TSG-RAN Working Group1 meeting #7 TSGR1#7									
Source:	<u>—————————————————————————————————————</u>	_							
Title:	TDD Cell Search and Text Pr 25.223 and 25.224	oposals for 25.221,							
Document for:	Approval								

Introduction

Tdoc 578 by InterDigital presented a new cell search procedure, based on modulated secondary synchronization codes. The results of Tdoc 578 indicate that the proposed scheme exhibits better performance than the current scheme along with a lower complexity. Additional results are presented in Tdoc 976. An improved version of this scheme is presented in Tdoc B99.

An alternative scheme was presented by TI in Tdoc 815. It was agreed that the two schemes will be compared by using a common set of simulation parameters and assumptions. This common set is defined in Tdoc A52.

Tdoc B99 compares the performance of InterDigital scheme and TI scheme. Based on the results of Tdocs 578, 976 and B99, we propose to adopt the cell search scheme of Tdoc B99 for TDD mode. The required changes in the specification documents are given below.

Text proposal for 25.221

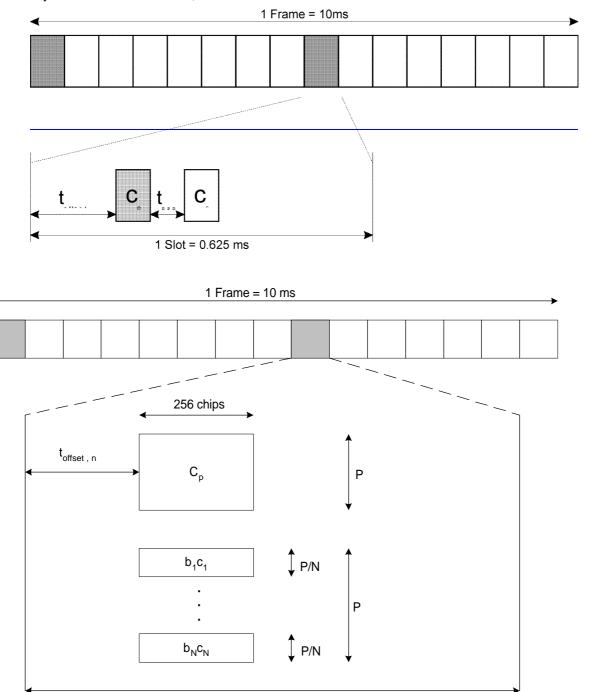
5.4 The physical synchronisation channel (PSCH)

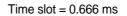
[Editors Note : The detailed scheme of CCCH pointing by SCH is FFS.]

The PSCH is similar to the FDD SCH. In order not to limit the UL/DL asymmetry the PSCH is mapped on one or two DL slots per frame only.

There are three cases of SCH and CCCH allocation as follows:

Case 1) SCH and CCCH allocated in TS#k, k=0....154


Case 2) SCH in two TS and CCCH in the same two TS: TS#k and TS#k+8, k=0...76


Case 3) SCH in two TS, TS#k and TS#k+8, k=0...76, and the primary CCCH TS#i, i=0...154,

pointed by SCH

The position of SCH (value of k) in frame can change on a long term basis in any case.

Figure 12-is one example, k=0, of Case 2 or Case 3. In this case, the PSCH uses system-wide always the same two DL slots, which are slot 0 and slot 8.

Figure 12 Scheme for Synchronisation channel SCH consisting of one primary sequence C_p and <u>N-3 parallel</u> secondary sequences C_p per slot. (example of for Case 2 or Case 3.)

As depicted in Figure 12, the PSCH consists of a primary <u>code sequence</u> and <u>N3 parallel</u> secondary code sequences with <u>of length</u> 256 chips <u>length</u> each. <u>N=3 for case 1,N=4 for Case 2</u>, <u>and N=7 for case 3</u>. The used sequences C_p and C_c are the same as in FDD-Mode, see [2]. The primary and secondary code sequences are defined in TS 25.223 Section 7.1. The secondary codes are transmitted either in the I channel or the Q channel, depending on the code group.

The time offset t_{gap} is the time between the primary synchronisation code and the secondary synchronisation code. It provides enough time for calculations and a better interference distribution, since the codes do not superimpose. The exact value is to be determined.

Due to mobile to mobile interference, it is mandatory for public TDD systems to keep synchronisation between base stations. As a consequence of this, a capture effect concerning PSCH can arise. The time offset t_{offset} enables the system to overcome the capture effect.

The time offset t_{offset} is one of 32 values, depending on the cell parameter, thus on the code group of the cell, cf. 'Table 9 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and t_{offset} ' in 'TS25.223 Spreading and modulation (TDD)'. The exact value for t_{offset} , regarding column 'Associated t_{offset} ' in Table 9 from TS25.223, is given by:

$$t_{n} = t_{offset,n} = n \cdot T_{C} \cdot \begin{bmatrix} 2560 - 96 - 512 - \frac{t_{gap}}{T_{C}} \\ 31 \end{bmatrix} ; n = 0...31$$

$$t_{offset,n} = n \cdot T_{c} \begin{bmatrix} \frac{2560 - 96 - 256}{31} \\ \end{bmatrix}$$

$$= n \cdot 71T_{c} ; n = 0,...,31$$

We recommend to include this equation into TS25.221 specification document, as then t_{offset} can be derived immediately when t_{eap} is given.

Text Proposal for 25.223

7. Synchronisation codes

7.1 Code Generation

The code generation for synchronisation codes is handled in the same way as in FDD Mode. Thus we refer to TS 25.213, chapter '5.2.3 Synchronisation Codes'. From this procedure we obtain one primary synchronisation code $C_p = C_{SCH,0}$ and seventeen different secondary synchronisation codes $C_{S,i} = C_{SCH,i}$ with i=1...17.

To avoid misunderstandings when documents are reorganised in the future, we repeat the actual content of this chapter below using small font.

The Primary code sequence, C_p is constructed as a so-called generalised hierarchical Golay sequence. The Primary SCH is furthermore chosen to have good aperiodic auto correlation properties.

Letting $a = \langle x_1, x_2, x_3, \dots, x_{16} \rangle = \langle 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0 \rangle$ and $b = \langle x_1, x_2, x_3, \dots, x_{16} \rangle = \langle 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0 \rangle$

 $b = \langle X_1, X_2, X_3, \dots, X_8, X_1, X_2, X_3, \dots, X_8 \rangle$

The PSC code is generated by repeating sequence 'a' modulated by a Golay complementary sequence.

The definition of the PSC code word C_{P} follows (the left most index corresponds to the chip transmitted first in each time slot): $C_{P} = \langle y(0), y(1), y(2), ..., y(255) \rangle$.

- The Hadamard sequences are obtained as the rows in a matrix H₈ constructed recursively by:

$$\begin{array}{c} H_0 = (0) \\ \hline H_k = \begin{pmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & H_{k-1} \\ \end{pmatrix} & k \ge 1 \end{array}$$

TT

 $\langle \mathbf{0} \rangle$

The rows are numbered from the top starting with row 0 (the all zeros sequence).

The Hadamard sequence h depends on the chosen code number n and is denoted h_n in the sequel.

This code word is chosen from every 8th row of the matrix H_a. Therefore, there are 32 possible

codewords out of which n = 1, 2, ..., 17 are used.

Furthermore, let $h_{\mu}(i)$ and z(i) denote the *i*th symbol of the sequence h_{μ} and z, respectively.

Then h_r is equal to the row of H₈ numbered by the bit reverse of the 8 bit binary representation of n.

The definition of the *n*:th SCH code word follows (the left most index correspond to the chip transmitted first in each slot):

 $C_{SCH,n} = \langle h_n(0) + z(0), h_n(1) + z(1), h_n(2) + z(2), \dots, h_n(255) + z(255) \rangle$

All sums of symbols are taken modulo 2.

These PSC and SSC binary code words are converted to real valued sequences by the transformation $0' \rightarrow +1'$, $1' \rightarrow -1'$.

The Secondary SCHcode words are defined in terms of $C_{SCH,n}$ and the definition of $< C_{4,...,}C_{47} >$ now follows as:

C; = C_{SCH, i}, i=1,...,17

7.1.1 Primary Code

The Primary code sequence, C_p is constructed as a so-called generalised hierarchical Golay sequence. This primary code is the same as the primary code used in FDD mode. The Primary SCH is furthermore chosen to have good aperiodic auto correlation properties.

Letting $a = \langle x_1, x_2, x_3, ..., x_{16} \rangle = \langle 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0 \rangle$. The PSC code is generated by repeating sequence 'a' modulated by a Golay complementary sequence.

The definition of the PSC code word C_p follows (the left most index corresponds to the chip transmitted first in each time slot): $C_p = \langle y(0), y(1), y(2), ..., y(255) \rangle_{-}$

The PSC binary sequence is converted to a real valued sequence by the transformation '0' \rightarrow 1, and '1' \rightarrow -1.

7.1.2 Secondary Codes

The Secondary Synchronization Codes (SSC's) are proposed to be common to all the base stations. However, before the transmission, they are QPSK modulated. The QPSK modulation carries the following information:

- The code group that the base station belongs to (5 bits; Cases 1,2,3)
- The position of the frame within an interleaving period of 20 mesec (1 bits, Cases 1,2,3)
- The position of the slot within the frame (1 bit, Cases 2,3)
- The location of the primary CCCH (3 bits, Case 3)

<u>The secondary synchronization codes are partitioned into four (possibly overlapping) code sets – code set 1, code set 2, code set 3, code set 4. The set used provides the following information two code sets for Case 1, four code sets for Case 2 and thirty two code sets (possibly overlapping) for Case 3. The set used provide the following information:</u>

Case 1:

Code Set	Code Group
<u>1</u>	<u>0-157</u>
2	<u>8-1516-31</u>

The secondary codes may be transmitted either by the I channel or by the Q channel. The selection of I/Q provides an additional bit of information. The remaining bits of information are provided code group and frame position information is provided by modulating the secondary codes in the -code set.

