Agenda Item: Ad Hoc 10

Source: LGIC
Title: A Modified Mapping Rule for Multiple-Scrambling Codes
\section*{Document for:}

Introduction

In the current 3GPP specification [1], the downlink scrambling code number is defined directly by the initialisation value of the scrambling code generator, which was introduced in [2]. This makes the initial value loading very easy. However, in a case where UE has to generate two scrambling codes in order to receive a common pilot channel with primary scrambling code (PSC) and data channel with secondary scrambling code (SSC), it is desirable that multiple scrambling codes are generated simultaneously by using a single generator with a simple masking function. For this purpose, the contribution of [3] proposes the mapping rule where the initial state of n :th scrambling code is calculated by ($n-1$) phase shifts of first scrambling code. But, this mapping rule makes the initialisation somewhat complex.

This paper proposes a new mapping rule that takes advantages of the previous two methods. The proposed method assumes that the number of SSC's per PSC is approximately 16. In the proposed mapping rule, the initial state of generator for PSC is related to the PSC number and the initial state of m:th SSC corresponding to n:th PSC is calculated by m phase shifts of $n: t h$ PSC.

The proposed method makes the loading of initial value easier and only requires a single generator for generating PSC and SSC, simultaneously. Moreover, this method needs only a small change from the current scheme.

Generation of scrambling code

There are a total $512 *(M+1)$ scrambling codes. The scrambling codes are divided into 512 sets each of which comprises one PSC and M SSC's.

The PSC's are numbered by $n=0,1,2, \ldots, 511$. The n :th set of SSC's that corresponds to n :th PSC are numbered by ${ }^{(1)}$, $\mathrm{n}^{(2)}, \mathrm{n}^{(3)}, \ldots, \mathrm{n}^{(\mathrm{M})}$.

In the proposed method, the initial conditions for generating n :th PSC $(\mathrm{n}=0,1,2, \ldots, 511)$ and $\mathrm{n}^{(\mathrm{m})}$:th SSC $(\mathrm{m}=1,2, \ldots, \mathrm{M})$ are defined by table 1 (option 1) or table 2 (option 2) in case of $\mathrm{M}=16$.

In the tables, $n_{8} n_{7} n_{6} \ldots n_{0}$ is the binary representation of the number n.

It should be noted that $512 * 17$ scrambling codes obtained by the tables are all distinct.

The initial conditions for PSC in these tables can be also used in case of M=24. In which case, $512 * 25$ scrambling codes are all distinct. There are many initial patterns for PSC that satisfy this property. As other example, the initial pattern for PSC in table 3 (option 3) can be used until $\mathrm{M}<71$. However, The simple initial pattern in table 1 is preferred if the required number of SSC's per PSC is 16

In conclusion, the proposed mapping rule of scrambling codes makes the initialisation of the generator easier as in the current specification. Also, multiple scrambling codes in one cell can be generated simultaneously by using a single generator shown in Figure1 with simple masking functions shown in Table 4 as in [3].

Reference

[1] TS 25.213 V2.1.2: ‘Spreading and modulation (FDD)', Source: Editor
[2] Tdoc 3GPP WG1 TSGR1\#6 (99)724 : ‘Multiple Scrambling Codes’, Source: Ericsson
[3] Tdoc 3GPP WG1 TSGR1\#6 (99)915 : 'Multiple-Scrambling Code’, Source: Samsung

Figure 1. Structure of multiple scrambling code generator

Table 1. Initial Condition (option 1)

	x_{17}	x_{16}	x_{15}	x_{14}	x_{13}	x_{12}	x_{11}	x_{10}	x_{9}	x_{8}	x_{7}	x_{6}	x_{5}	x_{4}	x_{3}	x_{2}	x_{1}	x_{0}
P	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	0	0	0	0	0	0	0
S_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	0	0	0	0	0	0
S_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	0	0	0	0	0
S_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	0	0	0	0
S_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	0	0	0
S_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	0	0
S_{6}	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	0
S_{7}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}
S_{8}	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}
S9	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}
S_{10}	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}
S_{11}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \end{aligned}$	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}
S_{12}	$\begin{aligned} & n_{4} \oplus \\ & n_{0} \end{aligned}$	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1	n_{5}
S_{13}	$\begin{aligned} & n_{5} \oplus \\ & n_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{4} \oplus \\ & n_{0} \end{aligned}$	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}	1
S_{14}	$\begin{aligned} & 1 \oplus \\ & n_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{5} \oplus \\ & n_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{4} \oplus \\ & n_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}	n_{6}
S_{15}	$\begin{aligned} & n_{6} \oplus \\ & n_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \oplus \\ & n_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{5} \oplus \\ & n_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{4} \oplus \\ & n_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}	n_{7}
S_{16}	$\begin{aligned} & n_{7} \oplus \\ & n_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{6} \oplus \\ & n_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \oplus \\ & n_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{5} \oplus \\ & n_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{4} \oplus \\ & n_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}	1	n_{8}

