
TSG-RAN Working Group 1 meeting #6 TSGR1#7(99)b32
Hannover, Germany
August 30 – September 3, 1999

Agenda item:

Source: Ericsson

Title: Transport block concatenation and code block segmentation

Document for: Decision

1 Introduction

It is currently very unclear in [1], what unit the channel coding is performed on. When the transport format attributes of
fixed bit rate TrCHs are identical, they can be multiplexed in the 1st multiplexing. If they are multiplexed, it is clear from
Section 4.2.2 in [1], that all transport blocks (TrBks) of the multiplexed TrCHs are concatenated before coding. Further, if
the resulting number of bits including tail exceeds 512 for convolutional coding or 5120 for turbo coding, segmentation is
performed.

For convolutional coding, the output of the segmentation is referred to as code blocks and it is clear from Section 4.2.3.1.1
that this is the unit that tail bits are attached to (assuming that coding block is the same as code block). For turbo coding the
output of the segmentation is referred to as encoder input segments. The input to the segmentation is referred to as data
block. When first multiplexing has been performed, it is assumed that the data block corresponds to the output of the 1st

multiplexing, i.e. concatenated TrBks. Unfortunately, it is not clear what happens when there is no 1st multiplexing. The data
block could then correspond to either a TrBk or several concatenated TrBks.

In this paper it is proposed that all TrBks on a TrCH always are concatenated before coding. If the number of bits after
concatenation exceeds (512-Tail) for convolutional coding or (5120-Tail) for turbo coding, segmentation is performed. It is
proposed that the unit that coding is performed over is referred to as code block.

2 Consequences of TrBk concatenation

If TrBks are concatenated before coding, the number of tail bits per transmission time interval (TTI) can be reduced. Further,
the gain from turbo coding will be larger.

The disadvantage with concatenating TrBks before coding is that Hybrid type II/III ARQ becomes less efficient. CRC is
always added on TrBk level. With Hybrid type II/III ARQ, the CRC is used to check if the TrBk was received correctly. If
not, the redundancy is increased. Hence, even if only one TrBk was in error, the extra redundancy will be transmitted for all
TrBks encoded together. Consequently, the potential gain with Hybrid type II/III ARQ will decrease.

It is proposed that concatenation of TrBks always is performed. If the number of bits after concatenation exceeds (512-Tail)
for convolutional coding or (5120-Tail) for turbo coding, segmentation is performed. It is also proposed that the unit that
coding is performed over is referred to as code block. Further, it is proposed that this functionality is separated from the
channel coding block. A new block called TrBk concatenation / Code block segmentation should then be inserted in the
multiplexing chain and section 4.2.3.1.2 and 4.2.3.2.4 can be merged. If Hybrid type II/III ARQ is included in release 00,
then the possibility to bypass this concatenation/segmenation also needs to be included (note that only segmentation will not
be needed since WG2 will set upper limits on TrBk sizes). However, we do not see any reason to include the possibility to
avoid concatenation before coding in release 99 since Hybrid type II/III ARQ will not be part of it.

2 (6)

3 References

[1] TSG RAN WG1, “TS 25.212 Multiplexing and channel coding (FDD)”.

4 Text proposal for 25.212

[A new block should be inserted into Figure 1 and Figure 2 of 25.212, as illustrated below.]

Channel coding

TrBk concatenation /
Code block segmentation

1st Multiplexing

Figure 1: Changes in Figure 1 and Figure 2 of 25.212

-- snip --

4.2.3 Transport block concatenation and code block segmentation

All transport blocks in a TTI are serially concatenated. If the number of bits in a TTI is larger than Z, then code block
segmentation is performed after the concatenation of the transport blocks. The maximum size of the code blocks depend on
if convolutional or turbo coding is used for the TrCH.

