TSG-RAN Working Group1 meeting #7 TSGR1#7(99)a99

Source: Texas Instruments and InterDigital Communications

Corporation

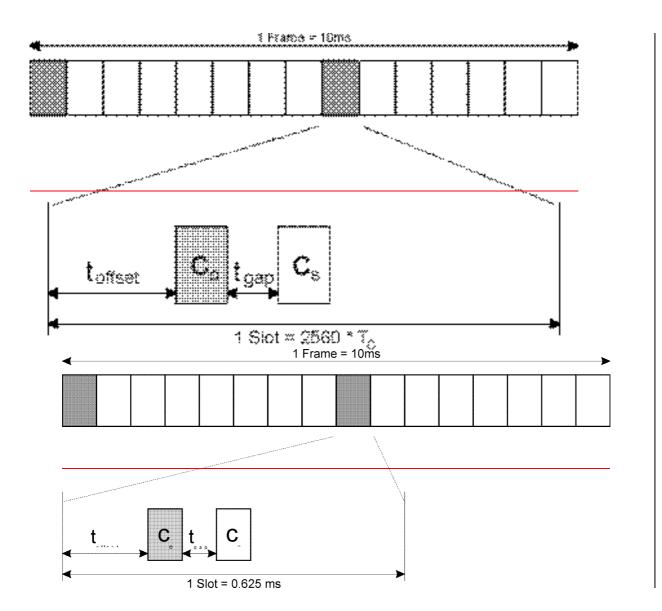
Title: TDD Cell Search and Text Proposals for 25.221, 25.223

and 25.224

Document for: Approval

Text Proposal for 25.221

5.4 The physical synchronisation channel (PSCH)


The PSCH is similar to the FDD SCH, where the code group of a cell can be derived when decoding the FDD synchronisation channel. In TDD mode code group of a cell can be derived from the synchronization channel. Aadditional information, received from higher layers on SCH transport channel, is also transmitted to the UE in PSCH in case 3 from below. In order not to limit the uplink/downlink asymmetry the PSCH is mapped on one or two downlink slots per frame only.

There are three cases of PSCH and CCPCH allocation as follows:

- Case 1) PSCH and CCPCH allocated in TS#k, k=0....14
- Case 2) PSCH in two TS and CCPCH in the same two TS: TS#k and TS#k+8, k=0...6
- Case 3) PSCH in two TS, TS#k and TS#k+8, k=0...6, and the primary CCPCH TS#i, i=0...14, pointed by PSCH. Pointing is determined via the SCH from the higher layers.

These three cases are addressed by higher layers using the SCCH in TDD Mode. The position of PSCH (value of k) in frame can change on a long term basis in any case.

<u>Figure 1Figure 1Figure 1Figure 1Figure 11</u> is an example for transmission of PSCH, k=0, of Case 2 or Case 3.

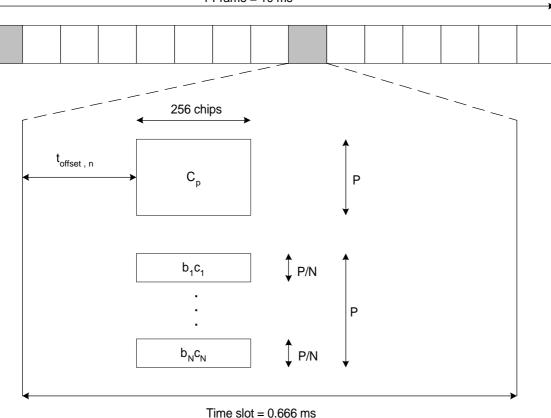


Figure 11111 Scheme for Physical Synchronisation channel PSCH consisting of one primary sequence C_p and N=3 parallel secondary sequences one secondary sequence C_s in slot k and k+8 (example for k=0 in Case 2 or Case 3)

As depicted in Figure 1Figure 1Figure 1Figure 11, the PSCH consists of a primary and three secondary code sequences with 256 chips length. The primary and secondary code sequences are defined in TS 25.223 chapter 7 'Synchronization codes'. The secondary codes are transmitted either in the I channel or the Q channel, depending on the code group. The used sequences C_p and C_s are the same as in FDD Mode, see TS25.223, chapter 7 'Synchronization codes'.

The time offset t_{gap} is the time between the primary synchronisation code and the secondary synchronisation code. It provides enough time for calculations and a better interference distribution, since the codes do not superimpose. <Editor's note: The value of t_{gap} is to be defined>

Due to mobile to mobile interference, it is mandatory for public TDD systems to keep synchronisation between base stations. As a consequence of this, a capture effect concerning PSCH can arise. The time offset t_{offset} enables the system to overcome the capture effect.

The time offset t_{offset} is one of 32 values, depending on the cell parameter, thus on the code group of the cell, cf. 'Table 9 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and t_{offset} ' in 'TS25.223 Spreading and modulation (TDD)'. The exact value for t_{offset} , regarding column 'Associated t_{offset} ' in Table 9 from TS25.221, is given by:

$$t_{n} = t_{offset,n} = n \cdot T_{c} \cdot \begin{bmatrix} 2560 - 96 - 512 - \frac{t_{gap}}{T_{c}} \\ 31 \end{bmatrix}; n = 0...31$$

$$t_{offset,n} = n \cdot T_{c} \left[\frac{2560 - 96 - 256}{31} \right]$$

$$= n \cdot 71T_{c}; \quad n = 0,...,31$$

Please note that $\lfloor x \rfloor$ denotes the largest integer number less or equal to x and that T_e denotes the chip duration.

Text Proposal for 25.223

7. Synchronisation codes

7.1 Code Generation

The code generation for synchronisation codes is handled in the same way as in FDD Mode. Thus we refer to TS 25.213, chapter '5.2.3 Synchronisation Codes'. From this procedure we obtain one primary synchronisation code $C_p = C_{SCH,0}$ and seventeen different secondary synchronisation codes $C_{S,i} = C_{SCH,i}$ with i=1...17.

To avoid misunderstandings when documents are reorganised in the future, we repeat the actual content of this chapter below using small font.

The Primary code sequence, C_p is constructed as a so-called generalised hierarchical Golay sequence. The Primary SCH is furthermore chosen to have good aperiodic auto correlation properties.