Table 2. Initial Condition (option 2)

	x_{17}	x_{16}	x_{15}	x_{14}	x_{13}	x_{12}	x_{11}	x_{10}	x_{9}	x_{8}	x_{7}	x_{6}	x_{5}	x_{4}	x_{3}	x_{2}	x_{1}	x_{0}
P	0	0	0	0	0	0	0	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}	n_{0}
S_{1}	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \end{aligned}$	0	0	0	0	0	0	0	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}	n_{1}
S_{2}	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}	n_{2}
S_{3}	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}	n_{3}
S_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	1	n_{8}	n_{7}	n_{6}	1	n_{5}	n_{4}
S_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	1	n_{8}	n_{7}	n_{6}	1	n_{5}
S_{6}	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	1	n_{8}	n_{7}	n_{6}	1
S_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	1	n_{8}	n_{7}	n_{6}
S_{8}	n_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	1	n_{8}	n_{7}
S9	n_{6}	n_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	1	n_{8}
S_{10}	n_{8}	n_{6}	n_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	1
S_{11}	1	n_{8}	n_{6}	n_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0
S_{12}	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{8}	n_{6}	n_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0	0
S_{13}	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{8}	n_{6}	n_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0	0
S_{14}	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{8}	n_{6}	n_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0	0
S_{15}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{8}	n_{6}	n_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0	0
S_{16}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	1	n_{8}	n_{6}	n_{7}	1	n_{5}	n_{4}	$\begin{aligned} & n_{3} \oplus \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & n_{2} \oplus \\ & n_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} \oplus \\ & n_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & n_{0} \oplus \\ & n_{6} \\ & \hline \end{aligned}$	0	0

Table 3. Initial Condition (option 3)

	x_{17}	x_{16}	x_{15}	x_{14}	x_{13}	x_{12}	x_{11}	x_{10}	x_{9}	x_{8}	x_{7}	x_{6}	x_{5}	x_{4}	x_{3}	x_{2}	x_{1}	x_{0}
P	1	0	n_{8}	1	0	n_{7}	n_{6}	1	0	n_{5}	n_{4}	0	n_{3}	n_{2}	n_{1}	0	n_{0}	0

Table 4. Masking functions for generating multiple scrambling codes in one cell

	masking function for I code in upper LFSR	masking function for Q Q code in upper LFSR	masking function for I code in lower LFSR	masking function for Q code in lower LFSR
PSC	000000000000000001	001000000001010000	000000000000000001	001111111101100000
$1^{\text {st }}$ SSC	000000000000000010	010000000010100000	000000000000000001	001111111101100000
$2^{\text {nd }}$ SSC	000000000000000100	100000000101000000	000000000000000001	001111111101100000
$3^{\text {rd }}$ SSC	000000000000001000	000000001000000001	000000000000000001	001111111101100000
$4^{\text {th }}$ SSC	000000000000010000	000000010000000010	000000000000000001	001111111101100000
$5^{\text {th }}$ SSC	000000000000100000	000000100000000100	000000000000000001	001111111101100000
$6^{\text {th }}$ SSC	000000000001000000	000001000000001000	000000000000000001	001111111101100000
$7^{\text {th }}$ SSC	000000000010000000	000010000000010000	000000000000000001	001111111101100000
$8^{\text {th }}$ SSC	000000000100000000	000100000000100000	000000000000000001	001111111101100000
$9^{\text {th }}$ SSC	000000001000000000	001000000001000000	000000000000000001	001111111101100000
$10^{\text {th }}$ SSC	000000010000000000	010000000010000000	000000000000000001	001111111101100000
$11^{\text {th }}$ SSC	000000100000000000	100000000100000000	000000000000000001	001111111101100000
$12^{\text {th }}$ SSC	000001000000000000	000000001010000001	000000000000000001	001111111101100000
$13^{\text {th }}$ SSC	000010000000000000	000000010100000010	000000000000000001	001111111101100000
$14^{\text {th }}$ SSC	000100000000000000	000000101000000100	000000000000000001	001111111101100000
$15^{\text {th }}$ SSC	001000000000000000	000001010000001000	000000000000000001	001111111101100000
$16^{\text {th }}$ SSC	010000000000000000	000010100000010000	000000000000000001	001111111101100000