4.2.3.1 Concatenation of transport blocks

The bits input to the transport block concatenation are denoted by
iimBimimim bbbb ,,,, 321 K where i is the TrCH number, m

is the transport block number, and Bi is the number of bits in each block (including CRC). The number of transport blocks on

TrCH i is denoted by Mi. The bits after concatenation are denoted by
iiXiii xxxx ,,,, 321 K , where i is the TrCH number and

Xi=MiBi. They are defined by the following relations:

kiik bx 1= k = 1, 2, …, Bi

)(,2, iBkiik bx −= k = Bi + 1, Bi + 2, …, 2Bi

)2(,3, iBkiik bx −= k = 2Bi + 1, 2Bi + 2, …, 3Bi

3 (6)

K

))1((,, iii BMkMiik bx −−= k = (Mi - 1)Bi + 1, (Mi - 1)Bi + 2, …, MiBi

4.2.3.2 Code block segmentation

<Ericsson’s note: It is proposed that filler bits are set to 0.>

Segmentation of the bit sequence from transport block concatenation is performed if Xi>Z. The code blocks after
segmentation are of the same size. The number of code blocks on TrCH i is denoted by Ci. If the number of bits input to the
segmentation, Xi, is not a multiple of Ci, filler bits are added to the last block. The filler bits are transmitted and they are
always set to 0. The maximum code block sizes are:

convolutional coding: Z = 512 - Ktail

turbo coding: Z = 5120 - Ktail

The bits output from code block segmentation are denoted by
iirKiririr oooo ,,,, 321 K , where i is the TrCH number, r is the

code block number, and Ki is the number of bits.

Number of code blocks: Ci = Xi / Z

Number of bits in each code block: Ki = Xi / Ci

Number of filler bits: Yi = CiKi - Xi

If Xi ≤ Z, then oi1k = xik, and Ki = Xi.

If Xi ≥ Z, then

ikki xo =1 k = 1, 2, …, Ki

)(,2 iKkiki xo += k = 1, 2, …, Ki

)2(,3 iKkiki xo += k = 1, 2, …, Ki

K

))1((iii KCkikiC xo −+= k = 1, 2, …, Ki - Yi

0=kiCi
o k = (Ki - Yi) + 1, (Ki - Yi) + 2, …, Ki

4.2.4 4.2.3 Channel coding

Code blocks are delivered to the channel coding block. They are denoted by
iirKiririr oooo ,,,, 321 K , where i is the TrCH

number, r is the code block number, and Ki is the number of bits in each code block. The number of code blocks on TrCH i

is denoted by Ci. After encoding the bits are denoted by
iirXiririr xxxx ,,,, 321 K . The encoded blocks are serially

multiplexed so that the block with lowest index r is output first from the channel coding block. The bits output are denoted

by
iiEiii cccc ,,,, 321 K , where i is the TrCH number and Ei = CiXi. The output bits are defined by the following relations:

kiik xc 1= k = 1, 2, …, Xi

4 (6)

)(,2, iXkiik xc −= k = Xi + 1, Xi + 2, …, 2Xi

)2(,3, iXkiik xc −= k = 2Xi + 1, 2Xi + 2, …, 3Xi

K

))1((,, iii XCkCiik xc −−= k = (Ci - 1)Xi + 1, (Ci - 1)Xi + 2, …, CiXi

The relation between oirk and xirk and between Ki and Xi is dependent on the channel coding scheme.

The following channel coding schemes can be applied to TrCHs.

• Convolutional coding

• Turbo coding

• No channel coding

Table 1: Error Correction Coding Parameters

Transport channel type Coding scheme Coding rate
BCH
PCH
FACH
RACH

1/2

DCH

Convolutional code

DCH Turbo code
1/3, 1/2, or no coding

Note1: The exact physical layer encoding/decoding capabilities for different code types are FFS.
Note2: In the UE the channel coding capability should be linked to the terminal class.

4.2.4.1 4.2.3.1 Convolutional coding

4.2.4.1.1 4.2.3.1.1 Convolutional coder

• Constraint length K=9. Coding rate 1/3 and ½.
• The configuration of the convolutional coder is presented in Figure 3.
• The output from the convolutional coder shall be done in the order starting from output0, output1 and output2. (When

coding rate is 1/2, output is done up to output 1).
• K-1 tail bits (value 0) shall be added to the end of the codeing block before encoding.
• The initial value of the shift register of the coder shall be “all 0”.