Letting
$$a = \langle x_1, x_2, x_3, ..., x_{16} \rangle = \langle 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0 \rangle$$
 and

$$\underline{b} = \langle x_1, x_2, x_3, ..., x_8, x_1, x_2, x_3, ..., x_8 \rangle} \underline{b} = \langle x_1, ..., x_8, \overline{x}_9, ..., \overline{x}_{16} \rangle} \underline{= \langle 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1 \rangle}.$$

The PSC code is generated by repeating sequence 'a' modulated by a Golay complementary sequence.

The definition of the PSC code word C_p follows (the left most index corresponds to the chip transmitted first in each time slot):

$$C_p = < y(0), y(1), y(2), ..., y(255) >.$$

Let the length 256 mask sequence z be given as, $z = \langle b, b, b, \overline{b}, b, \overline{b}, \overline{b}$

The Hadamard sequences are obtained as the rows in a matrix H_8 constructed recursively by:

$$H_{0} = (0)$$

$$H_{k} = \begin{pmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & H_{k-1} \end{pmatrix} \quad k \ge 1$$

The rows are numbered from the top starting with row θ (the all zeros sequence), h_{0z} -

The Hadamard sequence h depends on the chosen code number n and is denoted h_n in the sequel.

This code word is chosen from every $\underline{168}^{th}$ row of the matrix H_8 , which yields Therefore, there are $\underline{3216}$ possible codewords out of which $n = \underline{01, 12, ..., 157}$ are used.

Furthermore, let $h_n(i)$ and z(i) denote the i:th symbol of the sequence h_n and z, respectively.

Then h_n is equal to the row of H_S numbered by the bit reverse of the 8 bit binary representation of n.

The definition of the n:th SCH code word follows (the left most index correspond to the chip transmitted first in each slot):

 $C_{SCH,n} = \, < h_n(0) + \, z(0), \, h_n(1) + \, z(1), \, h_n(2) + \, z(2), \, \ldots, h_n(255) + \, z(255) >,$

All sums of symbols are taken modulo 2.

These PSC and SSC binary code words are converted to real valued sequences by the transformation '0' ->

The Secondary SCHcode words are defined in terms of $C_{SCH,n}$ and the definition of $\{C_{\underline{01}},...,C_{1\underline{57}}\}$ now follows as:

 $C_i = C_{SCH, i}, i = \underline{01}, ..., 1\underline{57}$

7.2 Code Allocation

Three SCH codes are QPSK modulated and transmitted in parallel with the primary synchronization code. The QPSK modulation carries the following information. Sequences of 8 secondary SCH codes, thus composed of C_{S,i} from chapter 7.1 above, are used to transmit information on the PSCH. In general the information on the code group of a cell and on the frame timing (see TS 25.224, Section '6.6.1 Cell Search') is transmitted in the PSCH. According to TS 25.221 section '7.4 The Physical Synchronisation Channel (PSCH)', there is case (3) where additional information from SCH transport channel is to be transmitted in the PSCH.

- The code group that the base station belongs to (5 bits; Cases 1,2,3)
- The position of the frame within an interleaving period of 20 msec (1 bit, Cases 1,2,3)
- The position of the slot within the frame (1 bit, Cases 2,3)
- SCH transport channel information, e.g. the location of the primary CCCH (3 bits, Case 3)

The modulated codes are also constructed such that their cyclic-shifts are unique, i.e. a non-zero cyclic shift less than 2 (Case 1) and 4 (Cases 2 and 3) of any of the sequences is not equivalent to some cyclic shift of any other of the sequences. Also, a non-zero cyclic shift less than 2 (Case 1) and 4 (Cases 2 and 3) of any of the sequences is not equivalent to itself with any other cyclic shift less than 8. The secondary synchronization codes are partitioned into two code sets for Case 1, four code sets for Case 2 and thirty two code sets (possibly overlapping) for Case 3. The set is used to provide the following information:

<u>Case 1:</u>

Code Set	Code Group
<u>1</u>	<u>0-15</u>
<u>2</u>	<u>16-31</u>

The code group and frame position information is provided by modulating the secondary codes in the code set.

Case 2:

Code Set	Code Group

1	<u>0-7</u>
<u>2</u>	<u>8-15</u>
<u>3</u>	<u>16-23</u>
<u>4</u>	<u>24-31</u>

The slot timing and frame position information is provided by the comma free property of the code word and the Code group is provided by modulating some of the secondary codes in the code set.

Case 3:

Code set k, k=1:32 is associated with Code group k-1. The slot information, the frame position information is provided by the comma free property of the code and the SCH transport channel information is provided by modulating some of the codes in the code set.

The following SCH codes are allocated for each code set: Case 1

Code set 1: C₀, C₁, C₂. Code set 2: C₃, C₄, C₅.

Case 2

 $\begin{array}{c} \underline{\text{Code set 1: } C_0, C_1, C_2} \\ \underline{\text{Code set 2: } C_3, C_4, C_5} \\ \underline{\text{Code set 3: } C_6, C_7, C_8} \\ \underline{\text{Code set 4: } C_9, C_{10}, C_{11}} \end{array}$

Case 3

Code set 1: C₀, C₁, C₂ Code set 2: C₃, C₄, C₅ Code set 3: C₆, C₇, C₈ Code set 4: C₉, C₁₀, C₁₁. Code set 5: C₁₂, C₁₃, C₁₄. Code set 6: C₀, C₃, C₆. Code set 7: C₀, C₄, C₇ Code set 8: C₀, C₅, C₈ Code set 9: C₀, C₉, C₁₂. Code set 10: C₀, C₁₀, C₁₃. Code set 13: C₀, C₁₁, C₁₄.
Code set 12: C₁, C₃, C₇.
Code set 13: C₁, C₄, C₆. Code set 14: C₁, C₅, C₉. Code set 15: C₁, C₈, C₁₀ Code set 16: C₁, C₁₁, C₁₂. Code set 17: C₁, C₁₃, C₁₅. Code set 18: C₂, C₃, C₈ Code set 19: C₂, C₄, C₉. Code set 20: C₂, C₅, C₆. Code set 21: C2, C7, C10. Code set 22: C2, C11, C13. Code set 23: C₂, C₁₂, C₁₅ Code set 24: C₃, C₉, C₁₃. Code set 25: C₃, C₁₀, C₁₂. Code set 26: C₃, C₁₁, C₁₅.

