, UE orientation modelling should be clarified either, as it will affect the beam prediction performance, esp. generalization performance. Two options with different configurations were mentioned in the previous meeting,
· Option 1: UE orientation independent from UE moving trajectory model: 
· Option 1a: singular fixed UE orientation for all UE 
· Option 1b: randomly per-UE chosen for UE orientation initially, and UE orientation is fixed during SLS. 
· Option 1c: randomly per-UE chosen for UE orientation initially, and UE rotation model is followed during SLS. 
Note: If UE rotation model is disabled, Option 1c would fallback to Option 1b. 
· Option 2: UE orientation coupled with UE moving trajectory model:
· Option 2a: randomly per-UE chosen for UE orientation initially, and UE's relative orientation with UE's moving direction is fixed during SLS. 
· Option 2b: randomly per-UE chosen for UE orientation initially, and UE rotation model is followed for UE's relative orientation with UE's moving direction during SLS. 
Note: If UE rotation model (relative to UE's moving direction) is disabled, Option 2b would fallback to Option 2a.
For option 1, UE orientation modelling is interdependent from UE moving trajectory model, whereas these two models are coupled in option 2. In fact, option 2 seems more reasonable but has higher UE orientation modelling complexity. Besides, in option 1b, orientation is different among UEs by initialization which can serve the purpose of evaluating beam prediction performance and generalization for more diverse cases. Thus, from our view, we slightly prefer option 1b for UE orientation modelling, but we can live with option 2 if this modelling complexity is indeed needed.
Slightly prefer option 1b, i.e. randomly per-UE chosen for UE orientation initially but with fixed orientation during SLS, for UE orientation modelling. 
Other aspects
To align the performance gain for each sub use case between different companies, simulation calibration is important and should be done as soon as possible.
Previously, some evaluations for MIMO/eMIMO/FeMIMO are conducted without exposing absolute spectral efficiency. There may potentially be large difference between companies on the baseline performance, and it would be difficult to align on whether AI/ML has gains. To alleviate such misaligned understanding on the baseline performance, the definition of baseline performance should be clarified firstly. 
Two options of baseline schemes for each sub-use cases were approved,
BM case-1: spatial domain beam prediction:
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
BM case-2: temporal domain beam prediction:
· Option 1: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1