-- snip --

4.2.3.1.2 Segmentation into code blocks for convolutional coding

<Note: It is for further study if the maximum code block size is 504 or shorter.>

If the transport blocks or multiplexed transport blocks are longer than [504] bits (including CRC bits), they are segmented
before convolutional encoding. Denote the number of transport blocks before coding by P and the number of bits in each
transport block or the sum of the number of bits in the multiplexed blocks by M. Note that if first multiplexing is performed,
all transport blocks of a transport channel in the same transmission time interval are multiplexed together, i.e. P=1. The bits
before segmentation can then be described as follows:

Bits in transport block 1before segmentation: d1,1, d1,2, d1,3, … d1,M

Bits in transport block 2 before segmentation: d2,1, d2,2, d2,3, … d2,M

…

5 (6)

Bits in transport block P before segmentation: dP,1, dP,2, dP,3, … dP,M

If M ≤ [504], no segmentation is performed. If M > [504] the following parameters are calculated:

Number of code blocks: S = round_up(PM / [504])

Length of coded blocks: C = round_up(PM / S)

Remainder: R = PM – S round_down(PM / S)

Number of filler bits: F = S – R, if R≠0
 F = 0, if R=0

round_up(x) means the smallest integer number larger or equal to x.

round_down(x) means the largest integer number smaller or equal to x.

The F filler bits are appended to the end of the last code block before tail insertion and channel encoding. They are denoted
f1, f2, f3, ... fF. The bits after segmentation are denoted by u1,1, u1,2, u1,3, … u1,C, u2,1, u2,2, u2,3, ... ,u2,C, ... uS,1, uS,2, uS,3, ... ,uS,C,
and defined by the following relations:

u1,k = d1,k k = 1, 2, 3, ... C

u2,(k-C) = d1,k k = C + 1, C + 2, C + 3, ... 2C

...

uj,(k-(j-1)C) = d1,k k = (j-1)C + 1, (j-1)C + 2, (j-1)C + 3, ... M

uj,(k-(j-1)C) = d2,(k-M) k = M + 1, M + 2, M + 3, ... jC

uj+1,(k-jC) = d2,(k-M) k = jC + 1, jC + 2, jC + 3, ... (j+1)C

...

uS,(k-(S-1)C) = dP,(M-C+F+k-(S-1)C) k = (S - 1)C + 1, (S - 1)C + 2, (S - 1)C + 3, ... SC - F

uS,(k-(S-1)C) = fk-SC+F k = SC – F + 1, SC - F+ 2, SC – F +3, ... SC

<Note: Above it is assumed that all transport blocks have the same size. There are cases when the total number of bits that
are sent during a transmission time interval is not a multiple of the number of transport blocks. A few padding bits are then
needed but the exact insertion point (in the multiplexing chain) of these bits is for further study.>

-- snip --

4.2.3.2.4 Encoding blocks for Turbo code

Input data blocks for a turbo encoder consist of the user data and possible extra data being appended to the user data before
turbo encoding. The encoding segments for a turbo encoder are defined in terms of systematic bits. The segment includes the
user data, a possible error detection field (CRC), possible filler bits, and the termination. The maximum encoding segment
length for turbo coding is 5120 bits. The Algorithm for combining and segmentation is as follows:

Inputs:

NDATA size of input data block to turbo encoder

NTAIL number of tail bits to be appended to the encoding segments (termination)

Outputs:

NS number of segments

NTB number of bits in the turbo encoder input segments

NFILL number of filler (zero) bits in the last turbo encoder input segment

Do:

6 (6)

1.Let NS = round_up(NDATA / (5120 – NTAIL))

2.Let NTB = round_up (NDATA / NS) + NTAIL;

3.Let NREM = remainder of NDATA / NS;

4.If NREM not equal to 0 then insert NFILL = (NS – NREM) zero bits to the end of the input data else NFILL = 0.

5.End.

Here round_up(x) stands for an smallest interger number being larger or equal to x.

All turbo encoder input segments are of equal size and therefore the same turbo interleaver can be used for all turbo
segments. A number of systematic bits over an entire channel interleaving block at output of the encoder is

NS * (round_up(NDATA / NS) + NTAIL).

The NFILL filler bits are padded to the end of the last encoding segment in order to make the last segment equal size to the
precedent ones. The filler bits are encoded.