Case 2:

Code Set	Code Group
<u>1</u>	<u>0-7</u>
<u>2</u>	<u>8-15</u>
<u>3</u>	<u>16-23</u>
4	<u>24-31</u>

The slot timing and frame position information is provided by the comma free property of the code word and the Code group is provided by modulating some of the secondary codes in the code set.

<u>Case 3:</u>

Code set k, k=1:32 is associated with Code group k-1. The slot information, the frame position information is provided by the comma free property of the code and the primary CCCH position is provided by modulating some of the codes in the code set.

- <u>Case 1: Total number of information bits 6. 2 bits are provided by the selection of code set. 1 bit</u> <u>is provided by the I/Q selection. Each code set contains 3 codes. The remaining 3 bits are</u> <u>provided by modulating the three codes in the code set.</u>
- Case 2: Total number of information bits 7. 2 bits are provided by the selection of code set. 1 bit is provided by the I/Q selection. Each code set contains 4 codes. The remaining 4 bits are provided by modulating the four codes in the code set.
- <u>Case 3: total number of information bits –10. 2 bits are provided by the selection of code set. 1 bit</u> <u>is provided by the I/Q selection. Each code set contains 7 codes. The remaining 7 bits are</u> <u>provided by modulating the four codes in the code set.</u>

<u>Denote by N the number of codes in the code set (N=3 for Case1 , N=4 for case 2, N=7 for case 3)</u>. Denote by N, the number of secondary codes required for representing each of the above cases. N = 6 for case 1, N = 12 for case 2 and N = 16 for case 3.

<u>The SSC's {C₁, C₂, ..., C_{NN}} are constructed as the position wise modulu 2 addition of the a</u> mask sequence $\frac{1}{2}z$ defined in Section 7.1.1 and properly selected rows of the Hadamard matrix, H₈. H₈ is obtained recursively by,

$$\begin{split} H_0 &= (0), \\ H_k &= \begin{pmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & \overline{H}_{k-1} \end{pmatrix}, \quad k \geq 1 \end{split}$$

<u>Let b = $< x_1,...,x_8, \overline{x}_9,..., \overline{x}_{16} > = <0,0,0,0,0,1,1,1,0,1,0,1,0,0,1>$ where $x_1,...,x_{16}$ are defined in Section 7.1.1. Then, length 256 mask sequence z is given as,</u>

 $\underline{z} = \langle b, b, b, \overline{b}, b, b, \overline{b}, \overline{b}$

The rows of Hadamarad matrix $H_{\underline{8}}$ are numbered from the top starting with row 0, $h_{\underline{0}}$, (the all one zero sequence). The SSC's are constructed as

 $\frac{C_k(i) = h_{r(k)}(i) + y_Z(i), modulo 2, i = 0, ..., 255 ; k=1,... N}{where r(k) is given as below for Case 1, Case 2 and Case 3.}$

where the sequence y is the primary code defined in Section 7.1.1, and

Case 1

	[16*[0,1,3]	Code Set 1	
r(k) -	$\begin{bmatrix} 16*[0,1,3] \\ 16*[4,5,6] \end{bmatrix}$	Code Set 2	
T(k) =	16*[8,10,12] 16*[13,14,15]	Code Set 3	
	16*[13,14,15]	Code Set 4	
$r(l) = \int 1$	6*[0,1,3]	Codeset1	
$r(\kappa) = 1$	6*[0,1,3] 6*[4,5,6]	CodeSet2	

Case 2

	[16*[0,1,2]	Code Set 1
$r(k) = \langle$	16*[3,4,5]	Code Set 2
	16*[6,7,8]	Code Set 3
	16*[9,10,11]	Code Set 4

Case 3

	[16*[0,1,2]	Code Set 1
	16*[3,4,5]	Code Set 2
	16*[6,7,8]	Code Set 2 Code Set 3
		Code Set 3
	16*[9,10,11]	Code Set 4
	16*[12,13,14]	Code Set 5 Code Set 6
	16*[0,3,6]	Code Set 7
	16*[0,4,7]	
	16*[0,5,8]	Code Set 8
	16*[0,9,12]	Code Set 9
	16*[0,10,13]	Code Set 10
	16*[0,11,14]	Code Set 11
	16*[1,3,7]	Code Set 12
	16*[1,4,6]	Code Set 13
	16*[1,5,9]	Code Set 14
	16*[1,8,10]	Code Set 15
r(k) =]16*[1,11,12]	Code Set 16
$r(\kappa) =$	16*[1,13,15]	Code Set 17
	16*[2,3,8]	Code Set 18
	16*[2,4,9]	Code Set 19
	16*[2,5,6]	Code Set 20
	16*[2,7,10]	Code Set 21
	16*[2,11,13]	Code Set 22
	16*[2,12,15]	Code Set 23
	16*[3,9,13]	Code Set 24
	16*[3,10,12]	Code Set 25
	16*[3,11,15]	Code Set 26
	16*[4,8,11]	Code Set 27
	16*[4,10,14]	Code Set 28
	16*[5,7,11]	Code Set 29
	16*[5,10,15]	Code Set 30
	16*[6,9,14]	Code Set 31
	16*[7,9,15]	Code Set 32

Note that the primary code can be written as the position wise modulu 2 addition of the sequence $\underline{y \text{ and } h_{e}}$

The SSC binary sequences are converted to a real valued sequence by the transformation '0' \rightarrow 1, and '1' \rightarrow -1.

7.1.2.1 Case 1: One slot per frame, SCH and CCCH are in the same slot.

<u>The modulated SSC's for code set n are obtained by multiplication of $C_k(i)$ with b_k i.e $b_k^* C_k(i)$ where b_k are given as The three SSC's from each code set are appropriately modulated and transmitted in parallel in each SCH slot and are given as</u>

<u>Code</u> <u>Group</u>	Code Set	<u>Þ</u> 3	<u>b</u> 2	<u> b</u> 1	Associated <u>t_{offset}</u>
<u>0</u>	<u>+</u>	1	<u>+</u>	<u>+</u>	<u>ŧ</u> ₀
<u>+</u>	<u><u>+</u></u>	<u>+</u>	<u>+</u>	4	<u>ŧ</u> 4
2	<u>+</u>	4	4	4	<u>t_2</u>
					
<u>7</u>	<u>+</u>	1	<u>-1</u>	41	<u>ŧ</u> 7
<u>8</u>	<u>2</u>	1	<u>+</u>	<u>+</u>	<u>ŧ</u> <u></u>
				l:	<u></u>
<u> 15</u>	<u>2</u>	4	<u>-1</u>	4	<u>t₁₅</u>
<u> 16</u>	<u>3</u>	1	<u>+</u>	<u>+</u>	<u>t</u> ₁₆
	<u></u>	<u></u>			<u></u>
<u>23</u>	<u>3</u>	1	<u>-1</u>	4	<u>t</u> 23
<u>24</u>	<u>4</u>	4	<u>+</u>	<u>+</u>	<u>t</u> 24
<u></u>	<u></u>			::	<u></u>
<u>31</u>	4	4	<u>-1</u>	4	<u>t</u> 31

I/Q selection represents the frame number within an interleaving period of 20 msec. It is 'I' for 'first frame' and 'Q' for 'second frame'.

Note that modulation by "j" indicates that the code is transmitted on the Q channel.

<u>Code</u> <u>Group</u>	Code Set		Frame 1			Frame 2		Associated <u>t_{offset}</u>
0	1	<u>C</u> 1	<u>C</u> ₂	<u>C</u> 3	<u>C</u> 1	<u>C</u> 2	-C ₃	<u>to</u>
1	1	<u>C</u> 1	<u>-C</u> 2	<u>C</u> 3	<u>C</u> 1	<u>-C</u> 2	<u>-C₃</u> -C₃	<u>t</u> 1
<u>2</u>	<u>1</u>	<u>-C</u> 1	<u>C</u> 2	<u>C</u> 3	<u>-C</u> 1	<u>C</u> 2	<u>-C</u> 3	<u>t</u> 2
<u>3</u>	<u>1</u>	<u>-C</u> 1	<u>-C</u> ₂	<u>C</u> 3	<u>-C</u> 1	<u>-C</u> ₂	<u>-C</u> ₃	<u>t</u> 3
<u>4</u>	<u>1</u>	jC₁	jC ₂	<u>C</u> 3	jC₁	jC ₂	<u>-C</u> ₃	<u>t</u> 4
<u>5</u>	<u>1</u>	<u>jC</u> 1	<u>-jC</u> 2	<u>C</u> ₃	j <u>C</u> ₁	<u>-jC</u> 2	<u>-C</u> ₃	<u>t</u> 5
<u>6</u>	<u>1</u>	<u>-jC</u> ₁	<u>jC</u> 2	<u>C</u> 3	<u>-jC</u> ₁	jC₂	<u>-C</u> ₃	<u>t</u> 6
<u>7</u>	<u>1</u>	<u>-jC</u> ₁	<u>-jC</u> 2	<u>C</u> 3	<u>-jC</u> ₁	<u>-jC</u> 2	<u>-C</u> ₃	<u>t</u> 7
<u>8</u>	<u>1</u>	<u>jC</u> 1	jC ₃	<u>C</u> 2	<u>jC</u> 1	jC₃	<u>-C</u> 2	<u>t</u> 8
<u>9</u>	<u>1</u>	<u>jC</u> ₁	<u>-jC</u> ₃	<u>C</u> 2	jC₁	<u>-jC</u> ₃	<u>-C</u> 2	<u>t</u> 9
<u>10</u>	<u>1</u>	<u>-jC</u> ₁	<u>jC</u> ₃	<u>C</u> 2	<u>-jC</u> 1	j <u>C</u> ₃	<u>-C</u> 2	<u>t</u> ₁₀
<u>11</u>	<u>1</u>	<u>-jC</u> 1	<u>-jC</u> ₃	<u>C</u> 2	<u>-jC</u> 1	<u>-jC</u> ₃	<u>-C</u> 2	<u>t₁₁</u>
<u>12</u>	<u>1</u>	jC₂	<u>jC</u> ₃	<u>C</u> 1	jC ₂	<u>jC</u> ₃	<u>-C</u> 1	<u>t</u> ₁₂
<u>13</u>	<u>1</u>	jC₂	<u>-jC</u> ₃	<u>C</u> 1	jC ₂	<u>-jC</u> ₃	<u>-C</u> 1	<u>t</u> ₁₃
<u>14</u>	<u>1</u>	<u>-jC</u> 2	<u>jC</u> 3	<u>C</u> 1	<u>-jC</u> 2	<u>jC</u> ₃	<u>-C</u> 1	<u>t₁₄</u>
<u>15</u>	1	<u>-jC</u> 2	<u>-jC</u> ₃	<u>C</u> 1	<u>-jC</u> 2	<u>-jC</u> ₃	<u>-C</u> 1	<u>t₁₅</u>
<u>16</u>	<u>2</u>	<u>C</u> 4	<u>C</u> 5	<u>C</u> 6	<u>C</u> 4	<u>C</u> 5	<u>-C₆</u>	<u>t₁₆</u>
<u>17</u>	<u>2</u>	<u>C</u> 4	<u>-C</u> 5	<u>C</u> 6	<u>C</u> ₄	<u>-C</u> 5	<u>-C₆</u>	<u>t₁₇</u>
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
<u>20</u>	<u>2</u>	<u>jC</u> ₄	<u>jC</u> 5	<u>C</u> 6	<u>jC</u> 4	jC ₅	<u>-C</u> 6	<u>t</u> ₂₀
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
<u>24</u>	<u>2</u>	<u>jC</u> 4	<u>jC</u> 6	<u>C</u> 5	<u>jC</u> 4	<u>jC</u> 6	<u>-C</u> 5	<u>t₂₄</u>
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>

