TSGR1#7(99)b91

TSG-RAN Working Group 1 meeting #7 Hanover, Germany August 30-September 3, 1999

Agenda Item:Ad Hoc 10Source:LGICTitle:A Modified Mapping Rule for Multiple-Scrambling CodesDocument for:Image: Comparison of Compariso

Introduction

In the current 3GPP specification [1], the downlink scrambling code number is defined directly by the initialisation value of the scrambling code generator, which was introduced in [2]. This makes the initial value loading very easy. However, in a case where UE has to generate two scrambling codes in order to receive a common pilot channel with primary scrambling code (PSC) and data channel with secondary scrambling code (SSC), it is desirable that multiple scrambling codes are generated simultaneously by using a single generator with a simple masking function. For this purpose, the contribution of [3] proposes the mapping rule where the initial state of n:th scrambling code is calculated by (n-1) phase shifts of first scrambling code. But, this mapping rule makes the initialisation somewhat complex.

This paper proposes a new mapping rule that takes advantages of the previous two methods. The proposed method assumes that the number of SSC's per PSC is approximately 16. In the proposed mapping rule, the initial state of generator for PSC is related to the PSC number and the initial state of m:th SSC corresponding to n:th PSC is calculated by m phase shifts of n:th PSC.

The proposed method makes the loading of initial value easier and only requires a single generator for generating PSC and SSC, simultaneously. Moreover, this method needs only a small change from the current scheme.

Generation of scrambling code

There are a total 512*(M+1) scrambling codes. The scrambling codes are divided into 512 sets each of which comprises one PSC and M SSC's.

The PSC's are numbered by n=0, 1, 2, ..., 511. The n:th set of SSC's that corresponds to n:th PSC are numbered by $n^{(1)}$, $n^{(2)}$, $n^{(3)}$, ..., $n^{(M)}$.

In the proposed method, the initial conditions for generating n:th PSC (n=0,1,2, ...,511) and n^(m):th SSC (m=1,2, ...,M) are defined by table 1 (option 1) or table 2 (option 2) in case of M=16.

In the tables, $n_8 n_7 n_6 \dots n_0$ is the binary representation of the number n.

It should be noted that 512*17 scrambling codes obtained by the tables are all distinct.

The initial conditions for PSC in these tables can be also used in case of M=24. In which case, 512*25 scrambling codes are all distinct. There are many initial patterns for PSC that satisfy this property. As other example, the initial pattern for PSC in table 3 (option 3) can be used until M < 71. However, The simple initial pattern in table 1 is preferred if the required number of SSC's per PSC is 16.

In conclusion, the proposed mapping rule of scrambling codes makes the initialisation of the generator easier as in the current specification. Also, multiple scrambling codes in one cell can be generated simultaneously by using a single generator shown in Figure 1 with simple masking functions shown in Table 4 as in [3].

Reference

- [1] TS 25.213 V2.1.2: 'Spreading and modulation (FDD)', Source: Editor
- [2] Tdoc 3GPP WG1 TSGR1#6 (99)724 : 'Multiple Scrambling Codes', Source: Ericsson
- [3] Tdoc 3GPP WG1 TSGR1#6 (99)915 : 'Multiple-Scrambling Code', Source: Samsung