For option 2 in both of beam management sub-use cases, the importance is to identify a state-of-the-art Set B subset selection method, otherwise exaggerated gains may be potentially obtained from AI based beam prediction that may not highlight the actual benefit of AI/ML-based approaches and may lead to misinterpreted results/conclusions. Thus, the subset selection method should be reported by each company if AI performance compared to baseline defined by option 2. We believe Option 1 is a fair benchmark for performance comparison among companies, as option 1 is the solid upper bound of performance for system performance related KPIs or beam measurement related KPIs and easy to compare. We, thus, propose,
Support both option 1 and option 2 as baseline performance in spatial domain beam prediction and temporal domain beam prediction, and subset selection method in option 2 should be reported.
Another aspect that influences the aligned understanding on the performance of AI/ML over air interface is dataset. If the dataset to train AI/ML models is different for different companies, it would not be possible for companies to be aligned on the performance of AI/ML. There are two ways on table for companies to be aligned on this:
· Alt1: Provide details as much as possible for generation of the dataset
· Alt2: Directly provide publicly accessible dataset for training and testing 
It is preferable to go with Alt1+Alt2 since this would resolve the misalignment between companies to the largest extent.
It is encouraged for companies to provide publicly accessible dataset and disclose the details for the dataset generation as much as possible for training and validation for cross-check purposes.
Furthermore, companies can report the details of AI model per sub use cases for simulation calibration purpose, such as NN architecture type, AI model inputs/outputs, and training/validation dataset. From our perspective, at least the description of AI model inputs/outputs including assistance information should be reported per sub use case, as it may have significant impact on standardization. Besides, the generation of training dataset and inference dataset should be reported in each sub cases for generalization performance comparison. Thus, we propose,
At least AI model inputs/outputs and training/validation dataset should be reported per sub-use case by companies. Other parameters, such as NN architecture type, loss function, and data post/pre-processing method, are encouraged to be reported.
KPI discussion
In RAN1#109-e meeting, following agreements were approved in KPI aspects,
Agreement
· For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 
· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
· Other KPIs are not precluded and can be reported by companies, for example:
· Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
· Latency reduction:
·  (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
· where M is the total number of beams
· Power consumption reduction: FFS on details.
Beam management related KPIs
Regarding beam prediction accuracy (%) for Top-1 and/or Top-K beams, two options have been made for further down selection. 
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
For option1, we can consider an extreme case that huge L1-RSRP difference measured between Top-1 genie-aided beam and 2nd best genie-aided beam if quite narrow beams are used in FR2. Consequently, the beam prediction accuracy for Top-k beams may be precise sufficiently, but L1-RSPR difference seems terrible if other beams except the best beam are predicted by AI algorithm. However, the KPI target of option 2 is the Top-1 genie-aided beam which is unique and goal-oriented. Thus, we believe option 2 is more suitable. 
Support Option 2, i.e. the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”, to be the definition of beam prediction accuracy (%) for Top-1 and/or Top-K beams.
[bookmark: _Hlk102160781]From UE implementation perspective, model complexity, computational complexity, and power consumption are all relevant. All these relevant KPIs shall be assessed based on typical chipset implementations, which can be estimated using number of floating-point operations (FLOPs) as well as AI model size in terms of number of parameters or bytes. Besides, the complexity and power consumption values would be largely different for various implementations and sub use cases. Thus, it is preferred for companies to report the corresponding values (or expected values) for assessment of the KPIs. 
Model complexity, computational complexity, and power consumption are all relevant and can be estimated using number of floating-point operations (FLOPs) as well as AI model size in terms of number of parameters or bytes.
Overhead from beam sweeping and UCI report should be considered as basic KPI. For example, as a representative use case for which this metric is useful, we can consider partial to whole beam prediction. Through measurements of partial beams, the beam search space can be reduced as well as resources overhead, due to sweeping over a small number of beams. Thus, the metric of overhead reduction can be captured accurately for this sub use cases if compared to non-AI algorithm. The metric of beam sweeping overhead reduction can be equal to 1-N/M where N is the number of beams required for measurement in both non-AI algorithm and AI algorithm, and M can be the total number of all possible beams. 
Furthermore, the motivation of beam prediction in BM-Case 2 is to use fewer beam report to efficiently and accurately predict more beams in temporal domain. For example, originally it needs 40ms to track the beam accurately. But with proper Case-2 beam prediction, the beam report can be reduced to once per 160ms. This would help to save UE power and also save UL resources. UCI Payload size can also be reduced since it is possible that some prediction needs more input while other prediction needs fewer.
In addition, there are some solutions to share huge amount of training data or assistant information via RAN air interface. We think this could cause trouble for RAN2 study and design, and it’s beneficial to let RAN1 consider signaling overhead in its study from the beginning. We, thus, propose,
The metric of beam sweeping overhead reduction is calculated as 1-N/M where N is the number of beams required for measurement in both non-AI algorithm and AI algorithm, and M can be the total number of all possible beams to be predicted.
UCI reporting overhead reduction, including the number of UCI report and UCI payload size, should be considered as basic KPI.
RRC singling overhead can be considered as optional KPI if huge amount of data, such as training data, assistant information, and AI model data, is exchanged via RAN air interference.
Generalization performance related KPIs
Generalization should be seriously considered for all AI/ML based approaches, as generalization, including overfitting issues, is one of the key issues in AI/ML. With generalization, the model is memorizing the features of the training set, rather than learning how to generalize to unseen samples. As a possible consequence, AI model may work well for training data set but its performance on verification data set could be unacceptable. Besides, the generalization performance of AI model is affected by the AI model structure, the variety of training data set and the training strategy. It is better to keep the training loss to be an accurate approximation of the generalization loss uniformly for all hypotheses.
Actually, as the procedure of beam management is highly dependent on specific implementation, such as, mapping relationship between TXRU and antenna, array size, AL model deployment location, and beamforming realization, we believe this use case suffers more serious generalization issue since it not only brings performance deterioration but also causes AI function useless. For example, if one AI model for beam prediction is deployed in gNB side with a predefined fixed number of outputs L1-RSRP which is corresponding to a certain number of beam pairs, this AI model may be suitable for a UE with the same required Rx beam number, whereas to another UE with a different number of Rx beams, the output of the AI model is mismatched. To address this mismatch issue, one solution is to prepare multiple AI models in advance for adapting different number of Rx beams. We believe this solution may be effective but not feasible especially after considering more implementation aspects such as storage size. Thus, from our view, the trained model should be generally applicable for dynamically changing working environment in each generalization scope, such as,