<u>31</u>		<u>2</u>		<u>-jC</u> ₅	-jC	6	<u>C</u> ₄	<u>-jC</u> ₅	<u>-i</u>	<u>C</u> 6	<u>-C</u> 4		<u>t</u> ₃₁	
7.1.2.1	Cases	<u>s 2: SC</u>	CH an	d CC	<u>CH ar</u>	<u>e in th</u>	ie san	<u>ne slot</u>						
The mo	dulated (SSC's f	or code) arour) n are	obtaine	ed by n	nultiplica	tion of	<mark>-C⊧(i) v</mark>	<mark>/ith b</mark> ⊭,	i.e b⊾≛	<mark>C⊧(i)</mark>	
	_k are giv									<u> </u>	<u></u>	<u>N, </u>	<u></u>	
Code	<u>e</u> !	Code S	et	<u>b</u> 3		<u>b</u>	2	<u>þ</u>	<u>1</u>	Asse	ociated			
<u>Grou</u>	Ð									<u>t</u> ,	offset			
<u>0</u>		<u><u><u>+</u></u></u>		<u>+</u>		4		4			<u>ŧ</u> ₀			
<u><u><u>+</u></u></u>		<u><u><u>+</u></u></u>		<u><u>+</u></u>		4		-			<u>t</u> 4			
<u>2</u>		<u>1</u>		<u> </u>		=	<u>+</u>	4	_		<u>t</u> 2			
		<u></u>									<u></u>			
<u>7</u>		<u><u>+</u></u>		<u>-</u>		<u></u>	_		_		<u>ŧ</u> 7			
<u>8</u>		2		<u><u>+</u></u>		4		4			<u>ŧ</u> 8	_		
<u></u> 15		<u></u> 2		<u></u> -4		<u></u>		-			<u></u>			
<u>+++</u> <u>+++</u>		<u>₹</u>		<u>-</u> 			-				<u>ŧ₁₅</u> ŧ ₁₆			
<u></u> 23		<u></u> 3		<u></u> -4				-			<u></u> t ₂₃			
24		4		4		4		4			<u>t</u> 24			
							- -		- -					
31		4		-1		-		-			t ₃₁			
_	•							_						
Q sele	ction rep	resente	s the fra	ame ni	umber ·	within a	in inter	leaving	period	of <u>20 n</u>	nsec. It	is 'l' fo	E	
irst frar	ne' and	'Q' for '	second	l frame	<u><u>}.</u></u>									
אנ D₄ re	presente	s the slo	x posit i	ion wit	nin the	Trame	and It I	s in tor	SIOt K	and :-1	TOR 'S	ot K+8'.		
<u>Code</u>	Code			From	ne <u>1</u>					From	<u>ne 2</u>			Asso
<u>Group</u>	Set		Slot k	<u>rid</u>		Slot k+	8	1	Slot k	<u>r i di</u>		Slot k+8	2	<u>ASSO</u>
0	<u> </u>	C ₁	<u>SIUL K</u> <u>C</u> 2	<u>C</u> ₃	<u>C</u> 1	\underline{C}_2	<u>-C</u> 3	<u>-C</u> 1	<u>-C</u> 2	<u>C</u> ₃	<u>-C</u> 1	$-C_2$	<u>-C</u> 3	
<u>v</u>			<u>U</u> 2	<u>U</u> 3		<u>U</u> 2	<u>-</u> <u>U</u> 3	<u>-0</u> 1	-02	\underline{U}_3	<u>-0</u> 1	-02	<u>-U</u> 3	

<u>Code</u>	<u>Code</u>			<u>Frar</u>	<u>ne 1</u>					Frar	<u>ne 2</u>			Associated	
<u>Group</u>	<u>Set</u>	<u>Slot k</u>			<u>Slot k+8</u>			<u>Slot k</u>			<u>Slot k+8</u>			<u>t_{offset}</u>	
<u>0</u>	<u>1</u>	<u>C</u> 1	<u>C</u> 2	<u>C</u> 3	<u>C</u> 1	<u>C</u> 2	<u>-C</u> ₃	<u>-C</u> 1	<u>-C</u> ₂	<u>C</u> 3	<u>-C</u> 1	<u>-C</u> ₂	<u>-C</u> ₃	<u>t</u> o	
<u>1</u>	<u>1</u>	<u>C</u> 1	<u>-C</u> 2	<u>C</u> ₃	<u>C</u> 1	<u>-C</u> 2	<u>-C</u> ₃	<u>-C</u> 1	<u>C</u> 2	<u>C</u> ₃	<u>-C</u> 1	<u>C</u> 2	<u>-C</u> ₃	<u>t</u> 1	
<u>2</u>	<u>1</u>	j <u>C</u> ₁	jC ₂	<u>C</u> 3	j <u>C</u> ₁	jC₂	<u>-C</u> ₃	<u>-jC</u> ₁	- <u>jC</u> 2	<u>C</u> 3	<u>-jC</u> ₁	-jC ₂	<u>-C</u> ₃	<u>t</u> 2	
<u>3</u>	<u>1</u>	jC₁	<u>-jC</u> ₂	<u>C</u> 3	jC₁	<u>-jC</u> 2	<u>-C</u> ₃	<u>-jC</u> ₁	jC ₂	<u>C</u> 3	<u>-jC</u> ₁	jC ₂	<u>-C</u> ₃	<u>t</u> 3	
<u>4</u>	<u>1</u>	<u>jC</u> 1	<u>jC</u> ₃	<u>C</u> 2	<u>jC</u> 1	<u>jC</u> ₃	<u>-C</u> ₂	<u>-jC</u> 1	<u>-jC₃</u>	<u>C</u> 2	<u>-jC</u> 1	<u>-jC</u> ₃	<u>-C</u> 2	<u>t</u> 4	
<u>5</u>	<u>1</u>	<u>jC</u> ₁	<u>-jC</u> ₃	<u>C</u> 2	<u>jC</u> ₁	<u>-jC</u> ₃	<u>-C</u> ₂	<u>-jC</u> ₁	jC₃	<u>C</u> 2	<u>-jC</u> ₁	j <u>C</u> ₃	<u>-C</u> ₂	<u>t</u> 5	
<u>6</u>	<u>1</u>	jC ₂	jC₃	<u>C</u> 1	jC ₂	j <u>C</u> ₃	<u>-C</u> 1	-jC ₂	<u>-jC</u> ₃	<u>C</u> 1	-jC ₂	-jC₃	<u>-C</u> 1	<u>t</u> 6	
<u>7</u>	<u>1</u>	<u>jC</u> 2	<u>-jC₃</u>	<u>C</u> 1	<u>jC</u> 2	<u>-jC₃</u>	<u>-C</u> 1	<u>-jC₂</u>	<u>jC</u> ₃	<u>C</u> 1	<u>-jC₂</u>	j <u>C</u> ₃	<u>-C</u> 1	<u>t</u> 7	
<u>8</u>	2	<u>C</u> 4	<u>C</u> 5	<u>C</u> 6	<u>C</u> 4	<u>C</u> 5	<u>-C</u> 6	<u>-C</u> ₄	<u>-C</u> 5	<u>C</u> 6	<u>-C</u> ₄	<u>-C</u> 5	<u>-C</u> 6	<u>t</u> 8	
<u>9</u>	2	<u>C</u> 4	<u>-C</u> 5	<u>C</u> 6	<u>C</u> 4	<u>-C</u> 5	<u>-C</u> 6	<u>-C</u> ₄	<u>C</u> 5	<u>C</u> 6	<u>-C</u> ₄	<u>C</u> 5	<u>-C</u> 6	<u>t</u> 9	
<u>10</u>	<u>2</u>	<u>jC</u> 4	<u>jC</u> 5	<u>C</u> 6	<u>jC</u> 4	j <u>C</u> ₅	<u>-C₆</u>	<u>-jC</u> 4	<u>-jC</u> 5	<u>C</u> 6	<u>-jC</u> 4	-jC₅	<u>-C</u> 6	<u>t</u> ₁₀	
<u>11</u>	<u>2</u>	<u>jC</u> ₄	<u>-jC</u> 5	<u>C</u> 6	<u>jC</u> ₄	<u>-jC</u> ₅	<u>-C</u> 6	<u>-jC</u> 4	<u>jC</u> ₅	<u>C</u> 6	<u>-jC</u> ₄	<u>jC</u> ₅	<u>-C</u> 6	<u>t</u> 11	
<u>12</u>	<u>2</u>	<u>jC</u> 4	<u>jC</u> 6	<u>C</u> 5	<u>jC</u> 4	<u>jC₆</u>	<u>-C</u> 5	<u>-jC</u> 4	<u>-jC₆</u>	<u>C</u> 5	<u>-jC</u> 4	<u>-jC₆</u>	<u>-C</u> 5	<u>t</u> ₁₂	
<u>13</u>	<u>2</u>	<u>jC</u> ₄	<u>-jC</u> 6	<u>C</u> 5	<u>jC</u> 4	<u>-jC</u> 6	<u>-C</u> 5	<u>-jC</u> 4	<u>jC</u> 6	<u>C</u> 5	<u>-jC</u> ₄	<u>jC</u> 6	<u>-C</u> 5	<u>t</u> ₁₃	
<u>14</u>	<u>2</u>	<u>jC</u> 5	jC ₆	<u>C</u> ₄	<u>jC</u> 5	<u>jC</u> 6	<u>-C</u> ₄	<u>-jC</u> 5	<u>-jC</u> 6	<u>C</u> ₄	<u>-jC</u> ₅	<u>-jC</u> 6	<u>-C</u> 4	<u>t</u> ₁₄	
<u>15</u>	2	<u>jC₅</u>	<u>-jC₆</u>	<u>C</u> 4	<u>jC</u> 5	<u>-jC₆</u>	<u>-C</u> ₄	<u>-jC₅</u>	<u>jC₆</u>	<u>C</u> ₄	<u>-jC₅</u>	<u>jC</u> 6	<u>-C</u> 4	<u>t</u> ₁₅	