 $\begin{array}{c} \text{Code set 27:} \quad C_{\underline{4}}, \, C_{\underline{8}}, \, C_{\underline{11}}, \\ \text{Code set 28:} \quad C_{\underline{4}}, \, C_{\underline{10}}, \, C_{\underline{14}}, \\ \text{Code set 29:} \quad C_{\underline{5}}, \, C_{\underline{7}}, \, C_{\underline{11}}, \\ \text{Code set 30:} \quad C_{\underline{5}}, \, C_{\underline{10}}, \, C_{\underline{15}}, \\ \text{Code set 31:} \quad C_{\underline{6}}, \, C_{\underline{9}}, \, C_{\underline{14}}, \\ \text{Code set 32:} \quad C_{\underline{7}}, \, C_{\underline{9}}, \, C_{\underline{15}}. \end{array}$

The sequences of secondary SCH codes are constructed such that their cyclic-shifts are unique, i.e. a non-zero cyclic shift less than 8 of any of the sequences is not equivalent to some cyclic shift of any other of the sequences. Also, a non-zero cyclic shift less than 8 of any of the sequences is not equivalent to itself with any other cyclic shift less than 8. This property is used to uniquely determine the transmitted sequence in the receiver.

The following subchapters 7.2.1 to 7.2.3 refer to the three cases of PSCH/PCCPCH usage as described in TS 25.221 section 7.4.

7.2.1 Code allocation for Case 1:

Note that modulation by "j" indicates that the code is transmitted on the Q channel.

<u>Code</u> <u>Group</u>	Code Set		Frame 1			Frame 2		Associated <u>t</u> offset
<u>0</u>	<u>1</u>	<u>C</u> ₁	<u>C</u> ₂	<u>C</u> ₃	<u>C</u> ₁	\underline{C}_2	<u>-C</u> ₃	<u>t</u> ₀
1	1	<u>C</u> ₁	<u>-C</u> ₂	<u>C</u> ₃	<u>C</u> ₁	-C ₂	-C₃ -C₃	<u>t</u> ₁
<u>2</u>	<u>1</u>	<u>-C</u> 1	<u>C</u> ₂	<u>C</u> ₃	<u>C</u> ₁ - <u>C</u> ₁	<u>C</u> ₂	<u>-C</u> ₃	\underline{t}_2
<u>3</u>	<u>1</u>	<u>-C</u> 1	<u>-C</u> ₂	<u>C</u> ₃	<u>-C</u> ₁	<u>-C</u> ₂	<u>-C</u> ₃	<u>t</u> ₃
<u>4</u>	<u>1</u>	<u>jC</u> 1	<u>jC</u> 2	<u>C</u> ₃	<u>jC</u> 1	<u>jC</u> 2	<u>-C</u> ₃	<u>t</u> 4
5	<u>1</u>	<u>jC₁</u>	-jC ₂	<u>C</u> ₃	jC₁	-jC ₂	-C ₃	<u>t</u> 5
<u>6</u> <u>7</u>	<u>1</u>	<u>-jC</u> 1	<u>jC</u> ₂ - <u>jC</u> ₂ <u>jC</u> ₃	<u>C</u> ₃	<u>-jC</u> 1 -jC1	jC ₂	-C ₃ -C ₂	<u>t</u> 6 <u>t</u> 7
<u>7</u>	<u>1</u>	<u>-jC</u> 1	<u>-jC</u> ₂	<u>C</u> ₃	<u>-jC₁</u>	-jC ₂	<u>-C</u> ₃	<u>t</u> ₇
<u>8</u> <u>9</u>	<u>1</u>	<u>jC₁</u>	<u>jC₃</u>	<u>C</u> ₂	<u>jC</u> ₁	<u>jC₃</u>	<u>-C</u> 2	<u>t</u> ₈
<u>9</u>	<u>1</u>	<u>jC</u> 1	<u>-jC</u> ₃	<u>C</u> 2	<u>jC</u> 1	<u>-jC</u> ₃	<u>-C</u> 2	<u>t</u> 9
<u>10</u>	<u>1</u>	<u>:C</u> 1	<u>jC</u> ₃	<u>C</u> ₂	<u>-jC₁</u>	<u>jC₃</u>	- <u>C</u> 2 - <u>C</u> 2 - <u>C</u> 1 - <u>C</u> 1	<u>t</u> ₁₀
<u>11</u>	<u>1</u>	<u>:C</u> 1	<u>-jC</u> ₃ <u>jC</u> ₃	<u>C</u> ₂	<u>-jC</u> ₁	<u>-jC</u> ₃	<u>-C</u> 2	<u>t</u> 11
<u>12</u>	<u>1</u>	<u>jC</u> 2	<u>jC</u> ₃	<u>C</u> ₁	<u>jC</u> 2	<u>jC</u> ₃	<u>-C</u> 1	<u>t</u> ₁₂
<u>13</u>	<u>1</u>	<u>jC</u> 2	<u>-iC</u> ₃	<u>C</u> ₁	<u>jC</u> 2	<u>-jC₃</u>	<u>-C</u> 1	<u>t</u> ₁₃
<u>14</u>	<u>1</u>	<u>-jC</u> 2	<u>jC</u> ₃	<u>C</u> ₁	<u>-jC</u> 2	<u>jC</u> ₃	<u>C</u> 1	<u>t</u> ₁₄
<u>15</u>	<u>1</u>	<u>-jC</u> 2	<u>-jC</u> ₃	<u>C</u> 1	<u>-jC</u> 2	<u>-jC</u> ₃	<u>-C</u> ₁	<u>t</u> ₁₅
<u>16</u>	<u>2</u>	<u>C</u> ₄	<u>C</u> ₅	<u>C</u> 6	<u>C</u> ₄ <u>C</u> ₄	<u>C</u> ₅	-C ₆	<u>t</u> ₁₆
<u>17</u>	<u>2</u>	<u>C</u> ₄	<u>-C</u> ₅	<u>C</u> ₆	<u>C</u> ₄	<u>-C</u> ₅	<u>-C</u> 6	<u>t</u> ₁₇
<u></u>	<u></u>	<u>:</u>	<u></u>	<u></u>	<u></u>	<u></u>	<u>:</u>	<u></u>
<u>20</u>	<u>2</u>	<u>jC</u> ₄	<u>jC</u> 5	<u>C</u> ₆	<u>jC</u> ₄	<u>jC</u> 5	<u>-C</u> 6	<u>t</u> 20
<u></u>	<u></u>	<u>:</u>	<u></u>	<u>: </u>	<u></u>	<u></u>	<u>:</u>	<u></u>
<u>24</u>	<u>2</u>	<u>jC₄</u>	<u>jC</u> 6	<u>C</u> 5	<u>jC₄</u>	<u>jC</u> 6	<u>-C</u> 5	<u>t</u> ₂₄
<u></u>						<u></u>		<u></u>
<u>31</u>	<u></u> <u>2</u>	<u></u> -jC₅	<u></u> -jC ₆	<u></u> <u>C</u> ₄	<u></u> -jC ₅	<u>-jC</u> ₆	 -C ₄	<u>t</u> ₃₁