· Different scenarios, e.g. Umi, Uma, indoor hotspot, etc.
· Different UE speeds, e.g. 30km/h, 60km/h, etc.
· Different number of Tx beams and/or Rx beams
· Different gNB/UE antenna configurations, e.g. different number of antennas which corresponding to various beam shape pattern
Support to define generalization performance KPI. 
To study and evaluate generalization, at least the aspects including different scenarios, different UE speeds, different number of Tx beams and Rx beams, and different gNB/UE antenna configurations, should be prioritized.
We know this generalization performance related KPI is more complicated and should be discussed among companies to agree on priority of generalization scope in the study first. If companies agree to pursue including such generalization aspects, the discussion regarding how AI solutions can fulfill this KPI in each agreed aspect should be carried on. The following is an example to illustrate how to perform testing on generalization performance using spatial domain beam prediction in gNB side with different number of UE Rx beams. 
· Step-1: Generate the training dataset from a first set of parameters, including e.g., scenarios, speed, antenna configurations, Tx beams, Rx beams, etc. 
· Step-2: Train the AI/ML model using the training dataset (also include model validation to tune the hyperparameters with the same training dataset).
· Step-3: Generate a new dataset from a separate set of parameters with only 1 difference to the first parameter set, i.e. the number of Rx beams. It should be clarified that multiple parameters are different between two sets are not precluded in further study.
· Step-4: Assuming this trained model in step 2 can be performed with the dataset generated in step 3, and test its performance, otherwise the trained model is inapplicable for the new dataset.
Through the above steps, generalization performance can be verified, and it can be found this KPI at least implies two levels of functionalities, i.e. AI model adaptability (inapplicable pre-trained model) and beam management related performance in different datasets. Back to implementation in real life, we think for beam prediction use case, if the training is at gNB side, the training may base on a certain gNB configurations. It should not be forced to realize the same Rx beam number for all accessed UEs, thus model design should consider the output target of an AI model used for beam prediction probably used for different number of Tx beams and/or Rx beams, as the UE in the cell may have different antenna configurations. If the training is at UE side, different scenarios and gNB configurations may need to be considered as well. Thus, in SI, final conclusions for the beam prediction use case should only be drawn after comparing performance over at least above generalization aspects as it brings critical commercial issues in life.
For evaluation of generalization performance, support to evaluate KPIs for a separately generated testing dataset generation method with 1 target parameter difference. Multiple target parameters can also be verified in further study.
Performance evaluation results
In this section, we provide our simulation results for performance evaluation of AI/ML based beam prediction, including data generation and processing, pattern selection scheme, expected beam information scheme and 2-step prediction scheme.
Evaluation assumption
AI model structure：
In comparison with fully-connection neural network, superior AI model, such as transformer, convolution neural network, LSTM and so on, may increase performance gain and/or decrease model size/computation. However, the main purpose of the SID is to find an effective AI/ML algorithm with acceptable AI generalization, complexity and performance in beam prediction rather than to find an optimal AI model. Thus, a fully-connected AI model with 2 hidden layers and 1000 parameters per hidden layer is used in spatial domain beam prediction, whereas the neural network structure in temporal domain beam prediction, MLP-mixer is attempted to obtain considerable gain in the following simulation. 
Data generation:
373800 samples are generated, which are based on assumptions in appendix A for spatial domain beam prediction. 87.5% of samples are used to model training, and 12.5% of samples are used for validation, which is generated from different simulation drops compared with the training dataset. For temporal domain prediction, 418000 samples are generated, and 80% of data and 20% of data is used for model training and model validation respectively.
More simulation assumptions can be obtained in appendixes. 
Data processing:
[bookmark: _Hlk110606638]To address the issue of using one AI model for multiple number of Tx/Rx beams, we study the performance of using expected information in AI model input, where expected Tx/Rx beam angle is the expected beam angle that the AI model want to predict. For example, if one UE has 8 Rx beams, but the AI model is just trained to output 4 Rx beams. Then introducing 4 expected Rx beam information into the input of the AI model, and the AI model can run twice with different set of 4 expected Rx beam information as the input and output to get all the Rx beam RSRPs. To simplify solution for performance evaluation, we assume 1 expected beam information applied in the following expected-based scheme. As a consequence, the total number of samples should be multiplied by 8, 32 and 256 after introducing expected RX beam information, expected Tx beam information and expected TX/RX beam information in AI model input, respectively. 
Beam management related KPIs selection:
Base on above KPI discussion, 4 KPIs are used in following performance evaluation, including,
· average L1-RSRP difference of Top-1 predicted beam
· beam prediction accuracy (%) for Top-1 beam
· beam prediction accuracy (%) with 1dB margin for Top-1 beam
· beam prediction accuracy (%) for Top-4 beams with option 2 definition represented, i.e., the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”. 
Spatial domain beam perdition
4.2.1 Set B selection scheme
In RAN1#109-e meeting, two basic sets, i.e. Set A and Set B, are defined for AI input and AI output, which Set B is for DL beam measurement as AI input for beam prediction. For both spatial domain and temporal domain beam prediction, Set B contains a subset of beams selected from a full-set which may relate to AI output or gNB/UE beam configuration. Thus, we evaluate performance in spatial domain beam prediction as a representative sub use to illustrate the importance of how to select Set B is one of the core issues that should be discussed first for AI/ML-based beam management.
4.2.1.1 Fixed subset selection
373800 samples are generated for spatial domain prediction where each sample includes a full-set of 256 L1-RSRP results. The output of AI model is designed to be L1-RSRP of the full-set and set B is a subset of the L1-RSRP results fed into AI model, as shown in figure 2.
[image: ]
Figure 2 beam prediction with fixed selection scheme
4 fixed sets with number of 16 beams are generated with various fixed selection method:
· Set 1: Fixed subset with continuous beams
· Set 2: Fixed subset which is randomly selected
· Set 3: Well-designed subset 
· Set 4: Best fixed subset 
Set 1 selected continuous beams from all beam pairs which shall be the worst set among above 4 sets. Then, set 2 is selected by random generating a fixed beam subset from total beams, which represents all datasets, including training dataset and validation dataset, use same fixed beams in AI input. Set 3 is a well-designed set according to predefined rules, while Set 4 is statistically best beam subset among candidate subsets which have been enumerated with predefined searching criterion.
Two AI application mechanisms are considered, i.e. same or different fixed beam subsets used for training and validation, which may represent performance upper bound and lower bound for a given AI model respectively. 
Table 1: performance evaluation results for fixed subset selection scheme
	Training
dataset
	Validation
dataset
	Ave. RSRP
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 1 (worst)
	6.17
	35.29
	42.46
	68.57