<u>16</u>	<u>3</u>	<u>C</u> 7	<u>C</u> 8	<u>C</u> 9	<u>C</u> 7	<u>C</u> 8	<u>-C</u> 9	<u>-C</u> 7	<u>-C</u> 8	<u>C</u> 9	<u>-C</u> 7	<u>-C</u> 8	<u>-C</u> 9	<u>t</u> ₁₆
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
<u>23</u>	<u>3</u>	<u>jC</u> 8	<u>-jC</u> 9	<u>C</u> 7	<u>jC</u> 8	<u>-jC</u> 9	<u>-C</u> ₇	<u>-jC</u> 8	j <u>C</u> 9	<u>C</u> 7	<u>-jC₈</u>	j <u>C</u> 9	<u>-C</u> ₇	<u>t₂₀</u>
<u>24</u>	<u>4</u>	<u>C</u> 10	<u>C</u> 11	<u>C</u> ₁₂	<u>C</u> 10	<u>C</u> 11	<u>-C</u> ₁₂	<u>C</u> 10	<u>C</u> 11	<u>C</u> ₁₂	<u>C</u> 10	<u>C</u> 11	<u>-C</u> ₁₂	<u>t</u> 24
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
<u>31</u>	<u>4</u>	<u>jC₁₁</u>	<u>-jC₁₂</u>	<u>C₁₀</u>	<u>jC₁₁</u>	<u>jC₁₂</u>	<u>-C</u> ₁₀	<u>-jC₁₁</u>	<u>jC₁₂</u>	<u>C₁₀</u>	<u>-jC</u> ₁₁	<u>jC₁₂</u>	<u>-C₁₀</u>	<u>t₃₁</u>

Note that, the C_p and $\{C_1, ..., C_N\}$ are pairwise mutually orthogonal and $\{C_1, ..., C_N\}$ were chosen to have good aperiodic cross correlation properties with C_p .

7.1.2.3 Case 3: SCH points the CCCH location in the frame

<u>The modulated SSC's for code group n are obtained by multiplication of $C_{\underline{k}}(\underline{i})$ with $\underline{b}_{\underline{k}}$, i.e. $\underline{b}_{\underline{k}}$, $\underline{*}$ $\underline{C}_{\underline{k}}(\underline{i})$ where $\underline{b}_{\underline{k}}$ are given as</u>

Code	Code			Frar	ne 1					Frai	me 2			Associated
Group	Set		<u>Slot k</u>		S	Slot k+8			<u>Slot k</u>			Slot k+8	3	<u>t_{offset}</u>
<u>0</u>	<u>1</u>	<u>C</u> 1	<u>C</u> 2	<u>C</u> ₃	<u>C</u> 1	<u>C</u> 2	<u>-C</u> ₃	<u>-C</u> 1	<u>-C</u> ₂	<u>C</u> 3	<u>-C</u> 1	<u>-C</u> ₂	<u>-C</u> ₃	<u>to</u>
<u>0</u>	1	<u>C</u> 1	<u>-C</u> ₂	<u>C</u> 3	<u>C</u> 1	<u>-C</u> 2	<u>-C</u> ₃	<u>-C</u> 1	<u>C</u> 2	<u>C</u> ₃	<u>-C</u> 1	<u>C</u> 2	<u>-C</u> ₃	_
<u>0</u>	<u>1</u>	j <u>C</u> 1	j <u>C</u> 2	<u>C</u> ₃	<u>jC</u> 1	jC ₂	<u>-C</u> ₃	-jC ₁	-jC ₂	<u>C</u> ₃	-jC ₁	-jC ₂	<u>-C</u> ₃	
<u>0</u>	<u>1</u>	jC ₁	<u>-jC</u> 2	<u>C</u> ₃	<u>jC</u> 1	<u>-jC</u> 2	<u>-C</u> ₃	<u>-jC</u> 1	<u>jC</u> 2	<u>C</u> ₃	<u>-jC</u> 1	<u>jC</u> 2	<u>-C</u> ₃]
<u>0</u>	<u>1</u>	<u>jC</u> 1	jC₃	<u>C</u> 2	<u>jC</u> 1	<u>jC</u> ₃	<u>-C</u> 2	<u>-jC</u> 1	<u>-jC</u> ₃	<u>C</u> 2	<u>-jC</u> 1	<u>-jC</u> ₃	<u>-C</u> ₂	
<u>0</u>	<u>1</u>	jC₁	<u>-jC</u> ₃	<u>C</u> 2	<u>jC</u> ₁	<u>-jC</u> ₃	<u>-C</u> ₂	<u>-jC</u> ₁	jC ₃	<u>C</u> 2	<u>-jC</u> 1	jC ₃	<u>-C</u> ₂	
<u>0</u>	<u>1</u>	jC ₂	jC₃	<u>C</u> 1	jC ₂	<u>jC</u> ₃	<u>-C</u> 1	<u>-jC</u> 2	<u>-jC</u> ₃	<u>C</u> 1	<u>-jC</u> 2	<u>-jC</u> ₃	<u>-C</u> 1	
<u>0</u>	<u>1</u>	<u>jC</u> 2	<u>-jC</u> ₃	<u>C</u> 1	<u>jC</u> 2	<u>-jC</u> ₃	<u>-C</u> 1	<u>-jC</u> 2	<u>jC</u> 3	<u>C</u> 1	<u>-jC</u> 2	<u>jC</u> 3	<u>-C</u> 1	
<u>1</u>	<u>2</u>	<u>C</u> ₄	<u>C</u> 5	<u>C</u> 6	<u>C</u> ₄	<u>C</u> 5	<u>-C</u> 6	<u>-C</u> ₄	<u>-C</u> 5	<u>C</u> 6	<u>-C</u> ₄	<u>-C</u> 5	<u>-C</u> ₆	<u>t</u> 2
<u>1</u>	<u>2</u>	<u>C</u> 4	<u>-C</u> 5	<u>C</u> 6	<u>C</u> 4	<u>-C</u> 5	<u>-C₆</u>	<u>-C</u> ₄	<u>C</u> 5	<u>C</u> 6	<u>-C</u> ₄	<u>C</u> 5	<u>-C₆</u>	
<u>1</u>	<u>2</u>	<u>jC</u> ₄	<u>jC</u> 5	<u>C</u> 6	<u>jC</u> ₄	<u>jC</u> ₅	<u>-C</u> 6	<u>-jC</u> ₄	<u>-jC</u> ₅	<u>C</u> 6	<u>-jC</u> 4	<u>-jC</u> ₅	<u>-C</u> 6	
<u>1</u>	<u>2</u>	<u>jC</u> ₄	<u>-jC</u> ₅	<u>C</u> 6	<u>jC</u> ₄	<u>-jC</u> ₅	<u>-C</u> 6	<u>-jC</u> ₄	<u>jC</u> ₅	<u>C</u> 6	<u>-jC</u> ₄	<u>jC</u> ₅	<u>-C</u> 6	
<u>1</u>	<u>2</u>	<u>jC</u> 4	<u>jC₆</u>	<u>C</u> 5	<u>jC</u> 4	<u>jC₆</u>	<u>-C</u> 5	<u>-jC</u> 4	<u>-jC₆</u>	<u>C</u> 5	<u>-jC</u> 4	<u>-jC₆</u>	<u>-C</u> 5	
<u>1</u>	<u>2</u>	<u>jC</u> ₄	<u>-jC</u> 6	<u>C</u> 5	<u>jC</u> ₄	<u>-jC</u> 6	<u>-C</u> 5	<u>-jC</u> ₄	<u>jC</u> 6	<u>C</u> 5	<u>-jC</u> 4	<u>jC</u> 6	<u>-C</u> 5	
<u>1</u>	<u>2</u>	<u>jC</u> ₅	j <u>C</u> 6	<u>C</u> ₄	<u>jC</u> ₅	<u>jC</u> 6	<u>-C</u> ₄	<u>-jC</u> ₅	<u>-jC</u> 6	<u>C</u> ₄	<u>-jC</u> 5	<u>-jC</u> 6	<u>-C</u> ₄	
<u>1</u>	<u>2</u>	<u>jC</u> 5	<u>-jC₆</u>	<u>C</u> ₄	j <u>C</u> ₅	<u>-jC₆</u>	<u>-C</u> ₄	<u>-jC₅</u>	<u>jC</u> 6	<u>C</u> ₄	<u>-jC</u> 5	<u>jC</u> 6	<u>-C</u> ₄	
<u>2</u>	<u>3</u>	<u>C</u> 7	<u>C</u> 8	<u>C</u> 9	<u>C</u> 7	<u>C</u> 8	<u>-C</u> 9	<u>-C</u> 7	<u>-C</u> 8	<u>C</u> 9	<u>-C</u> 7	<u>-C</u> 8	<u>-C</u> 9	<u>t</u> 3
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	
<u>2</u>	<u>3</u>	<u>jC</u> 8	<u>-jC</u> 9	<u>C</u> 7	<u>jC</u> 8	<u>-jC</u> 9	<u>-C</u> 7	<u>-jC</u> 8	<u>jC</u> 9	<u>C</u> 7	<u>-jC</u> 8	j <u>C</u> 9	<u>-C</u> 7	
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	
<u>31</u>	<u>32</u>	<u>C</u> 7	<u>C</u> 9	<u>C₁₅</u>	<u>C</u> 7	<u>C</u> 9	<u>-C</u> ₁₅	<u>-C</u> 7	<u>-C</u> 9	<u>C₁₅</u>	<u>-C</u> ₇	<u>-C</u> 9	<u>-C₁₅</u>	<u>t₃₁</u>
<u>31</u>	<u>32</u>	<u>C</u> 7	<u>-C9</u>	<u>C₁₅</u>	<u>C</u> 7	<u>-C</u> 9	<u>-C</u> ₁₅	<u>-C</u> 7	<u>C</u> 9	<u>C</u> 15	<u>-C₇</u>	<u>C</u> 9	<u>-C₁₅</u>	
<u>31</u>	<u>32</u>	<u>jC</u> 7	j <u>C</u> 9	<u>C₁₅</u>	<u>jC</u> 7	<u>jC</u> 9	<u>-C</u> ₁₅	<u>-jC₇</u>	<u>-jC</u> ₉	<u>C</u> ₁₅	<u>-jC₇</u>	<u>-jC</u> ₉	<u>-C₁₅</u>	
<u>31</u>	<u>32</u>	<u>jC</u> ₇	<u>-jC</u> 9	<u>C₁₅</u>	<u>jC</u> 7	<u>-jC</u> 9	<u>-C₁₅</u>	<u>-jC</u> 7	j <u>C</u> 9	<u>C</u> ₁₅	<u>-jC</u> 7	j <u>C</u> 9	<u>-C₁₅</u>	
<u>31</u>	<u>32</u>	<u>jC</u> 7	<u>jC</u> ₁₅	<u>C</u> 9	<u>jC</u> 7	<u>jC</u> 6	<u>-C</u> 9	<u>-jC</u> 7	<u>-jC₁₅</u>	<u>C</u> 9	<u>-jC</u> 7	<u>-jC₁₅</u>	<u>-C</u> 9	ł
<u>31</u>	<u>32</u>	<u>jC</u> _Z	<u>-jC₁₅</u>	<u>C</u> 9	<u>jC</u> ₇	<u>-jC₆</u>	<u>-C</u> 9	<u>-jC</u> 7	<u>jC₁₅</u>	<u>C</u> 9	<u>-jC</u> 7	<u>jC₁₅</u>	<u>-C</u> 9	
<u>31</u>	<u>32</u>	j <u>C</u> 9	<u>jC</u> ₁₅	<u>C</u> 7	j <u>C</u> 9	<u>jC</u> ₁₅	<u>-C</u> 7	<u>-jC</u> 9	<u>-jC</u> ₁₅	<u>C</u> 7	<u>-jC</u> 9	<u>-jC</u> ₁₅	<u>-C</u> 7	{
<u>31</u>	<u>32</u>	j <u>C</u> 9	<u>-jC₁₅</u>	<u>C</u> 7	j <u>C</u> 9	<u>-jC₁₅</u>	<u>-C</u> 7	<u>-jC</u> 9	<u>jC₁₅</u>	<u>C</u> ₇	<u>-jC</u> 9	<u>jC₁₅</u>	<u>-C</u> ₇	l
			0.1		<u>b</u>						A	1.1.1.1		1
<u>60</u>	<u>Code Group</u> <u>Code</u> <u>b</u>					<u>b</u> 4	<u>b</u> 3							
			<u>Set</u>								toff	<u>set</u>		