Note that the code construction for code groups 0 to 15 using only the SCH codes from code set 1 is shown. The construction for code groups 16 to 31 using the SCH

codes from code set 2 is done in the same way.

7.2.2 Code allocation for Case 2:

Code	Code			Fran	ne 1					Fran	ne 2			Associated
Group	<u>Set</u>		Slot k		5	Slot k+8	3		Slot k		3	Slot k+8	3	<u>t_{offset}</u>
<u>0</u>	<u>1</u>	<u>C</u> ₁	<u>C</u> ₂	<u>C</u> ₃	<u>C</u> 1	<u>C</u> ₂	<u>-C</u> ₃	<u>-C</u> 1	<u>-C</u> ₂	<u>C</u> ₃	<u>-C</u> 1	<u>-C</u> ₂	<u>-C</u> ₃	<u>t</u> o
<u>1</u>	<u>1</u>	<u>C</u> ₁	<u>-C</u> ₂	<u>C</u> ₃	<u>C</u> ₁	<u>-C</u> ₂	<u>-C</u> ₃	<u>-C</u> 1	<u>C</u> ₂	<u>C</u> ₃	<u>-C</u> 1	<u>C</u> ₂	<u>-C</u> ₃	<u>t</u> 1
<u>2</u>	<u>1</u>	<u>jC</u> ₁	<u>jC</u> 2	<u>C</u> ₃	<u>jC</u> ₁	<u>jC</u> 2	<u>-C</u> ₃	<u>-jC</u> ₁	<u>-jC</u> ₂	<u>C</u> ₃	<u>-jC</u> ₁	<u>-jC</u> ₂	<u>-C</u> ₃	<u>t</u> 2
<u>3</u>	<u>1</u>	<u>jC</u> ₁	<u>-jC</u> ₂	<u>C</u> ₃	<u>jC</u> ₁	<u>-jC</u> 2	<u>-C</u> ₃	<u>-jC</u> ₁	<u>jC</u> 2	<u>C</u> ₃	<u>-jC</u> ₁	<u>jC</u> 2	<u>-C</u> ₃	<u>t</u> ₃
<u>4</u>	<u>1</u>	<u>jC₁</u>	<u>jC₃</u>	<u>C</u> ₂	<u>jC₁</u>	<u>jC₃</u>	<u>-C</u> ₂	<u>-jC₁</u>	<u>-jC₃</u>	<u>C</u> ₂	<u>-jC₁</u>	<u>-jC₃</u>	<u>-C</u> ₂	<u>t</u> 4
<u>5</u>	<u>1</u>	<u>jC</u> ₁	<u>-jC</u> ₃	<u>C</u> ₂	<u>jC</u> ₁	<u>-jC</u> ₃	<u>-C</u> ₂	<u>-jC</u> ₁	<u>jC</u> ₃	<u>C</u> ₂	<u>-jC</u> ₁	<u>jC</u> ₃	<u>-C</u> ₂	<u>t</u> 5
<u>6</u>	<u>1</u>	<u>jC</u> 2	<u>jC</u> ₃	<u>C</u> ₁	<u>jC</u> 2	<u>jC</u> ₃	<u>-C</u> ₁	<u>-jC</u> 2	<u>-jC</u> ₃	<u>C</u> ₁	<u>-jC</u> ₂	<u>-jC</u> ₃	<u>-C</u> ₁	<u>t</u> 6
<u>7</u>	<u>1</u>	<u>jC</u> 2	<u>-jC</u> ₃	<u>C</u> ₁	<u>jC</u> 2	<u>-jC</u> ₃	<u>-C</u> 1	<u>-jC</u> 2	<u>jC</u> ₃	<u>C</u> ₁	<u>-jC</u> ₂	<u>jC</u> ₃	<u>-C</u> 1	<u>t</u> 7
<u>8</u>	<u>2</u>	<u>C</u> ₄	<u>C</u> 5	<u>C</u> 6	<u>C</u> ₄	<u>C</u> 5	<u>-C</u> ₆	<u>-C</u> ₄	<u>-C</u> ₅	<u>C</u> ₆	<u>-C</u> 4	<u>-C</u> ₅	<u>-C</u> ₆	<u>t</u> 8
<u>9</u>	<u>2</u>	<u>C</u> ₄	<u>-C</u> ₅	<u>C</u> ₆	<u>C</u> ₄	<u>-C</u> 5	<u>-C</u> ₆	<u>-C</u> ₄	<u>C</u> 5	<u>C</u> ₆	<u>-C</u> ₄	<u>C</u> 5	<u>-C</u> ₆	<u>t</u> 9
<u>10</u>	<u>2</u>	<u>jC</u> ₄	<u>jC</u> 5	<u>C</u> ₆	<u>jC</u> ₄	<u>jC</u> 5	<u>-C</u> ₆	<u>-jC</u> ₄	<u>-jC</u> ₅	<u>C</u> ₆	<u>-jC</u> ₄	<u>-jC</u> 5	<u>-C</u> ₆	10
<u>11</u>	<u>2</u>	<u>jC</u> ₄	<u>-jC</u> ₅	<u>C</u> 6	<u>jC</u> ₄	<u>-jC</u> ₅	<u>-C</u> ₆	<u>-jC</u> ₄	<u>jC</u> 5	<u>C</u> ₆	<u>-jC</u> ₄	<u>jC</u> 5	<u>-C</u> ₆	11
<u>12</u>	<u>2</u>	<u>jC₄</u>	<u>jC</u> 6	<u>C</u> ₅	<u>jC₄</u>	<u>jC</u> 6	<u>-C</u> ₅	<u>-jC₄</u>	<u>-jC₆</u>	<u>C</u> ₅	<u>-jC₄</u>	<u>-jC₆</u>	<u>-C</u> ₅	12
<u>13</u>	<u>2</u>	<u>jC</u> ₄	<u>-jC</u> 6	<u>C</u> ₅	<u>jC</u> ₄	<u>-jC</u> 6	<u>-C</u> ₅	<u>-jC</u> ₄	<u>jC</u> 6	<u>C</u> ₅	<u>-jC</u> ₄	<u>jC</u> 6	<u>-C</u> ₅	13
<u>14</u>	<u>2</u>	<u>jC</u> 5	<u>jC</u> 6	<u>C</u> ₄	<u>jC</u> 5	<u>jC</u> 6	<u>-C</u> ₄	<u>-jC</u> ₅	<u>-jC</u> 6	<u>C</u> ₄	<u>-jC</u> ₅	<u>-jC</u> 6	<u>-C</u> ₄	14
<u>15</u>	<u>2</u>	<u>jC</u> ₅	<u>-jC₆</u>	<u>C</u> ₄	<u>jC</u> ₅	<u>-jC₆</u>	<u>-C</u> ₄	<u>-jC₅</u>	<u>jC</u> 6	<u>C</u> ₄	<u>-jC₅</u>	<u>jC</u> 6	<u>-C</u> ₄	<u>15</u>
<u>16</u>	<u>3</u>	<u>C</u> ₇	<u>C</u> 8	<u>C</u> 9	<u>C</u> ₇	<u>C</u> 8	<u>-C</u> ₉	<u>-C</u> 7	<u>-C</u> ₈	<u>C</u> ₉	<u>-C</u> 7	<u>-C</u> 8	<u>-C</u> ₉	16
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	
<u>23</u>	<u>3</u>	<u>jC</u> 8	<u>-jC₉</u>	<u>C</u> ₇	<u>jC</u> 8	<u>-jC₉</u>	<u>-C</u> ₇	<u>-jC</u> 8	<u>jC</u> 9	<u>C</u> ₇	<u>-jC</u> 8	<u>jC</u> 9	<u>-C</u> ₇	20
<u>24</u>	<u>4</u>	<u>C</u> ₁₀	<u>C</u> ₁₁	<u>C</u> ₁₂	<u>C</u> ₁₀	<u>C</u> ₁₁	<u>-C</u> ₁₂	<u>C</u> ₁₀	<u>C</u> ₁₁	<u>C</u> ₁₂	<u>C</u> ₁₀	<u>C</u> ₁₁	<u>-C</u> ₁₂	24
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>		<u></u>	<u></u>	<u></u>	
<u>31</u>	<u>4</u>	<u>jC</u> ₁₁	<u>-jC</u> ₁₂	<u>C</u> ₁₀	<u>jC</u> 11	<u>jC</u> ₁₂	<u>-C</u> ₁₀	<u>-jC</u> ₁₁	<u>jC</u> ₁₂	<u>C</u> ₁₀	<u>-jC</u> ₁₁	<u>jC</u> ₁₂	<u>-C</u> ₁₀	31