	Set 2 (fixed)
	2.77
	51.16
	59.77
	80.96

	Set 3 (designed)
	2.25
	54.55
	63.39
	83.45

	Set 4 (best)
	1.91
	56.68
	68.10
	86.03

	Set 2
	Set 1
	17.64
	3.20
	4.89
	9.49

	Set 3
	Set 2
	21.07
	3.72
	13.26
	12.01

	Set 4
	Set 2
	20.67
	2.74
	12.08
	9.29

	Set 4
	Set 3
	14.44
	9.94
	19.72
	27.52



If only measured RSRP is input into the AI model, large performance loss appears in the case that training and inference use different sets for measurement.
4.2.1.2 Random subset selection
The fixed beam subset scheme takes a considerable spatial beam prediction gain only when the same fixed set B is applied in both model training and validation, which bring significant restrictions on AI deployment for beam prediction. Such restriction may cause performance loss in real deployment. For example, one or more beams in the fixed Set B may suffer measurement loss due to unexpected channel conditions like blockage, or may cause large interference to neighbor cells. Thus, random subset selection worthy study as to use different beam subsets in Set B for measurement during inference may have a potential to obtain the beam prediction gain as well as reduce restrictions on AI deployment.
Fixed beam subset in Set B can have good performance in ideal scenarios but it lacks flexibility. Issues like blockage and inter-cell interference can bring negative impact on the performance of fixed subset.
In this selection scheme, each input sample with 16 beams are randomly selected from the total 256 beams. It seems almost inevitable that the flexibility of AI deployment can be improved by random subset selection scheme at the expense of lower performance compared with well-designed fixed beam subset. Thus, in below figure, assistance information is introduced to increase performance gain of beam prediction, such as Tx beam id, Tx beam pointing angle, Rx beam id, Rx beam pointing angle in both horizontal and vertical direction.
[image: ]
Figure 3 beam prediction with random selection scheme
Therefore, we have 5 input combinations as below:
· Set 5: Random subset selection which allows different beam subsets between training and inference
· Set 5 + Tx beam id: Random subset selection 
+ Tx beam id of horizontal direction + Tx beam id of vertical direction
· Set 5 + Tx beam angle: Random subset selection 
+ Tx beam pointing angle of horizontal direction 
+ Tx beam pointing angle of vertical direction
· Set 5 + Tx/Rx beam id: Random subset selection
+ Tx beam id of horizontal direction + Tx beam id of vertical direction 
+ Rx beam id of horizontal direction + Rx beam id of vertical direction
· Set 5 + Tx/Rx beam angle: Random subset selection
+ Tx beam pointing angle of horizontal direction 
+ Tx beam pointing angle of vertical direction
+ Rx beam pointing angle of horizontal direction 
+ Rx beam pointing angle of vertical direction
Each input sample of Set 5 has 16 L1-RSRP selected randomly from total 256 L1-RSRP, and each L1-RSRP in an input sample has its corresponding beam pair, i.e. Tx beam in gNB for transmitting and Rx beam in UE for receiving. The intention of remain combinations is to evaluate performance improvement of using different assistance information, including the performance comparison between Tx beam and Tx/Rx beam, as well as the difference between beam id and beam pointing angle. 
Table 2: performance evaluation results for random selection scheme
	Training
dataset
	Validation
dataset
	Ave. RSRP
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 5 (random beam subset)
	10.83
	12.23
	13.24
	41.04

	Set 5 + Tx beam id
	8.31
	17.21
	20.03
	56.21

	Set 5 + Tx beam angle
	8.02
	17.94
	21.79
	57.20

	Set 5 + Tx/Rx beam id
	5.49
	31.26
	36.63
	54.23

	Set 5 + Tx/Rx beam angle
	5.34
	32.01
	37.42
	66.61


[bookmark: _Hlk111040543]
For random subset selection, i.e., training and inference use different beam subsets in Set B, to include Tx/Rx beam ID or angle into the AI model is helpful to reduce performance loss.
4.1.2.3 Semi-random subset selection
In this section, assistance information of Tx/Rx beam angle will be used as a baseline function for AI/ML beam management with semi-random based subset selection scheme. Due to huge various performance gain among different fixed beam subsets and imperfect solution for random beam subset selection scheme even with some assistance information, a semi-random subset selection method shall be considered for further improving performance of random-based scheme.  
As we described in fixed subset selection scheme, the Set 4 with the best performance gain is the statistically best beam subset from the enumerated candidate subsets based on predefined searching criterion. Thus, to improve the performance of purely random selection, more restricted beam subset searching from the best beam subsets can be used for sample selection. Specifically, each input subset with 16 beams can be selected randomly from a given number of candidate subsets with better performance. Thus, we have following Set B,
· Set 6 from best 10 subsets: Semi-random subset selection within best 10 subsets 
+ Tx/Rx beam pointing angle 
· [bookmark: _Hlk110606983]Set 7 from best 50 subsets: Semi-random subset selection within best 50 subsets 
+ Tx/Rx beam pointing angle 
· Set 8 from best 100 subsets: Semi-random subset selection within best 100 subsets 
+ Tx/Rx beam pointing angle 
· Set 9 from best 500 subsets: Semi-random subset selection within best 500 subsets
+ Tx/Rx beam pointing angle 
· Set 10 from best 1000 subsets: Semi-random subset selection within best 1000 subsets 
+ Tx/Rx beam pointing angle 

Table 3: performance evaluation results for semi-random subset selection scheme
	Training
dataset
	Validation
dataset
	Ave. RSRP
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 6 from best 10 subsets
	2.34
	51.47
	61.18
	83.73

