secondary scrambling codes, in order to limit the signalling requriements. > <editor's a="" codes="" decode="" how="" in="" is="" it="" many="" must="" not="" note:="" parallel.="" scrambling="" standardised="" ue=""></editor's>
The scrambling code sequences are constructed by combining two real sequences into a complex sequence. Each of the two real sequences are constructed as the position wise modulo 2 sum of [40960 chip segments of] two binary m -sequences generated by means of two generator polynomials of degree 18. The resulting sequences thus constitute segments of a set of Gold sequences. The scrambling codes are repeated for every 10 ms radio frame. Let x and y be the two sequences respectively. The x sequence is constructed using the primitive (over GF(2)) polynomial $1+X^7+X^{18}$. The y sequence is constructed using the polynomial $1+X^5+X^7+X^{18}$.

$$X^{10} + X^{18}$$
.

<Editor's note: [] is due to the fact that only 4.096Mcps is a working assumptions. 1.024, 8.192, and 16.384Mcps are ffs.>

Let $n_{17} \dots n_{\theta}$ be the binary representation of the scrambling code number n (decimal) with n_{θ} being the least significant bit. The x sequence depends on the chosen scrambling code number n and is denoted x_n , in the sequel. Furthermore, let $x_n(i)$ and y(i) denote the i.th symbol of the sequence x_n and y_n respectively

The *m*-sequences x_n and y are constructed as:

Initial conditions:

MSB

 $x_n(0)=n_0$, $x_n(1)=n_1$, ... = $x_n(16)=n_{16}$, $x_n(17)=n_{17}$

y(0)=y(1)=...=y(16)=y(17)=1

Recursive definition of subsequent symbols:

 $x_n(i+18) = x_n(i+7) + x_n(i) \text{ modulo } 2, i=0,...,2^{18}-20,$

 $y(i+18) = y(i+10)+y(i+7)+y(i+5)+y(i) \mod 2, i=0,..., 2^{18}-20.$

The n:th Gold code sequence z_n is then defined as

 $z_n(i) = x_n(i) + y(i) \text{ modulo } 2, i=0,..., 2^{18}-2.$

 $\underline{x_0}$ is constructed with $\underline{x_0}(0) = \underline{x_0}(1) = \dots \underline{x_0}(16) = 0 \underline{x_0}(17) = 1$ as initial conditions.

 x_n is constructed with n phase shift from x_0 .

These binary code words are converted to real valued sequences by the transformation '0' ->

Finally, the n:th complex scrambling code sequence C_{scramb} is defined as (the lowest index corresponding to the chip scrambled first in each radio frame): (see Table 1 for definition of N and M)

LSB

 $C_{scramb}(i) = Z'_n(i) + j Z'_n(i+M), i=0,1,...,N-1.$

<Editor's note: the values 40960 is based on an assumption of a chip rate of 4.096 Mcps.> Note that the pattern from phase 0 up to the phase of 10 msec is repeated.

shift register 1 (18 bit) 7 17 0 shift register 2 (18 bit) 10 5 0 17 7

Figure 1. Configuration of downlink scrambling code generator

<Editor's note: a replacement figure for the above is to be prepared showing both I & Q generation.>

chip rate (Mcps)	Period	IQ Offset	Range of phase (chip)	
	N	M	for in-phase	for
			component	quadrature
				component
[1.024]	[10240]	[131072]		
4.096	40960	131072	0 – N-1	M – N+M-1
[8.192]	[81920]	[131072]		
[16.384]	[163840]	[131072]		

Table 1. Correspondence between chip rate and downlink scrambling code phase range

Reference

- 3GPP TSGR1#6 (99)924, 'Multiple scrambling code', Source: Samsung 3GPP TSGR1#7 (99)a86,'TS 25.213 V2.0.1 (1999-08) Spreading and modulation(FDD)' [2]