θ	<u>1</u>	4	4	4	4	4	4	
<u>0</u>	1	<u>+</u> +	<u>+</u> +	<u>+</u>	+ +	+ +	<u>+</u> +	
<u>0</u>	1	1	-1	1	4	1	1	
θ	4	<u>+</u>	14	-1	4	4	1	<u>t</u> ₀
<u>θ</u>	1	-1	<u>+</u>	1	<u>+</u>	1	1	
<u><u>θ</u></u>	1	-1	1	-1	1	1		
<u>θ</u>	1	+ +	14	1	1	1	<u>+</u> +	
<u>0</u>	1	-1	-1	-1	1	+	<u>1</u>	
<u><u> </u></u>	1	1	1	<u>1</u>	1	1	<u>-1</u>	
<u><u>1</u></u>	1	<u>+</u> +	+ +	-1	1	+ +	-1	
<u>+</u>	1	<u>1</u>	1	<u>1</u>	+	+	<u>-1</u>	
<u><u><u>1</u></u> <u><u>1</u></u></u>	<u>1</u>	<u>+</u>	1	-1	1	+	-1	
<u>1</u>	<u>1</u>	-1	<u>+</u>	<u> 1</u>	<u> </u>	<u> </u>	-1	<u>4</u>
<u>+</u>	<u>+</u>	-1	<u>+</u>	-1	<u>+</u>	<u>1</u>	-1	
<u>+</u>	<u>+</u>	<u>-1</u>	ויד <mark>יד</mark> ו או	<u>1</u>	<u>+</u>	1 1	+ + + + + +	
<u><u>+</u> <u>+</u> <u>2</u></u>	<u>1</u>	+ + + +	-1	-1		<u>+</u>	<u>+</u>	
	<u>1</u>		41	1	+ +	뉙	1	
2	<u>1</u>	1	<u>+</u>	-1	-+I	ᅻ	1	
2	<u>1</u>	<u>1</u>	4	1	+ +	ᅻ	1	
<u>2</u>	<u>+</u>	1	ᆟ	4	ᆉ	ᅻ	1	
<u>2</u>	<u>+</u>	4	ᆉ	<u>+</u>	ᆉ	4	1	<u>te</u>
2	1 1	+ + +	+ + 4	<u>-1</u>	+ + + +	<u>-1</u>	<u>+</u> + +	
2	<u><u>+</u></u>		ᆟ	<u>1</u>	+ +I	41	1	
<u>2</u>	<u>1</u>	-1	4	-1	<u>+</u>	4	<u>1</u>	
	•••		<u></u>			···		
<u>31</u>	<u>4</u>	1	<u>1</u>	<u>1</u>	-1	-1	-1	
<u>31</u>	<u>4</u>	<u>+</u>	1	-1	4	41	-1	
<u>31</u>	<u>4</u>	<u>+</u>	1	<u>+</u>	1	4	-1	
<u>31</u>	4	<u>1</u>	4	-1	4	뉙	-1	
<u>31</u>	<u>4</u>	<u>-</u>	<u>+</u>	<u>1</u>	4	뉙	<u>-1</u>	<u>ta</u>
<u>31</u>	<u>4</u>	-1	1 1	-1	4	ᅻ	-1	
<u>31</u>	<u>4</u>	<u>-</u> -1	4	<u>1</u>	4	41	<u>-1</u>	
<u>31</u>	4	<u>-1</u>	뉘	4	41	뉘	1	

I/Q selection represents the frame number within an interleaving period of 20 msec. It is 'l' for 'first frame' and 'Q' for 'second frame'.

Bit bz represents the slot position within the frame and it is '1' for 'slot k' and '-1' for 'slot k+8'.

Note that, the $C_{\underline{p}}$ and $\{C_{\underline{1}}, ..., C_{\underline{N}}\}$ are pairwise mutually orthogonal and $\{C_{\underline{1}}, ..., C_{\underline{N}}\}$ were chosen to have good aperiodic cross correlation properties with $C_{\underline{p}}$.

7.2 Code Allocation

Sequences of 8<u>The</u> secondary SCH codes, thus composed of $C_{S,i}$ from defined in chapterSection 7.1 above, are used to transmit information on the PSCH. In general the information on the code group of a cell and on the frame timing (see TS 25.224, Section '6.6.1 Cell Search') is transmitted in the PSCH. According to TS 25.221 section '7.4 The Physical Synchronisation Channel (PSCH)', there is case (3) where additional information from SCH transport channel is to be transmitted in the PSCH.

The sequences of secondary SCH codes are constructed such that their cyclic shifts are unique, i.e. a non-zero cyclic shift less than 8 of any of the sequences is not equivalent to some cyclic shift of any other of the sequences. Also, a non-zero cyclic shift less than 8 of any of the sequences is not equivalent to itself with any other cyclic shift less than 8. This property is used to uniquely determine the transmitted sequence in the receiver.