Note that the code construction for code groups 0 to 15 using the SCH codes from code sets 1 and 2 is shown. The construction for code groups 16 to 31 using the SCH codes from code sets 3 and 4 is done in the same way.

÷

7.2.3 Code allocation for Case 3:

<u>In addition to the information on code group three bits from SCH transport channel are transmitted to the UE with these codes.</u>

<u>Code</u>	<u>Code</u>	<u>Frar</u>			<u>ne 1</u>			Frame 2						<u>Associ</u>	Addl bits
<u>Group</u>	<u>Set</u>		Slot k		9	Slot k+8	3		Slot k		3	Slot k+8	<u>3</u>	ated	from SCH
														<u>t_{offset}</u>	transport
															<u>channel</u>
<u>0</u>	<u>1</u>	<u>C</u> ₁	<u>C</u> ₂	<u>C</u> ₃	<u>C</u> ₁	<u>C</u> ₂	<u>-C</u> ₃	<u>-C</u> ₁	<u>-C</u> ₂	<u>C</u> ₃	<u>-C</u> ₁	<u>-C</u> ₂	<u>-C</u> ₃	<u>t</u> o	000
<u>0</u>	<u>1</u>	<u>C</u> ₁	<u>-C</u> ₂	<u>C</u> ₃	<u>C</u> ₁	<u>-C</u> ₂	<u>-C</u> ₃	<u>-C</u> 1	<u>C</u> ₂	<u>C</u> ₃	<u>-C</u> 1	<u>C</u> ₂	<u>-C</u> ₃]	<u>001</u>
<u>0</u>	<u>1</u>	<u>jC₁</u>	<u>jC</u> 2	<u>C</u> ₃	<u>jC₁</u>	<u>jC</u> 2	<u>-C</u> ₃	<u>-jC</u> 1	<u>-jC</u> 2	<u>C</u> ₃	<u>-jC</u> 1	<u>-jC</u> 2	<u>-C</u> ₃		<u>010</u>
<u>0</u>	<u>1</u>	<u>jC₁</u>	$\underline{jC_1}$ $\underline{-jC_2}$ $\underline{C_3}$		<u>jC₁</u>	<u>-jC</u> ₂	<u>-C</u> ₃	<u>-jC</u> 1	<u>jC</u> 2	<u>C</u> ₃	<u>-jC₁</u>	<u>jC</u> 2	<u>-C</u> ₃		<u>011</u>
<u>0</u>	<u>1</u>	<u>jC₁</u>	<u>jC</u> 3	<u>C</u> ₂	<u>jC</u> 1	<u>jC</u> 3	<u>-C</u> ₂	<u>-jC</u> 1	<u>-jC₃</u>	<u>C</u> ₂	<u>-jC</u> ₁	<u>-jC₃</u>	<u>-C</u> ₂		<u>100</u>