Figure 1. Structure of multiple scrambling code generator

	<i>x</i> ₁₇	<i>x</i> ₁₆	<i>x</i> ₁₅	<i>x</i> ₁₄	<i>x</i> ₁₃	<i>x</i> ₁₂	<i>x</i> ₁₁	<i>x</i> ₁₀	<i>X</i> 9	<i>x</i> ₈	<i>x</i> ₇	<i>x</i> ₆	<i>x</i> 5	<i>x</i> ₄	<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₀
Р	1	<i>n</i> ₈	n_7	<i>n</i> ₆	1	n_5	n_4	<i>n</i> ₃	n_2	n_1	n_0	0	0	0	0	0	0	0
S_1	n_0	1	<i>n</i> ₈	n_7	<i>n</i> ₆	1	n_5	n_4	<i>n</i> ₃	n_2	n_1	n_0	0	0	0	0	0	0
S_2	n_1	n_0	1	<i>n</i> ₈	<i>n</i> 7	<i>n</i> ₆	1	n_5	n_4	<i>n</i> ₃	n_2	n_1	n_0	0	0	0	0	0
S ₃	n_2	n_1	n_0	1	<i>n</i> ₈	n_7	n_6	1	n_5	n_4	<i>n</i> ₃	n_2	n_1	n_0	0	0	0	0
S_4	n_3	n_2	n_1	n_0	1	n_8	n_7	<i>n</i> ₆	1	n_5	n_4	<i>n</i> ₃	n_2	n_1	n_0	0	0	0
S ₅	n_4	<i>n</i> ₃	<i>n</i> ₂	n_1	n_0	1	n_8	n_7	<i>n</i> ₆	1	n_5	n_4	<i>n</i> ₃	n_2	n_1	n_0	0	0
S ₆	n_5	n_4	<i>n</i> ₃	n_2	n_1	n_0	1	n_8	n_7	n_6	1	<i>n</i> ₅	n_4	<i>n</i> ₃	n_2	n_1	n_0	0
S ₇	1	n_5	n_4	<i>n</i> ₃	n_2	n_1	n_0	1	n_8	n_7	n_6	1	<i>n</i> ₅	n_4	<i>n</i> ₃	n_2	n_1	n_0
S_8	$n_0 \oplus n_6$	1	<i>n</i> ₅	n_4	<i>n</i> ₃	<i>n</i> ₂	n_1	n_0	1	<i>n</i> ₈	n_7	<i>n</i> ₆	1	<i>n</i> ₅	<i>n</i> 4	<i>n</i> ₃	n_2	n_1
S 9	$n_1 \oplus n_7$	$n_0 \oplus$ n_6	1	<i>n</i> ₅	n_4	<i>n</i> ₃	<i>n</i> ₂	<i>n</i> ₁	<i>n</i> ₀	1	<i>n</i> ₈	<i>n</i> ₇	<i>n</i> ₆	1	<i>n</i> ₅	n_4	<i>n</i> ₃	<i>n</i> ₂
S ₁₀	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	<i>n</i> ₅	<i>n</i> 4	<i>n</i> ₃	<i>n</i> ₂	n_1	n_0	1	<i>n</i> ₈	<i>n</i> 7	<i>n</i> ₆	1	<i>n</i> ₅	<i>n</i> 4	<i>n</i> ₃
S ₁₁	$n_3 \oplus$ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	n_5	n_4	<i>n</i> ₃	<i>n</i> ₂	n_1	n_0	1	<i>n</i> ₈	<i>n</i> 7	<i>n</i> ₆	1	<i>n</i> 5	n_4
S ₁₂	$n_4 \oplus n_0$	<i>n</i> ₃⊕ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	<i>n</i> ₅	n_4	<i>n</i> ₃	<i>n</i> ₂	n_1	<i>n</i> ₀	1	<i>n</i> ₈	<i>n</i> ₇	<i>n</i> ₆	1	<i>n</i> ₅
S ₁₃	$n_5 \oplus n_1$	$n_4 \oplus n_0$	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	n5	<i>n</i> ₄	n ₃	<i>n</i> ₂	n_1	<i>n</i> ₀	1	<i>n</i> ₈	<i>n</i> 7	n_6	1
S ₁₄	$1 \oplus n_2$	$n_5 \oplus n_1$	$n_4 \oplus n_0$	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	<i>n</i> ₅	n_4	<i>n</i> ₃	<i>n</i> ₂	<i>n</i> ₁	<i>n</i> ₀	1	<i>n</i> ₈	<i>n</i> ₇	<i>n</i> ₆
S ₁₅	$n_6 \oplus n_3$	$1 \oplus n_2$	$n_5 \oplus n_1$	$n_4 \oplus n_0$	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	<i>n</i> ₅	n_4	<i>n</i> ₃	<i>n</i> ₂	<i>n</i> ₁	<i>n</i> ₀	1	<i>n</i> ₈	<i>n</i> ₇
S ₁₆	$n_7 \oplus n_4$	$n_6 \oplus n_3$	$1 \oplus n_2$	$n_5 \oplus n_1$	$n_4 \oplus n_0$	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	<i>n</i> ₅	n_4	<i>n</i> ₃	<i>n</i> ₂	n_1	n_0	1	<i>n</i> ₈

Table 1. Initial Condition (option 1)