The evaluation of transmitted information on code group and frame timing is shown in table 9, where the 32 code groups are listed. Each code group is containing 4 specific scrambling codes, each scrambling code associated with a specific short and long basic midamble code.

Each code group is additionally linked to a specific t_{Offset} , thus to a specific frame timing. By using this scheme, the UE can derive the position of the frame border due to the position of the SCH sequence and the knowledge of t_{Offset} . Positioning of the secondary SCH codes is depicted in the last line of table 10 and 11.

The complete mapping of Code Group to Scrambling Code, Midamble Codes and t_{Offset} is depicted in table 9, cf. also TS 25.231.

CELL	Code	Associated Co	odes		Associat
PARA-	Group	Scrambling	Long Basic	Short Basic	ed t _{Offset}
METER		Code	Midamble	Midamble	
			Code	Code	
0	Group 1	Code 0	m _{PL0}	m _{SL0}	to
1		Code 1	m _{PL1}	m _{SL1}	
2		Code 2	m _{PL2}	m _{SL2}	
3		Code 3	m _{PL3}	m _{SL3}	
4	Group 2	Code 4	m _{PL4}	m _{SL4}	t ₁
5		Code 5	m _{PL5}	m _{SL5}	
6		Code 6	m _{PL6}	m _{SL6}	
7		Code 7	m _{PL7}	m _{SL7}	
· · ·					
124	Group	Code 124	m _{PL124}	m _{SL124}	t ₃₁
125	32	Code 125	m _{PL125}	m _{SL125}	
126		Code 126	m _{PL126}	m _{SL126}	
127		Code 127	m _{PL127}	m _{SL127}	

Table 9 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and $t_{\mbox{\scriptsize Offset}}.$

For basic midamble codes m_P cf.TS 25.221, section '7.2.3.1 & 7.2.3.2 Midamble Sequences'. For CELL PARAMETERS also cf. TS 25.231.

The following subchapters 7.2.1 and 7.2.2 are referring to the three cases of PSCH/CCPCH usage as described in TS 25.221 section 7.4.

7.2.1 Code allocation for case 1 and 2

In table 10 the 32 sequences used in the cases 1 and 2 of PSCH/CCPCH scheme are listed. Again, these are used to encode the 32 different code groups.

It should be mentioned that the sequences used here can be derived from FDD sequences by puncturing every 2nd position, thus a UE can use same database for FDD and TDD.

Code Group		Associated t _{Offset}							
Croup	#1	#2	#3	#4	#5	#6	#7	#8	TOffset
Group1	C ₁	C ₂	C 6	C ₁₅	C ₈	C ₇	C 3	C ₁₁	ŧ ₀
Group2	G ₄	C 9	C ₁₀	C ₁₃	C ₁₁	C 3	C ₂	C ₁₆	t 4
Group 3	G 4	G 16	G 14	G 11	G ₁₄	G ₄₆	G 4	G 4	ŧ2
Group 4	C 4	C ₀	€ ₄	€ ₀	C ₁₇	C ₄₂	C ₄₇	C ₀	ŧ3
Group 5	€ ₁	C ₁₃	C 5	C z	C 3	C 8	C ₁₆	C ₁₄	t 4
Group 6	C 4	G₃	C a	C 5	C 6	G 4	C 45	C 2	ŧ ₅
Group 7	C ₄	C ₁₀	C 13	C 3	€ ₀	C 17	C ₁₄	C 7	ŧe
Group 8	G ₄	C ₁₇	C ₁₇	€₊	C ₁₂	€₊	C 43	C ₄₂	ŧ ₇
Group 9	C ₁	C ₇	C 4	C ₁₆	C ₄₅	C a	C ₁₂	C 17	ŧ ₈
Group 10	G ₄	G ₁₄	C 8	C ₄₄	G ₄	€ ₅	G ₁₁	C 5	ŧg
Group 11	C 4	G ₄	C ₁₂	C ₄₂	C 4	G ₄	C 10	C ₁₀	ŧ10
Group 12	G ₄	C ₁₁	C ₁₆	C ₄₀	C 7	C ₁₄	C 9	C 45	ŧ44
Group 13	C 4	C ₁	C 3	C 8	C 10	C 10	C 8	C 3	ŧ ₁₂
Group 14	G ₄	C 8	C 7	C e	C ₁₃	C e	C 7	C s	ŧ43
Group 15	G 4	G ₁₅	G ₁₁	G 4	G ₄₆	G ₂	G 6	G 13	ŧ14
Group 16	G ₄	C 5	C 45	C 2	G ₂	C ₁₅	C 5	G ₄	ŧ45
Group 17	G ₁	G ₁₂	C 2	C ₁₇	C 5	C ₁₁	G 4	C 6	ŧ ₁₆
Group 18	C ₂	G ₄₄	G ₁₄	G ₄	G ₁₀	€ ₄	C ₁₅	C s	t 47
Group 19	C ₂	C ₄	C ₁	C 2	C ₁₃	C ₁₄	C ₁₄	C ₁₃	ŧ ₁₈
Group 20	C 2	C 8	C 5	C ₁₇	C ₁₆	C ₁₀	C 13	C 4	ŧ19
Group 21	C ₂	C ₁₅	€ 9	C ₁₅	G ₂	€ ₆	C ₁₂	C ₀	t 20
Group 22	C 2	€₅	C ₄₃	C ₁₃	C 5	C 2	C ₁₁	C ₁₁	t ₂₁
Group 23	G ₂	C ₁₂	C ₁₇	C ₁₁	C 8	C ₁₅	C ₁₀	C ₁₆	ŧ ₂₂
Group 24	C 2	C 2	C 4	C a	C ₁₁	C ₁₁	C a	G 4	ŧ ₂₃
Group 25	C 2	C 9	C 8	C ₇	C 14	C ₇	C 8	€ 9	ŧ ₂₄
Group 26	C 2	C 16	C ₁₂	C 5	G ₁₇	C 3	C 7	C 14	ŧ25
Group 27	G ₂	C e	C ₁₆	C 3	C 3	C ₁₆	C e	C 2	ŧ ₂₆
Group 28	C 2	C 13	C 3	C 4	C 6	C 12	C 5	G 7	ŧ27
Group 29	G ₂	C 3	C 7	C ₄₆	€ 9	C 8	G 4	C ₄₂	ŧ ₂₈
Group 30	C 2	C 10	C 11	C 14	C 12	G 4	C 3	C 17	ŧ29
Group 31	C ₂	C ₁₇	C 15	C ₁₂	C 15	C ₁₇	C ₂	<mark>C</mark> ₅	ŧ 30
Group 32	G ₂	C ₇	C 2	C ₁₀	C ₁	C ₁₃	C 4	C 10	ŧ ₃₁
Frame position	Fran	ne #1	Fran	ne #2	Fran	ne #3	Fran	ne #4	

Table 10Spreading Code allocation for Secondary SCH Code, case 2) ofPSCH/CCPCH scheme

7.2.2 Code allocation for case 3

In table 11 the 256 sequences used in case 3 of PSCH/CCPCH scheme are listed. In addition to the information on code group three bits from SCH transport

channel are transmitted to the UE with these codes.

Codo Group		Se	condar	y PSCF	l Code	at Posil	iion		Additional Bits from SCH Transport Channel	Associated t _{Offset}	
	#1	#2	#3	#4	#5	#6	#7	# 8			
Group 1	C2	C14	C6	C8	C 4	C9	C17	C15	000	ŧ₀.	
	C2	C 4	C10	C6	C7	C5	C16	C3	001		
	C3	C3	C5	C10	C12	C12	C10	C5	010		
	C3	C10	C9	C8	C15	C8	C9	C10	011		
	C3	C17	C13	C6	C1	C4	C8	C15	100		
	C3	C7	C17	C 4	C4	C17	C7	C3	101		
	C3	C14	C 4	C2	67	C13	C6	C8	110		
	C3	C4	C8	C17	C10	C9	C5	C13	111		
Group 2	C3	C11	C12	C15	C13	C5	G4	61	000	ŧ4	
Croup 2	C3	61	C16	C13	C16	C1	C3	C6	001	.+	
	C3	C8	C3	C11	C2	C 14	C2	C11	010	-	
	C3	C15	67	C9	C5	C10	G1	C16	010	_	
	C3	C5	C11	67	C8	C6	C17	C 4	100	_	
	C3	C12	C15	C5	C11	C2	C16	C9	101		
	C3	C2	C2	C3	C14	C15	C15	C14	101	_	
	C3	C9	66	61	C17	C11	C14	G2	411		
Group 3	C3	C16	C10	C16	C3	67	C13	67	000	ŧ2	
Oloup O	C3	C6	C14	C14	C6	C3	C12	C12	001	₹2	
	C3	C13	61	C12	C9	C16	C11	612	010		
	C 4	C12	C13	C16	C14	C6	C5	C2	010		
	C4	612	C17	C14	C17	C2	60 64	67	100		
	C4	C9	64	C12	C3	C15	C3	612	101		
	C4	C16	68	C10	C6	610	C2	612	<u>110</u>		
	C4	C6	C12	C8	C9	67	61	C5	411		
Group 4	64	C13	C16	66	C12	G3	61 7	610	000	+	
Oloup 4	64	G3	G3	60 64	C15	C16	C16	C15	001	ŧ3	
	64	C10	67	C2	610	C12	C15	G3	010	_	
	64	C17	61	62 C17	G4	612	610 614	68	011	_	
	64	67	C15	C15	64 67	G4	C13	60 613		_	
	64	C14	62	C13	C10	C17	C12	61	101		
	64	64	C6	611	C13	613	C11	C6	<u>110</u>	-	
0	C4	611	C10	69 67	C16 C2	69 65	610	C11	<u> </u>		
Group 5	• •	01	011	0.	02	00	00	010		ŧ4	
	64	68	61	65	65	61	68	64	001		
	64	C15	65	63	68	C14	67	69	010	-	
	64	65	69	61 65	C11	C10	C6	614	011	-	
	65	64	64	65	C16	C17	C17	C16	100	-	
	65	611	68	63	62	C13	C16	64	101	-	
	65	61	C12	61	65	69	C15	69	110	-	
0	65	68	C16	C16	68	65	C14	614	<u>411</u>		
Group 6	65	C15	63	C14	C11	61	C13	62	000	ŧ5	
	65	65	67	C12	C14	C14	C12	67	001	-	
	C5	C12	C11	C10	C17	C10	C11	C12	010	-	
	C5	C2	C15	C8	C3	C6	C10	C17	011	-	
	C5	C9	C2	C6	C6	C2	C9	C5	100	-	
	C5	C16	C6	C 4	69	C15	C8	C10	101	4	
	C5	C6	C10	C2	C12	C11	C7	C15	110		