<u>0</u>	<u>1</u>	<u>jC</u> ₁	<u>-jC</u> ₃	<u>C</u> 2	<u>jC</u> ₁	<u>-jC</u> ₃	<u>-C</u> 2	<u>-jC</u> ₁	<u>jC</u> ₃	<u>C</u> ₂	<u>-jC</u> ₁	<u>jC</u> ₃	<u>-C</u> ₂		<u>101</u>
<u>0</u>	<u>1</u>	<u>jC</u> ₂	<u>jC</u> ₃	<u>C</u> 1	<u>jC</u> 2	<u>jC</u> ₃	<u>-C</u> ₁	<u>-jC</u> ₂	<u>-jC</u> ₃	<u>C</u> 1	<u>-jC</u> ₂	<u>-jC</u> ₃	<u>-C</u> 1		<u>110</u>
<u>0</u>	1	<u>jC</u> 2	<u>-jC₃</u>	<u>C</u> 1	<u>jC</u> 2	<u>-jC₃</u>	<u>-C</u> 1	<u>-jC₂</u>	<u>jC₃</u>	<u>C</u> 1	<u>-jC</u> 2	<u>jC₃</u>	<u>-C</u> 1		<u>111</u>
<u>1</u>	<u>2</u>	<u>C</u> ₄	<u>C</u> 5	<u>C</u> 6	<u>C</u> ₄	<u>C</u> 5	<u>-C</u> 6	<u>-C</u> 4	<u>-C</u> 5	<u>C</u> 6	<u>-C</u> ₄	<u>-C</u> 5	<u>-C</u> 6	<u>t</u> 2	000
<u>1</u>	<u>2</u>	<u>C</u> ₄	<u>-C</u> 5	<u>C</u> 6	<u>C</u> ₄	<u>-C</u> 5	<u>-C</u> 6	<u>-C</u> 4	<u>C</u> 5	<u>C</u> 6	<u>-C</u> ₄	<u>C</u> 5	<u>-C</u> 6		<u>001</u>
<u>1</u>	<u>2</u>	<u>jC₄</u>	<u>jC₅</u>	<u>C</u> 6	<u>jC₄</u>	<u>jC₅</u>	<u>-C</u> 6	<u>-jC₄</u>	<u>-jC₅</u>	<u>C</u> 6	<u>-jC₄</u>	<u>-jC₅</u>	<u>-C</u> 6		<u>010</u>
<u>1</u>	<u>2</u>	<u>jC</u> ₄	<u>-jC</u> 5	<u>C</u> 6	<u>jC</u> ₄	<u>-jC</u> 5	<u>-C</u> 6	<u>-jC</u> ₄	<u>jC</u> 5	<u>C</u> 6	<u>-jC</u> ₄	<u>jC</u> 5	<u>-C</u> 6		<u>011</u>
<u>1</u>	<u>2</u>	<u>jC</u> ₄	<u>jC</u> 6	<u>C</u> 5	<u>jC</u> ₄	<u>jC</u> 6	<u>-C</u> 5	<u>-jC</u> ₄	<u>-jC</u> 6	<u>C</u> 5	<u>-jC</u> ₄	<u>-jC</u> 6	<u>-C</u> 5		<u>100</u>
<u>1</u>	<u>2</u>	<u>jC₄</u>	<u>-jC₆</u>	<u>C</u> 5	<u>jC₄</u>	<u>-jC₆</u>	<u>-C</u> 5	<u>-jC₄</u>	<u>jC</u> 6	<u>C</u> 5	<u>-jC₄</u>	<u>jC</u> 6	<u>-C</u> 5		<u>101</u>
<u>1</u>	<u>2</u>	<u>jC</u> ₅	<u>jC</u> 6	<u>C</u> 4	<u>jC</u> 5	<u>jC</u> 6	<u>-C₄</u>	<u>-jC</u> ₅	<u>-jC</u> 6	<u>C</u> ₄	<u>-jC</u> 5	<u>-jC</u> 6	<u>-C₄</u>		<u>110</u>
<u>1</u>	2	<u>iC</u> 5	<u>-jC</u> 6	<u>C</u> 4	<u>jC</u> 5	<u>-jC</u> 6	<u>-C</u> 4	<u>-jC</u> 5	<u>jC</u> 6	<u>C</u> 4	<u>-jC₅</u>	<u>jC</u> 6	<u>-C₄</u>		<u>111</u>
<u>2</u>	<u>3</u>	<u>C</u> ₇	<u>C</u> ₈	<u>C</u> ₉	<u>C</u> ₇	<u>C</u> ₈	<u>-C</u> 9	<u>-C</u> 7	<u>-C</u> ₈	<u>C</u> ₉	<u>-C</u> ₇	<u>-C</u> ₈	<u>-C</u> 9	<u>t</u> 3	<u>000</u>
<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>		<u></u>			<u></u>		<u></u>
<u>2</u>	<u>3</u>	<u>jC</u> 8	<u>-jC</u> ₉	<u>C</u> ₇	<u>jC</u> 8	<u>-jC</u> ₉	<u>-C</u> ₇	<u>-jC</u> 8	<u>jC</u> 9	<u>C</u> ₇	<u>-jC</u> ₈	<u>jC</u> 9	<u>-C</u> 7		<u>111</u>
<u></u>		<u></u>		::											<u></u>
<u>31</u>	<u>32</u>	<u>C</u> ₇	<u>C</u> ₉	<u>C</u> ₁₅	<u>C</u> ₇	<u>C</u> ₉	<u>-C</u> ₁₅	<u>-C</u> ₇	<u>-C</u> ₉	<u>C</u> ₁₅	<u>-C</u> ₇	<u>-C</u> ₉	<u>-C₁₅</u>	<u>t</u> ₃₁	000
<u>31</u>	<u>32</u>	<u>C</u> ₇	<u>-C</u> 9	<u>C</u> ₁₅	<u>C</u> 7	<u>-C</u> 9	<u>-C</u> ₁₅	<u>-C</u> 7	<u>C</u> 9	<u>C</u> ₁₅	<u>-C</u> 7	<u>C</u> 9	<u>-C</u> ₁₅		001
<u>31</u>	<u>32</u>	<u>jC</u> 7	<u>jC</u> 9	<u>C</u> ₁₅	<u>jC</u> 7	<u>jC</u> 9	<u>-C</u> ₁₅	<u>-jC</u> 7	<u>-jC</u> ₉	<u>C</u> ₁₅	<u>-jC</u> ₇	<u>-jC</u> ₉	<u>-C</u> ₁₅		<u>010</u>
<u>31</u>	<u>32</u>	<u>jC</u> ₇	<u>-jC₉</u>	<u>C₁₅</u>	<u>jC</u> ₇	<u>-jC₉</u>	<u>-C</u> ₁₅	<u>-jC₇</u>	<u>jC</u> ₉	<u>C₁₅</u>	<u>-jC</u> ₇	<u>jC</u> 9	<u>-C₁₅</u>		<u>011</u>
<u>31</u>	<u>32</u>	<u>jC</u> 7	<u>jC</u> ₁₅	<u>C</u> 9	<u>jC</u> 7	<u>jC</u> 6	<u>-C</u> 9	<u>-jC</u> ₇	<u>-jC</u> ₁₅	<u>C</u> ₉	<u>-jC</u> ₇	<u>-jC</u> ₁₅	<u>-C</u> ₉		<u>100</u>
<u>31</u>	<u>32</u>	<u>jC</u> 7	<u>-jC</u> ₁₅	<u>C</u> 9	<u>jC</u> 7	<u>-jC</u> 6	<u>-C</u> 9	<u>-jC</u> 7	<u>jC</u> ₁₅	<u>C</u> ₉	<u>-jC</u> ₇	<u>jC</u> ₁₅	<u>-C</u> 9		<u>101</u>
<u>31</u>	<u>32</u>	<u>jC</u> ₉	<u>jC₁₅</u>	<u>C</u> ₇	<u>jC</u> 9	<u>jC₁₅</u>	<u>-C</u> ₇	<u>-jC₉</u>	<u>-jC</u> ₁₅	<u>C</u> ₇	<u>-jC</u> ₉	<u>-jC</u> ₁₅	<u>-C</u> ₇		<u>110</u>
<u>31</u>	<u>32</u>	<u>jC</u> ₉	<u>-jC</u> ₁₅	<u>C</u> ₇	<u>jC</u> ₉	<u>-jC</u> ₁₅	<u>-C</u> ₇	<u>-jC</u> ₉	<u>jC</u> ₁₅	<u>C</u> ₇	<u>-jC</u> ₉	<u>jC</u> ₁₅	<u>-C</u> ₇		<u>111</u>