	Set 7 from best 50 subsets
	2.79
	47.27
	56.50
	80.86

	Set 8 from best 100 subsets
	3.03
	45.35
	54.36
	79.35

	Set 9 from best 500 subsets
	3.74
	40.16
	47.92
	75.87

	Set 10 from best 1000 subsets
	4.01
	37.90
	44.89
	74.35



[bookmark: _Hlk111040317]To restrict the selection of random subset from the best X beam subsets can improve the performance of BM Case 1 prediction. Such semi-random selection with Tx/Rx beam angle information as input barely suffers performance loss compared with the best beam subset.
4.2.2 Expected beam information 
Set 7 including Tx/Rx beam pointing angle and best 50 subsets selected by semi-random subset selection scheme in section 4.2.3 is used as baseline AI model input in expected beam information study. Three different expected information, including expected Rx beam pointing angle, expected Tx beam pointing angle, and expected Tx/Rx beam pointing angle, will be studied which represents relative expected beam angle that AI model want to predict. For AI model simplification, we assume 1 expected beam information applied in AI model input in the following expected-based simulation, and more expected beam information simultaneously used in each input sample can be further studied if needed.

[image: ]
Figure 4: beam prediction with expected Rx beam information
In above figure, Set 7 with additional 1 expected Rx beam information including in assistance information block is fed into AI model, and an expected output of L1-RSPR with all Tx beams and the expected Rx beam indicated in AI input can be obtained. Then, other expected outputs can be acquired by feeding same Set 7 + different expected Rx beam information per running cycle. After running all cycles which may equal to the number of Rx beams, all the Tx and Rx beam information (L1-RSRP) can be predicted based on this trained AI model. As a consequence, the number of AI model output per running cycle is decoupled with the number of UE Rx beams, which takes significant generalization performance improvement if we need to apply AI/ML operations on numerous UE antenna configurations. 
Similarly, the AI output of expected Tx beam is L1-RSPR with all Rx beams and the expected Tx beam. Thus, the number of AI model output per running cycle is decoupled with the number of gNB Tx beams, and this AI model can be used in a UE without any AI model changing even switching to a cell with distinct number of Tx beams.
Further, both expected Tx beam information and expected Rx beam information can be considered to study its potentiality in generalization performance. One predicted L1-RSRP obtained in an AI model running cycle is indicated by AI input with 1 expected Tx beam information and 1 expected Rx beam information. 
According to above discussions on expected information scheme, we have following combinations:
· Set 7 + 1 expected Rx beam pointing angle
· Set 7 + 1 expected Tx beam pointing angle
· Set 7 + 1 expected Tx beam pointing angle + 1 expected Rx beam pointing angle

Table 4: performance evaluation results for expected beam information
	Training
dataset
	Validation
dataset
	Ave. RSRP
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 7 (semi-random &Tx/Rx angle)
+ 1 expected Rx beam pointing angle
	3.09
	46.83
	55.62
	81.02

	Set 7 
+ 1 expected Tx beam pointing angle
	2.91
	46.59
	54.46
	79.91

	Set 7
+ 1 expected Tx beam pointing angle
+ 1 expected Rx beam pointing angle
	3.27
	43.64
	49.97
	78.55



To input the expected Tx and/or Rx beam information in the AI model can enable the utilization of a trained AI model to different numbers of Tx or Rx beams with marginal performance loss.
4.2.3 Two-step beam prediction 
One important issue for AI based BM study is whether we need to support P1 BM procedure or P2 and P3 beam management procedures as in the current NR specification. In P1, AI predicts RSRPs of all beam pairs based on measurement with both Tx beams and Rx beams. For P2 or P3, AI only predicts Tx beam RSRPs or Rx beam RSRPs based on measurement with only Tx beams or Rx beams. For example, in P2, a given number of Tx beams configured along with beam management resources are received by UE with the best Rx beam acquired from previous P3 processing. Then, the best Tx beam and its beam quality can be obtained in gNB by relative beam report with maximum beam index and its L1-RSRP. Consequently, during P2 processing, there is no need to consider any Rx beam information from gNB’ perspective. 
Thus, in addition to expected beam information scheme, 2-step beam prediction scheme will be studied to imitate P2 + P3 beam management process in below two sub use cases, i.e.  spatial domain beam prediction and temporal domain beam prediction. Besides, we will focus on spatial domain beam prediction with P2 processing AI model firstly with exhaustive P3 beam searching to simplify the modeling process and performance evaluation. To fair compare with other schemes, the AI output of P3 process is related to the total number of beam pairs, i.e. 256 beam pairs. 
Random subset selection is used to select 16 L1-RSRP of 16 Tx beams with 1 specific Rx beam for each sample. Accordingly, not only selected RSRP is fed into AI model, but also Tx beam pointing angle and Rx beam pointing angle is used as assistance information. Besides, the specific Rx beam can be the best Rx beam, 2nd best Rx beam, worst Rx beam and random Rx beam searched per sample from total 256 beam pairs. 
[bookmark: _Hlk110966437][bookmark: _Hlk110966493]To get the best Rx beam by P3 processing, at most 8 CSI-RS resources with repetition on should be costed in advance. As a consequence, two baseline subsets selected by random subset selection with multiple Rx beams can be considered with different numbers of measured beams in P1 procedure, i.e. 16 beams and 24 beams, which represent lower and upper performance bound. The value 24 is obtained from using the 8 CSI-RS resources with repetition on in P2/P3 as 8 extra CSI-RS resources for beam measurement in P1, so that CSI-RS overhead for P1 and P2/P3 can be aligned.  Due to all Rx beams are measured in P2/P3 processing, the selected random subset per sample should include all 8 Rx beams as predefined selecting criterion for performance improvement in P1 baseline subset selection. Thus, we have,
· [bookmark: _Hlk110966498]Set 11 with 16 L1-RSRP (P1): Random subset selection with predefined selecting criterion
+ Tx/Rx beam pointing angle	
· Set 11 with 24 L1-RSRP (P1): Random subset selection with predefined selecting criterion
+ Tx/Rx beam pointing angle
· Set 12 with 1 random Rx beam (P2/P3): Random subset selection with 1 random Rx beam per sample
+ Tx beam pointing angle
· Set 12 with the worst Rx beam (P2/P3): Random subset selection with 1 worst Rx beam per sample
+ Tx beam pointing angle
· Set 12 with the best Rx beam (P2/P3): Random subset selection with 1 best Rx beam per sample
+ Tx beam pointing angle
· Set 12 with the 2nd best Rx beam (P2/P3): Random subset selection with 1 2nd Rx beam per sample
+ Tx beam pointing angle