< Editors note: The usage of CCPCH pointing is for further study (cf. TDoc R1#2(99) 74)>

	1	1	1	1				1		
Group7	C5	C3	C1	C15	C1	C3	C5	C8	000	ŧ ₆ .
	C5	C10	C5	C13	C 4	C16	C 4	C13	001	
	C5	C17	C9	C11	67	C12	C3	C1	010	
	C5	67	C13	C9	C10	68	C2	C6	011	
	C5	C14	C17	67	C13	C 4	C1	C11	100	
	C6	C13	C12	C11	C1	C11	C12	C13	101	
	C6	C3	C16	69	C 4	67	C11	C1	110	
	C6	C10	C3	C7	C7	C3	C10	C6	111	
Group 8	C6	C17	C7	C5	C10	C16	C9	C11	000	ŧz
	C6	67	C11	C3	C13	C12	C8	C16	001	
	C6	C14	C15	C1	C16	68	67	C 4	010	
	C6	C 4	C2	C16	C2	C 4	C6	C9	011	
	C6	C11	66	C14	C5	C17	C5	C14	100	
	C6	C1	C10	C12	68	C13	C 4	C2	101	
	C6	C8	C14	C10	C11	C9	C3	C7	110	
	C6	C15	C 1	C8	C14	C5	C2	C12	111	
Group 9	C6	C5	C5	C6	C17	C1	C1	C17	000	ŧ ₈ .
	C6	C12	C9	C4	C3	C14	C17	C5	001	
	C6	C2	C13	C2	C6	C10	C16	C10	010	
	C6	C9	C17	C17	C9	C6	C15	C15	010	
	C6	C16	C 4	C15	C12	C2	C14	C3	100	
	C6	C6	C8	C13	C15	C15	C13	C8	100 101	
	67	C5	C3	C17	C3	C5	67	C10	110	
	67	C12	67	C15	C6	61	C6	C15	110	
Group 10	67	62	C11	C13	C9	C14	C5	C3	000	ŧ ₉
	67	C9	C15	C11	C12	C10	G4	C8	000	τ μ
	67	C16	C2	C9	C15	C6	C3	C13	010	
	67	C6	66	67	C1	62	C2	C1	010	
	67	C13	C10	C5	G4	62 615	61	66	<u></u> 100	
	67	C3	C14	C3	67	C11	C17	C11	100	
	67	C10	61	60	C10	67	C16	C16	110	
	67	C17	C5	C16	C13	63	C15	610 64	111	
Croup 11	67	67	69	610 614	C16	616	C14	C9	000	+
Group 11	67	61 4	63 613	614 612	610 62	610 612	C13	63 61 4	001	ŧ ₁₀
	67	C4	C17	C10	C5 C°	C8	C12	C2	010	
	67 67	C11	C 4	68 66	C8 C11	C4	C11	67	011	
			C8	C6		C17	C10	C12	100	
	67	C8	C12	C 4	C14	C13	C9	C17	101	
	67	C15	C16	C2	C17	C9	68	C5	<u>110</u>	
0	C8	C14	C11	C6	C5	C16	62	C7	111	
Group 12	C8	C4	C15	C 4	C8	C12	C1	C12	000	ŧ ₄₄
	C8	C11	C2	C2	C11	C8	C17	C17	001	
	C8	C1	C6	C17	C14	C4	C16	C5	010	
	C8	C8	C10	C15	C17	C17	C15	C10	011	
	C8	C15	C14	C13	C3	C13	C14	C15	100	
	C8	C5	C1	C11	C6	C9	C13	C3	101	
	68	C12	C5	69	69	C5	C12	68	110	
	68	62	C9	67	C12	61	C11	C13	111	
Group 13	C8	C9	C13	C5	C15	C14	C10	C1	000	ŧ ₁₂
	C8	C16	C17	C3	C1	C10	C9	C6	001	
	68	66	C 4	C1	C 4	C6	68	C11	010	
	C8	C13	C8	C16	C7	C2	C7	C16	011	
	C8	C3	0.00	C14	C10	C15	C6	C 4	100	

	<u></u>	040	040	040	040	044	05	00	404	
	68	C10	C16	C12	C13	C11	C5	C9	101	
	C8	C17	C3	C10	C16	C7	C4	C14	<u>110</u>	
<u> </u>	C8	C7	67	C8	C2	C3	C3	C2	111	
Group 14	C9	C6	C2	C12	C7	C10	C14	C4	000	ŧ ₁₃
	C9	C13	C6	C10	C10	C6	C13	C9	001	
	C9	C3	C10	C8	C13	C2	C12	C14	010	
	C9	C10	C14	C6	C16	C15	C11	C2	011	
	C9	C17	C1	C 4	C2	C11	C10	C7	100	
	C9	67	C5	C2	C5	67	C9	C12	101	
	C9	C14	C9	C17	68	C3	68	C17	110	
	69	C 4	C13	C15	C11	C16	67	C5	111	
Group 15	69	C11	C17	C13	C14	C12	C6	C10	000	t ₁₄
	C9	61	C 4	C11	C17	68	65	C15	001	
	C9	68	68	69	C3	C 4	C 4	C3	010	
	C9	C15	C12	67	C6	C17	C3	C8	011	
	C9	C5	C16	C5	C9	C13	C2	C13	100	
	C9	C12	C3	C3	C12	C9	C1	C1	101	
	C9	C2	C7	61	C15	C5	C17	C6	110	
	C9	69	C11	C16	C1	C1	C16	C11	111	
Group 16	C9	C16	C15	C14	C4	C14	C15	C16	000	ŧ ₁₅
	C10	C15	C10	C1	C9	C4	C9	C1	001	
	C10	C5	C14	C16	C12	C17	C8	C6	010	
	C10	C12	C 1	C14	C15	C13	67	C11	011	
	C10	C2	C5	C12	C1	69	C6	C16	100	
	C10	C9	C9	C10	C 4	C5	C5	C4	101	
	C10	C16	C13	C8	C7	C1	C4	C9	110	
	C10	C6	C17	C6	C10	C14	C3	C14	111	
Group 17	C10	C13	¢4	C 4	C13	C10	62	C2	000	ŧ ₁₆
	C10	C3	C8	C2	C16	C6	61	67	001	
	C10	C10	C12	C17	C2	C2	C17	C12	010	
	C10	C17	C16	C15	C5	C15	C16	C17	011	
	C10	67	C3	C13	C8	C11	C15	C5	100	
	C10	C14	67	C11	C11	67	C14	C10	101	
	C10	C 4	C11	C9	C14	C3	C13	C15	110	
	C10	C11	C15	67	C17	C16	C12	C3	111	
Group 18	C10	G1	C2	C5	C3	C12	C11	C8	000	ŧ ₄₇
	C10	C8	C6	C3	C6	C8	C10	C13	000 001	-TT
	C11	67	C1	67	C11	C15	G4	C15	010	
	C11	C14	C5	C5	C14	C11	C3	C3	010	
	C11	C 4	C9	C3	C17	67	C2	68	100	
	C11	C11	C13	61	C3	C3	61	C13	100	
	C11	61	C17	C16	66	C16	61 7	61	110	
	C11	C8	64	C14	C9	C12	C16	66	111	
Group 19	611	60 615	64 68	C12	C12	612	C15	60 C11	000	to
oroup 18	611	C5	68 612			68 64	618 614			ŧ ₁₈
		65 612		C10	C15	64 617		C16	001 010	
	C11		C16	68	C1		C13	C 4	010	
	C11	C2	C3	C6	C 4	C13	C12	C9	011	
	<u>C11</u>	C9	C7	C4	C7	C9	C11	C14	100	
	C11	C16	C11	C2	C10	C5	C10	C2	101	
	C11	66	C15	C17	C13	C1	C9	C7	110	
	C11	C13	C2	C15 C13	C16 C2	C14 C10	68 67	C12 C17	111 000	
Group 20	C11	C3	C6							ŧ19