Note that the code construction for code groups 0 and 1 using the SCH codes from code sets 1 and 2 is shown. The construction for code groups 2 to 31 using the SCH codes from code sets 3 to 32 is done in the same way.

The evaluation of transmitted information on code group and frame timing is shown in table 9, where the 32 code groups are listed. Each code group is containing 4 specific scrambling codes, each scrambling code associated with a specific short and long basic midamble code.

Each code group is additionally linked to a specific t_{Offset} , thus to a specific frame timing. By using this scheme, the UE can derive the position of the frame border due to the position of the SCH sequence and the knowledge of t_{Offset} . Positioning of the secondary SCH codes is depicted in the last line of table 10 and 11.

The complete mapping of Code Group to Scrambling Code, Midamble Codes and t_{Offset} is depicted in table 9.

CELL PARA-	Code Group		Associated Codes		Associated
METER	Group	Scrambling Code	Long Basic Midamble Code	Short Basic Midamble Code	t _{Offset}
0	Group 1	Code 0	m _{PL0}	m _{SL0}	t ₀
1		Code 1	m _{PL1}	m _{SL1}	
2		Code 2	m _{PL2}	m _{SL2}	
3		Code 3	m _{PL3}	m _{SL3}	
4	Group 2	Code 4	m _{PL4}	m _{SL4}	t ₁
5		Code 5	m _{PL5}	m _{SL5}	
6		Code 6	m _{PL6}	m _{SL6}	
7		Code 7	m _{PL7}	m _{SL7}	
			•		
			•		
124	Group 32	Code 124	m _{PL124}	m _{SL124}	t ₃₁
125		Code 125	m _{PL125}	m _{SL125}	
126		Code 126	m _{PL126}	m _{SL126}	
127		Code 127	m _{PL127}	m _{SL127}	

Table 9 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and t_{Offset} .

For basic midamble codes m_P cf.TS 25.221, annex A 'Basic Midamble Codes'. For CELL PARAMETERS also cf. TS 25.231.

The following subchapters 7.2.1 and 7.2.2 are referring to the three cases of PSCH/PCCPCH usage as described in TS 25.221 section 7.4.

7.2.1 Code allocation for case 1 and 2

In table 10 the 32 sequences used in the cases 1 and 2 of PSCH/CCPCH scheme are listed. Again, these are used to encode the 32 different code groups.

It should be mentioned that the sequences used here can be derived from FDD sequences by puncturing every 2nd position, thus a UE can use same database for FDD and TDD.