[bookmark: _Hlk110966548]Table 5: baseline performance evaluation results for 2-step prediction in spatial domain
	Training
dataset
	Validation
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 11 (P1)
with 16 L1-RSRP
	4.93
	33.87
	40.34
	69.88

	Set 11 
with 24 L1-RSRP
	3.67
	40.48
	47.91
	76.84



Table 6: performance evaluation results for 2-step prediction in spatial domain
	Training
dataset
	Validation
dataset
	Ave. RSRP
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 12 (P2+P3)
with 1 random Rx beam
	7.22
	19.81
	23.37
	55.02

	Set 12 
with the worst Rx beam
	7.49
	22.29
	26.73
	59.71

	Set 12 
with the best Rx beam
	1.88
	76.33
	79.36
	93.74

	Set 12 
with the 2nd best Rx beam
	5.47
	11.97
	20.21
	52.88



[bookmark: _Hlk110967495]In practice, the best Rx beam can change dynamically due to aspects like channel time-varying, UE movement, rotation or blockage. Therefore, the study should include the case that the best Rx beam in training and inference is mismatched. Table 7 shows the results considering this.
[bookmark: _Hlk110967515]Table 7: performance evaluation results for mismatched 2-step prediction in spatial domain
	Training
dataset
	Validation
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	

Set 12 (P2+P3)
with the best Rx beam
	Set 12 
with the 2nd best Rx beam
	5.39
	0.13
	9.95
	45.25

	
	Set 12 
With 1 random Rx beam
	6.94
	19.41
	23.75
	47.31

	
	Set 11 (multiple Rx beams)
with 16 L1-RSRP
	12.18
	9.98
	14.67
	29.84



For BM Case 1, compared with AI based P1 procedure,
· P2 procedure assuming the best Rx beam can achieve better performance.
· P2 procedure assuming the 2nd best Rx beam does not have clear loss in terms of RSRP difference but has some loss on beam accuracy.
· If the Rx beam assumptions of training and inference are different, performance loss can be observed for P2.
4.2.4 Preliminary evaluation for different beam shape patterns
[bookmark: _Hlk111020011][bookmark: _Hlk111020066][bookmark: OLE_LINK4]In this section, we will focus on the influence of another generalization aspect, i.e. different gNB/UE antenna configurations, which brings various beam shape patterns. To simplify this issue, only antenna configuration at gNB with corresponding Tx/Rx pointing angles is changed among measurement subsets used for the following generalization performance evaluation. The number of UE side Rx beams is kept as 8. A universal AI model using Set 13 is generated from Table 10, where the input sample of each set includes 16 L1-RSRPs and its corresponding Tx/Rx beam pointing angle, and relative AI output is the RSRPs of total 256 beam pairs. However, Set 14 and Set 15, which are generated by table 11 and table 12 respectively, have total 128 beam pairs and 64 beam pairs. As a consequence, except Set 13, available predicted beams should be selected after model inference for other sets, and the KPI evaluation should also be calculated based on available predicted beams and its total beam pairs. 
Table 10: beam shape pattern 1
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]



Table 11: beam shape pattern 2
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	16 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 112.5]



Table 12: beam shape pattern 3
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	8 Tx beams
Horizontal angle = [-56.25 -11.25 11.25 56.25]
Vertical angle = [22.5 112.5]



· Set 13 generated from Table 10: Random subset selection scheme for 32 Tx beams and 8 Rx beams
+ Tx/Rx beam pointing angle	
· Set 14 generated from Table 11: Random subset selection scheme for 16 Tx beams and 8 Rx beams
+ Tx/Rx beam pointing angle	
· Set 15 generated from Table 12: Random subset selection scheme for 8 Tx beams and 8 Rx beams
+ Tx/Rx beam pointing angle	
To get a fair comparison result in generalization aspect, same dataset used for training and validation can be considered as an upper bound performance, while an AI model trained by Set 13 can be used for inference with Set 14 and Set 15. 
Table 13: performance evaluation results for different beam shape patterns
	Training
dataset
	Validation
dataset
	Ave. RSRP
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 14 (16 antennas)
	4.08
	36.50
	43.61
	71.58