	C11	C17	C14	C9	68	62	C5	C10	010	
	C12	C16	C9	C13	C13	C9	C16	C12	011	
	C12	C6	C13	C11	C16	C5	C15	C17	100	
	C12	C13	C17	69	C2	C1	C14	C5	101	
	C12	C3	C 4	67	C5	C14	C13	C10	110	
	C12	C10	C8	C5	68	C10	C12	C15	111	
roup 21	C12	C17	C12	C3	C11	C6	C11	C3	000	ŧ 20
	C12	67	C16	C1	C14	C2	C10	C8	001	
	C12	C14	с з	C16	C17	C15	69	C13	010	
	C12	C 4	C7	C14	C3	C11	C8	C1	011	
	C12	C11	C11	C12	C6	67	67	C6	100	
	C12	C1	C15	C10	C9	C3	C6	C11	101	
	C12	C8	C2	C8	C12	C16	C5	C16	110	
	C12	C15	C6	C6	C15	C12	G4	C4	110	
oup 22	C12	C5	C10	60	610 61	C8	C3	C9	000	+
up 22										t ₂₁
	C12	C12	C14	C2	C4	C4	C2	C14	001	
	C12	C2	C1	C17	C7	C17	C1	C2	010	
	C12	C9	C5	C15	C10	C13	C17	C7	011	
	C13	C8	C17	C2	C15	C3	C11	C9	100	
	C13	C15	C 4	C17	C1	C16	C10	C14	101	
	C13	C5	C8	C15	C 4	C12	C9	C2	110	
	C13	C12	C12	C13	C7	C8	C8	C7	111	
up 23	C13	C2	C16	C11	C10	C 4	67	C12	000	ŧ ₂₂
	C13	C9	C3	C9	C13	C17	C6	C17	001	
	C13	C16	C7	C7	C16	C13	C5	C5	010	
	C13	C6	C11	C5	C2	C9	C4	C10	011	
	C13	C13	C15	C3	C5	C5	C3	C15	100	
	C13	C3	C2	61	68	61	62	C3	101	
	C13	C10	66	C16	60 611	61 4	61	68	101 110	
	C13	C17	C10	C14	611	C10	61 7	68 613	111	
up 24										+
ip 2 4	C13	67	C14	C12	C17	C6	C16	C1	000	ŧ ₂₃
	C13	C14	C1	C10	C3	C2	C15	C6	001	
	C13	C4	C5	C8	C6	C15	C14	C11	010	
	C13	C11	C9	C6	C9	C11	C13	C16	011	
	C13	C1	C13	C 4	C12	67	C12	C 4	100	
	C14	C17	68	68	C17	C 14	66	66	101	
	C14	67	C12	C6	C3	C10	C5	C11	110	
	C14	C14	C16	C 4	C6	C6	C4	C16	111	
	C14	C 4	C3	C2	69	C2	C3	C 4	000	t ₂₄
	C14	C11	C7	C17	C12	C15	C2	C9	001	
	C14	C1	C11	C15	C15	C11	C1	C14	010	
	C14	C8	C15	C13	C1	C7	C17	C2	011	
	C14	C15	C2	C11	C 4	C3	C16	C7	100	
	C14	C5	C6	C9	67	C16	C15	C12	101	
	C14	C12	C10	67	C10	C12	C14	C17	101	
	C14	62	C14	C5	C13	C8	C13	C5	111	
up 26	C14	C9	61	C3	C16	60 64	C12	C10	000	tor
.p 20										ŧ ₂₅
	C14	C16	C5	C1	C2	C17	C11	C15	001 010	
	C14	C6	C9	C16	C5	C13	C10	63	010	
	C14	C13	C13	C14	C8	C9	C9	C8	011	
	C14	C3	C17	C12	C11	C5	C8	C13	100	
	C14	C10	C 4	C10	C14	C1	C7	C1	101	
	C15	69	C16	C14	C2	68	61	C3	110	

	C15	C16	C3	C12	C5	C4	C17	C8	111	
Group 27	C15	C6	67	C10	C8	C17	C16	C13	000	\$26
Oroup 21	C15	C13	C11	C8	C11	C13	C15	C1	000	₹ <u>26</u>
	C15	C3	C15	C6	C14	C9	C14	C6	010	
	C15	C10	C2	C 4	C17	C5	C13	C11	010	
	C15	C17	66	62	C3	60 61	C12	C16	100	
	C15	67	C10	02 C17	C6	61 4	C11	64	100 101	
	C15	C14	C14	C15	60	C10	C10	C9	110 110	
	C15	C4	61	C13	60 612	C6	C9	C14	111	
Group 28	C15	C11	C5	613 611	C15	C2	C8	614	000	
0100p 20	C15	61	C9	69	610 61	C15	68 67	67	000	t 27
	C15		C13	67	64	610 611	C6	612	010	
	C15	C15	613 617	67	64 67	67	C5	612	010	
	C15	C5	617 C 4	G3	610	G3	C4	617	100	
	C15	C12	C8		C13				100 101	
				C1		C16	C3	C10		
	C15	62 61	C12 C7	C16	C16 C4	C12 C2	C2 C13	C15 C17	110 111	
Croup 20	C16	61 68	67 611	63 61	64 67		C13 C12		111 000	
Group 29	C16					C15		C5		ŧ ₂₈
	C16	C15	C15	C16	C10	C11 C7	C11	C10	001 010	
	C16	C5	C2	C14	C13	67	C10	C15	010 011	
	C16	C12	C6	C12	C16	C3	C9	C3	011	
	C16	C2	C10	C10	C2	C16	C8	C8	100	
	C16	C9	C14	C8	C5	C12	C7	C13	101	
	C16	C16	C1	C6	C8	C8	C6	C1	<u>110</u>	
0	C16	C6	C5	C4	C11	C4	C5	C6	<u>111</u>	
Group 30	C16	C13	C9	C2	C14	C17	C4	C11	000	ŧ ₂₉
	C16	C3	C13	C17	C17	C13	C3	C16	001	
	C16	C10	C17	C15	C3	C9	C2	C4	010	
	C16	C17	C4	C13	C6	C5	C1	C9	011	
	C16	C7	C8	C11	C9	C1	C17	C14	100	
	C16	C14	C12	C9	C12	C14	C16	C2	101	
	C16	C4	C16	67	C15	C10	C15	C7	110	
<u> </u>	C16	C11	C3	C5	C1	C6	C14	C12	<u>111</u>	
Group 31	C17	C10	C15	C9	C6	C13	C8	C14	000	ŧ ₃₀
	C17	C17	C2	67	C9	C9	C7	C2	001	
	C17	C7	C6	C5	C12	C5	C6	67	010	
	C17	C14	C10	C3	C15	C1	C5	C12	011	
	C17	C 4	C14	C1	C1	C14	C 4	C17	100	
	C17	C11	C1	C16	C4	C10	C3	C5	101	
	C17	C1	C5	C14	C7	C6	C2	C10	110	
<u> </u>	C17	C8	C9	C12	C10	C2	C1	C15	<u>111</u>	
Group 32	C17	C15	C13	C10	C1	C15	C17	C3	000	t ₃₁
	C17	C5	C17	C8	C16	C11	C16	C8	001	
	C17	C12	C 4	C6	C2	C7	C15	C13	010	
	C17	C2	C8	C 4	C5	C3	C14	61	011	
	C17	C9	C12	62	68	C16	C13	C6	100	
	C17	C16	C16	C17	C11	C12	C12	C11	101	
	C17	C6	C3	C15	C14	C8	C11	C16	110	
	C17	C13	C7	C13	C17	C4	C10	C 4	111	
	Frame #1			ne #2		ne #3				

 Table 11
 Spreading Code allocation for Secondary SCH Code, case 3) of

Text Proposal for 25.224

4.5 Synchronisation and Cell Search Procedures

4.5.1 Cell Search

During the initial cell search, the UE searches for a cell. It then determines the midamble, the downlink scrambling code and frame synchronisation of that cell. The initial cell search uses the Physical Synchronisation Channel (PSCH) described in $\frac{S1.21}{TS}$ 25.221. The generation of synchronisation codes is described in $\frac{S1.23}{TS}$ 25.223.

This initial cell search is carried out in three steps:

Step 1: Slot synchronisation

During the first step of the initial cell search procedure the UE uses the primary synchronisation code c_p to acquire slot synchronisation to the strongest cell. Furthermore, frame synchronisation with the uncertainty of 1 out of 2 is obtained in this step. A single matched filter (or any similar device) is used for this purpose, that is matched to the primary synchronisation code which is common to all cells. The procedure is according to the description for the FDD mode in S1.14.

Step 2: Frame synchronisation and code-group identification

The Step 2 is described for the case where PSCH and CCPCH are in timeslot k and k+8 with k=0...76.

During the second step of the initial cell search procedure, the UE uses the sequence of <u>modulated</u> Secondary Synchronisation Codes to find frame synchronisation and identify one of 32 code groups. Each code group is linked to a specific t_{Offset} , thus to a specific frame timing, and is containing 4 specific scrambling codes. Each scrambling code is associated with a specific short and long basic midamble code.

In Cases 2 and 3 it is required to detect the position of the next synchronization slots. To detect the position of the next synchronization slots, the primary synchronization code is correlated with the received signal at offsets of 7 and 8 time slots from the position of the primary code that was detected in Step 1.

Then, the received signal at the positions of the synchronization codes is correlated with the primary synchronization Code C_p and the secondary synchronization codes $\{C_1, \dots, C_N\}$. Note that the correlations are performed coherently forover M time slots, where at each slot a phase correction is provided by the correlation with the primary code. The minimal number of time slots is M=21, and the performance improves with increasing M.

The detection of secondary synchronisation sequence is done by correlating the received signal at the positions of the Secondary Synchronisation Code with all possible sequences of Secondary Synchronisation Codes, similar to FDD Mode. After four frames a sequence of eight codes is available providing all necessary information described above. Nevertheless, it should be noted that due to the special coding already three codes show the sequence unambiguously, i.e. a UE can determine the whole sequence when three codes have been received.

Step 3: Scrambling code identification

During the third and last step of the initial cell-search procedure, the UE determines the exact basic midamble code and the accompanying scrambling code used by the found cell. They are

identified through correlation over the CCPCH with all four midambles of the code group identified in the second step. Thus the third step is a one out of four decision. This step is taking into account that the CCPCH containing the BCH is transmitted using the first spreading code ($a_{Q=16}^{(h=1)}$ in figure 2 of S1.23TS 25.223 section '6.2 Spreading Codes') and using the first midamble **m**⁽¹⁾ (derived from basic midamble code **m**_P, cf. S1.21TS 25.221 section '7.2.3 Training sequences for spread bursts'). Thus CCPCH code and midamble can be immediately derived when knowing scrambling code and basic midamble code.