	<i>x</i> ₁₇	<i>x</i> ₁₆	<i>x</i> ₁₅	<i>x</i> ₁₄	<i>x</i> ₁₃	<i>x</i> ₁₂	<i>x</i> ₁₁	<i>x</i> ₁₀	<i>x</i> 9	<i>x</i> ₈	<i>x</i> ₇	<i>x</i> ₆	<i>x</i> 5	<i>x</i> ₄	<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₀
Р	0	0	0	0	0	0	0	1	<i>n</i> ₈	n_7	<i>n</i> ₆	1	n_5	n_4	<i>n</i> ₃	n_2	n_1	n_0
S ₁	$n_0 \oplus$ n_6	0	0	0	0	0	0	0	1	<i>n</i> ₈	<i>n</i> ₇	<i>n</i> ₆	1	<i>n</i> ₅	n_4	<i>n</i> ₃	<i>n</i> ₂	<i>n</i> ₁
S_2	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0	0	1	<i>n</i> ₈	<i>n</i> 7	<i>n</i> ₆	1	<i>n</i> ₅	n_4	n ₃	<i>n</i> ₂
S ₃	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0	0	1	<i>n</i> ₈	<i>n</i> 7	<i>n</i> ₆	1	<i>n</i> ₅	n_4	<i>n</i> ₃
S_4	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0	0	1	<i>n</i> ₈	<i>n</i> ₇	<i>n</i> ₆	1	<i>n</i> ₅	n_4
S 5	n_4	$n_3 \oplus$ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0	0	1	<i>n</i> ₈	<i>n</i> 7	<i>n</i> ₆	1	<i>n</i> ₅
S ₆	<i>n</i> ₅	n_4	$n_3 \oplus$ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0	0	1	<i>n</i> ₈	<i>n</i> ₇	<i>n</i> ₆	1
S ₇	1	<i>n</i> ₅	n_4	$n_3 \oplus$ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0	0	1	<i>n</i> ₈	<i>n</i> ₇	<i>n</i> ₆
S ₈	<i>n</i> 7	1	<i>n</i> 5	n_4	$n_3 \oplus$ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0	0	1	<i>n</i> ₈	<i>n</i> 7
S 9	<i>n</i> ₆	<i>n</i> ₇	1	<i>n</i> ₅	n_4	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0	0	1	<i>n</i> ₈
S ₁₀	<i>n</i> ₈	<i>n</i> ₆	<i>n</i> 7	1	<i>n</i> 5	n_4	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0	0	1
S ₁₁	1	<i>n</i> ₈	<i>n</i> ₆	<i>n</i> ₇	1	<i>n</i> ₅	n_4	$n_3 \oplus$ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus$ n_6	0	0	0	0	0	0	0
S ₁₂	$n_0 \oplus n_6$	1	<i>n</i> ₈	<i>n</i> ₆	<i>n</i> ₇	1	<i>n</i> ₅	n_4	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0	0
S ₁₃	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	<i>n</i> ₈	<i>n</i> ₆	<i>n</i> 7	1	<i>n</i> ₅	n_4	$n_3 \oplus$ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0	0	0
S ₁₄	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus$ n_6	1	<i>n</i> ₈	<i>n</i> ₆	<i>n</i> ₇	1	<i>n</i> ₅	n_4	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus$ n_6	0	0	0	0
S ₁₅	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	n ₈	<i>n</i> ₆	<i>n</i> 7	1	<i>n</i> 5	n_4	$n_3 \oplus$ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0	0
S ₁₆	n_4	$n_3 \oplus$ 1	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	1	<i>n</i> ₈	<i>n</i> ₆	<i>n</i> 7	1	<i>n</i> ₅	n_4	$n_3 \oplus$	$n_2 \oplus n_8$	$n_1 \oplus n_7$	$n_0 \oplus n_6$	0	0

Table 2. Initial Condition (option 2)

Table 3. Initial Condition (option 3)

	<i>x</i> ₁₇	<i>x</i> ₁₆	<i>x</i> ₁₅	<i>x</i> ₁₄	<i>x</i> ₁₃	<i>x</i> ₁₂	<i>x</i> ₁₁	<i>x</i> ₁₀	<i>x</i> 9	<i>x</i> ₈	<i>x</i> ₇	<i>x</i> ₆	<i>x</i> ₅	<i>x</i> ₄	<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₀
Р	1	0	<i>n</i> ₈	1	0	n_7	<i>n</i> ₆	1	0	n_5	n_4	0	<i>n</i> ₃	n_2	n_1	0	n_0	0

	masking function for I code in upper LFSR	masking function for Q code in upper LFSR	masking function for I code in lower LFSR	masking function for Q code in lower LFSR
PSC	000000000000000000000000000000000000000	001000000001010000	000000000000000000000000000000000000000	001111111101100000
1 st SSC	000000000000000000000000000000000000000	01000000010100000	000000000000000000000000000000000000000	001111111101100000
2 nd SSC	000000000000000100	10000000101000000	000000000000000000000000000000000000000	001111111101100000
3 rd SSC	000000000000001000	0000000100000001	000000000000000000000000000000000000000	001111111101100000
4 th SSC	000000000000010000	0000001000000010	000000000000000000000000000000000000000	001111111101100000
5 th SSC	000000000000100000	000000100000000100	000000000000000000000000000000000000000	001111111101100000
6 th SSC	00000000001000000	00000100000001000	000000000000000000000000000000000000000	001111111101100000
7 th SSC	0000000001000000	00001000000010000	000000000000000000000000000000000000000	001111111101100000
8 th SSC	0000000010000000	00010000000100000	000000000000000000000000000000000000000	001111111101100000
9 th SSC	0000000100000000	00100000001000000	000000000000000000000000000000000000000	001111111101100000
10 th SSC	000000010000000000	0100000001000000	000000000000000000000000000000000000000	001111111101100000
11 th SSC	000000100000000000	1000000010000000	000000000000000000000000000000000000000	001111111101100000
12 th SSC	000001000000000000	00000001010000001	000000000000000000000000000000000000000	001111111101100000
13 th SSC	0000100000000000000	000000010100000010	000000000000000000000000000000000000000	001111111101100000
14 th SSC	0001000000000000000	000000101000000100	000000000000000000000000000000000000000	001111111101100000
15 th SSC	00100000000000000000	000001010000001000	000000000000000000000000000000000000000	001111111101100000
16 th SSC	0100000000000000000	000010100000010000	000000000000000000000000000000000000000	001111111101100000

Table 4. Masking functions for generating multiple scrambling codes in one cell