	Set 13(32 antennas)
	Set 14(16 antennas)
	5.10
	31.92
	39.98
	67.06

	Set 15 (8 antennas)
	1.89
	51.12
	62.91
	85.71

	Set 13 (32 antennas)
	Set 15 (8 antennas)
	2.95
	41.01
	52.56
	78.41



If the beam shape for training and beam shape for inference are different, performance loss can be observed.
4.3 Temporal domain beam prediction
4.3.1 Beam pair Prediction
[image: ]
Figure 5: beam pair prediction in temporal domain (P1)
For beam pair prediction scheme, 8 beam pairs from 256 beam pairs are selected with random beam set-B selection scheme and measured at each time instant within a time duration T1, and different beam pairs are selected for measurement among time instants within T1. As a consequence, total of 64 difference beams are used in AI input to predict L1-RSRP of 256 beam pairs at each time instant within T2. In figure 5, input of AI model includes measured L1-RSRP of beam pair, corresponding Tx beam ID and Rx beam ID, and output of AI model is L1-RSRP of all beam pairs in future time instants.
For non-AI scheme, beam pair measurement in time duration T1 is the same as beam pair prediction scheme, and the best beam pair is decided based on measurement of T1 and regarded as best beam pair for time instants within T2.
BM evaluation metrics are calculated based on difference between decided/predicted best beam pair and real best beam pair in T2. Time duration T1 is fixed to 8*40ms, and time duration T2 is equal to 1*40ms, 4*40ms, or 8*40ms respectively.

Table 14: performance comparison between non-AI and beam pair prediction in temporal domain (T2=1*40ms)
	Scheme
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy 
for Top-4[%]

	Non-AI
	6.62 
	21.42
	27.82
	21.92

	Beam pair prediction
	0.67
	78.11
	87.61
	94.51



Table 15: performance comparison between non-AI and beam pair prediction in temporal domain (T2=4*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy 
for Top-4[%]

	Non-AI
	6.79 
	21.24
	27.58
	21.84

	Beam pair prediction
	0.85
	77.04
	86.58
	94.00



Table 16: performance comparison between non-AI and beam pair prediction in temporal domain (T2=8*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy 
for Top-4[%]

	Non-AI
	7.04 
	20.93
	27.20
	21.72

	Beam pair prediction
	1.11
	75.47
	84.92
	93.27



For BM-case2, compared with non-AI scheme, beam pair prediction scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
4.3.2 Two-step beam prediction

[image: ]
Figure 6: two-step beam prediction in temporal domain (P2+P3)
For two-step scheme, the time duration T1 is further divided to T1-1 and T1-2, where T1-1 is a time duration to obtain the measurements of Tx beams with the assumption that best Rx beams is used from the last prediction cycle for Tx beam prediction, called P2 step, and T1-2 is the time duration to obtain the measurements of Rx beams with the predicted best Tx beam, regarded as P3 step.  Based on P2 and P3, the best beam pair is decided and used for T2, as in Figure 6.
In the evaluation, at P2, 4 Tx beams are uniformly random selected and measured from 32 Tx beams at each time instant within T1-1 using the same best Rx beam predicted from P3 procedure of the last prediction cycle. Further, to reduce the complexity in evaluation, we model this P3 non-AI procedure by using the Rx beam with not greater than 1dB RSRP difference compared with the real best Rx beam. Input of AI model includes measured L1-RSRP of Tx beams and corresponding Tx beam IDs, and output of AI model is L1-RSRP of all Tx beams. Time period T1-1 is equal to 4*40ms.
In P3 step, Rx beams are measured at the time instants within T1-2 with the assumption that the best predicted Tx beam is used from the above P2. Input of AI model includes measured L1-RSRP of Rx beams and corresponding Rx beam IDs, and output of AI model is L1-RSRP of all Rx beams at time instances in T2. Time period T1-2 is equal to 4*40ms.
For non-AI 2-step scheme, at P2, measured Tx/Rx beams are the same as 2-step scheme, and best Tx beam is decided based on measured beams, and regarded as best Tx beam for P3. In P3 step, Rx beams are measured at the time instants within T1-2 with the assumption that the best Tx beam is used from the above P2 of non-AI scheme.
BM evaluation metrics are calculated based on difference between decided/predicted best beam pair and real best beam pair in T2. For comparison, non-AI and AI based 2-step scheme are evaluated. For AI based 2-step scheme, best pair is predicted based on P2+P3 procedure, and for non-AI 2-step scheme, best pair is decided based on measurement in P2+P3 procedure without prediction. Time duration T1 is fixed to 8*40ms, and time duration T2 is equal to 1*40ms, 4*40ms or 8*40ms respectively. 

Table 17: performance comparison between non-AI/AI 2-step prediction and beam pair prediction (T2=1*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]

	Non-AI 2-step
	5.17
	39.03
	44.79

	2-step prediction
	0.67
	86.2
	92.55



Table 18: performance comparison between non-AI/AI 2-step prediction and beam pair prediction (T2=4*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]

	Non-AI 2-step
	5.35
	38.31
	44.26

	2-step prediction
	0.86
	84.38
	91.23



Table 19: performance comparison between non-AI/AI 2-step prediction and beam pair prediction (T2=8*40ms)
	Scheme
	Ave. RSRP diff. [dB]
	Accuracy
 for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]

	Non-AI 2-step
	5.62
	37.38
	43.49

	2-step prediction
	1.14
	81.91
	89.31



For BM-case2, compared with non-AI 2-step scheme, AI based 2-step scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.

5 Conclusions
In this contribution, we discuss some issues on AL/ML for beam management and have the following observations:
1. If only measured RSRP is input into the AI model, large performance loss appears in the case that training and inference use different sets for measurement.
1. Fixed beam subset in Set B can have good performance in ideal scenarios but it lacks flexibility. Issues like blockage and inter-cell interference can bring negative impact on the performance of fixed subset.
1. For random subset selection, i.e., training and inference use different beam subsets in Set B, to include Tx/Rx beam ID or angle into the AI model is helpful to reduce performance loss.
1. To restrict the selection of random subset from the best X beam subsets can improve the performance of BM Case 1 prediction. Such semi-random selection with Tx/Rx beam angle information as input barely suffers performance loss compared with the best beam subset.
1. To input the expected Tx and/or Rx beam information in the AI model can enable the utilization of a trained AI model to different numbers of Tx or Rx beams with marginal performance loss.
For BM Case 1, compared with AI based P1 procedure,
· P2 procedure assuming the best Rx beam can achieve better performance.
· P2 procedure assuming the 2nd best Rx beam does not have clear loss in terms of RSRP difference but has some loss on beam accuracy.
· If the Rx beam assumptions of training and inference are different, performance loss can be observed for P2.
If the beam shape for training and beam shape for inference are different, performance loss can be observed.
For BM-case2, compared with non-AI scheme, beam pair prediction scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
For BM-case2, compared with non-AI 2-step scheme, AI based 2-step scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
and proposals:
1.    Support to deploy 10 UEs per sector/cell for performance evaluation purpose in system level.
Generate at least a certain number of samples for AI model training for improving performance and avoiding AI model overfitting.
Support UE distribution with 100% outdoor in spatial domain beam prediction.
Support option #4, i.e. random direction straight-line trajectories, in UE trajectory modelling.
Slightly prefer option 1b, i.e. randomly per-UE chosen for UE orientation initially but with fixed orientation during SLS, for UE orientation modelling. 
Support both option 1 and option 2 as baseline performance in spatial domain beam prediction and temporal domain beam prediction, and subset selection method in option 2 should be reported.
It is encouraged for companies to provide publicly accessible dataset and disclose the details for the dataset generation as much as possible for training and validation for cross-check purposes.
At least AI model inputs/outputs and training/validation dataset should be reported per sub-use case by companies. Other parameters, such as NN architecture type, loss function, and data post/pre-processing method, are encouraged to be reported.
Support Option 2, i.e. the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”, to be the definition of beam prediction accuracy (%) for Top-1 and/or Top-K beams.
Model complexity, computational complexity, and power consumption are all relevant and can be estimated using number of floating-point operations (FLOPs) as well as AI model size in terms of number of parameters or bytes.
The metric of beam sweeping overhead reduction is calculated as 1-N/M where N is the number of beams required for measurement in both non-AI algorithm and AI algorithm, and M can be the total number of all possible beams to be predicted.
UCI reporting overhead reduction, including the number of UCI report and UCI payload size, should be considered as basic KPI.
RRC singling overhead can be considered as optional KPI if huge amount of data, such as training data, assistant information, and AI model data, is exchanged via RAN air interference.
Support to define generalization performance KPI. 
To study and evaluate generalization, at least the aspects including different scenarios, different UE speeds, different number of Tx beams and Rx beams, and different gNB/UE antenna configurations, should be prioritized.
For evaluation of generalization performance, support to evaluate KPIs for a separately generated testing dataset generation method with 1 target parameter difference. Multiple target parameters can also be verified in further study.
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Appendix A: SLS simulation assumptions for spatial domain beam prediction
	Parameter
	Value

	Scenario
	Uma with Dense Urban 38.901,7 sites, 3 cells per site

	Carrier frequency
	30GHz

	Subcarrier spacing
	120kHz

	System BW
	80 MHz

	BS and RRH Tx power
	40dBm

	UE receiver NF
	10

	ISD
	200m

	o2i
	0.5

	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	Antenna configuration at UE
	[Mg Ng M N P] = [1 2 1 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]

	UE RX beam pattern
	4 Rx beams per panel
Horizontal angle = [-67.5 -22.5 22.5 67.5]
Vertical angle = [/]

	Indoor UE fraction
	80%

	UE speed
	3 km/s

	Spatial consistency 
	False

	Rotation
	False


Appendix B: SLS simulation assumptions for temporal domain beam prediction
	Parameter
	Value

	Scenario
	Uma with Dense Urban 38.901,7 sites, 3 cells per site

	Carrier frequency
	30GHz

	Subcarrier spacing
	120kHz

	System BW
	80 MHz

	BS and RRH Tx power
	40 dBm

	UE receiver NF
	10

	ISD
	200m

	o2i
	0.5

	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	Antenna configuration at UE
	[Mg Ng M N P] = [1 2 1 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]

	UE RX beam pattern
	4 Rx beams per panel
Horizontal angle = [-67.5 -22.5 22.5 67.5]
Vertical angle = [/]

	Indoor UE fraction
	0%

	UE speed
	30km/h (baseline), 60km/h (optional)

	Spatial consistency 
	True, Spatial consistency procedure A

	Rotation
	False

	UE trajectory model
	Option #4,
Random direction straight-line trajectories, including direction change at the end of time interval

	Orientation model
	Option 1b,
Randomly per-UE chosen for UE orientation initially, and UE orientation is fixed during SLS.
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