Code Croup		ę	Second	ary SCI	I Code	Positio	n		Associated
Group	#1	#2	#3	#4	#5	#6	#7	#8	ŧ _{Offset}
Group1	C ₁	C ₂	C 6	C 15	C 8	C ₂	C ₃	C 11	ŧ ₀
Group2	C ₄	C ₉	C 10	C 13	C 11	C 3	C ₂	C ₁₆	ŧ ₄
Group 3	C ₄	C 46	C 14	C 44	C 14	C 16	G ₄	C ₄	‡ 2
Group 4	C ₄	C €	C ₄	C ₉	C ₁₇	C ₁₂	C ₁₇	C 9	ŧ ₃
Group 5	C ₊	C ₁₃	C ₅	C ₇	C ₃	C s	C ₁₆	C ₁₄	t 4
Group 6	C ₁	C ₃	C ₉	C 5	C 6	C ₄	C 15	C ₂	ŧ ₅
Group 7	C ₄	C 40	C ₁₃	C 3	C 9	C ₁₇	C 14	C ₇	ŧ ₆
Group 8	C ₄	C 17	C ₁₇	C ₄	C ₁₂	C ₄	C ₁₃	C ₁₂	ŧ ₇
Group 9	C ₄	C ₂	C ₄	C 16	C 15	C s	C 12	C 17	ŧ ₈
Group 10	C ₄	C ₁₄	C ₈	C 14	C ₄	C 5	C 11	C 5	ŧ _g
Group 11	C ₄	C ₄	C ₁₂	C ₁₂	C ₄	C ₄	C 10	C 10	ŧ ₁₀
Group 12	C ₄	C 44	C ₁₆	C 10	C ₇	C 14	C 9	C 45	ŧ ₄₄
Group 13	C ₄	C ₄	C ₃	C ₈	C 10	C 10	C a	C ₃	ŧ ₁₂
Group 14	C ₄	C g	C ₇	C €	C ₁₃	C €	C ₇	C 8	ŧ ₄₃
Group 15	C ₄	C 45	C 11	C 4	C 16	C 2	C €	C 13	ŧ ₁₄
Group 16	C ₄	C ₅	C 45	C ₂	C ₂	C ₁₅	C ₅	C ₄	ŧ ₄₅
Group 17	C ₄	C ₁₂	C ₂	C 17	C ₅	C 11	C ₄	C €	ŧ ₁₆
Group 18	C ₂	C 44	C 14	€ ₄	C 10	C ₄	C ₁₅	€ ₈	ŧ ₁₇
Group 19	<u>C</u> 2	C ₄	C ₄	C ₂	C ₁₃	C ₁₄	C ₁₄	C 43	ŧ ₁₈
Group 20	C ₂	C ₈	C ₅	C 17	C 16	C 10	C 13	C ₄	ŧ ₁₉
Group 21	C ₂	C 45	C 9	C ₁₅	C 2	C €	C 12	C 6	ŧ ₂₀
Group 22	C ₂	C ₅	C ₁₃	C ₁₃	C ₅	C ₂	C 11	C 44	ŧ ₂₁
Group 23	C ₂	C ₁₂	C ₁₇	C 11	C 8	C ₁₅	C 10	C ₁₆	ŧ ₂₂
Group 24	C ₂	C ₂	C ₄	C ₃	C 11	C 11	C ₃	C ₄	ŧ ₂₃
Group 25	C ₂	C ₃	C 8	C ₂	C 14	C ₇	C s	C ₃	ŧ ₂₄
Group 26	C ₂	C 46	C 12	C 5	C ₁₇	C 3	C ₇	C 14	ŧ ₂₅
Group 27	C ₂	C €	C ₁₆	C 3	C 3	C ₁₆	C _€	C ₂	ŧ ₂₆
Group 28	C ₂	C ₁₃	C ₃	C ₄	C 6	C 12	C ₅	C ₇	ŧ ₂₇
Group 29	C ₂	C 3	C ₇	C 46	C 9	C 8	C ₄	C ₁₂	t ₂₈
Group 30	C ₂	C ₁₀	C 11	C 14	C ₁₂	C ₄	C 3	C 17	ŧ ₂₉
Group 31	C ₂	C ₁₇	C 45	C ₁₂	C ₁₅	C ₁₇	C ₂	C ₅	t ₃₀
Group 32	C ₂	C _₹	C ₂	C ₁₀	C ₄	C ₁₃	C ₄	C ₁₀	t ₃₁
Frame position	Fran	ne #1	Fran	ne #2	Fran	ne #3	Fran	ne #4	

Table 10 Spreading Code allocation for Secondary SCH Code, case 2) of PSCH/CCPCH scheme

7.2.2 Code allocation for case 3

In table 11 the 256 sequences used in case 3 of PSCH/CCPCH scheme are listed. In addition to the information on code group three bits from SCH transport channel are transmitted to the UE with these codes.

Editors note: The usage of CCPCH pointing is for further study (cf. TDoc R1#2(99) 74)>

Code Group		Se	condar	y PSCH	l Code	at Posit	tion		Additional Bits from SCH Transport Channel	Associated t _{Offset}
	#1	#2	#3	#4	#5	#6	#7	#8		
Group 1	C2	C14	C6	C8	C4	C9	C17	C15	000	ŧ ₀
	C2	C4	C10	C6	C7	C5	C16	C3	001	
	C3	C3	C5	C10	C12	C12	C10	C5	010	
	C3	C10	C9	C8	C15	C8	C9	C10	011	
	C3	C17	C13	C6	C1	C4	C8	C15	100	
	C3	C7	C17	C4	C4	C17	C7	C3	101	
	C3	C14	C4	C2	C7	C13	C6	C8	110	
	C3	C4	C8	C17	C10	C9	C5	C13	111	
Group 2	C3	CH	C12	C15	C13	C5	C4	C1	000	ŧ 4
	C3	C1	C16	C13	C16	C1	C3	C6	001	
	C3	C8	C3	C11	C2	C14	C2	C11	010	
	C3	C15	C7	C9	C5	C10	C1	C16	011	
	C3	C5	CH	C7	C8	C6	C17	C4	100	
	C3	C12	C15	C5	CH	C2	C16	C9	101	
	C3	C2	C2	C3	C14	C15	C15	C14	110	
	C3	C9	C6	C1	C17	CH	C14	C2	111	
Group 3	C3	C16	C10	C16	C3	C7	C13	C7	000	t ₂
C.Cup C	C3	C6	C14	C14	C6	C3	C12	C12	001	
	C3	C13	C1	C12	C9	C16	CH	C17	010	
	C4	C12	C13	C16	C14	C6	C5	C2	010 011	_
	C4	C2	C17	C14	C17	C2	C4	C7	100	_
	C4	C9	C4	C12	C3	C15	C3	C12	101	
	C4	C16	C8	C10	C6	CH	C2	C17	110	
	C4	C6	C12	C8	C9	C7	C1	C5	111	
Group 4	C4	C13	C16	C6	C12	C3	C17	C10	000	ŧ ₃
Oloup +	C4	C3	C3	C4	C15	C16	C16	C15	001	_ ਚ
	C4	C10	C7	C2	Cl	C12	C15	C3	010	
	C4	C17	CH	C17	C4	C8	C14	C8	011	
	C4	C7	C15	C17	C7	C4	C13	C13	100	
	C4	C14	C2	C13	C10	C17	C12	Cl	101	
	C4	C4	C6	CH	C13	C17	CH	C6	110 110	
	C4	CH	C10	C9	C16	C9	C10	CH	111	
Group 5	C4	Cl	C14	C7	C2	C5	C9	C16	000	ŧ ₄
Oloup 3	C4	C8	Cl	C5	C5	C1	C8	C4	001	14
	C4	C15	C5	C3	C8	C14	C7	C9	010	_
	C4	C5	C9	C1	CH	C10	C6	C14	011	_
	C5	C4	C4	C5	C16	C17	C17	C14	100	_
										_
	C5 C5	CH CH	C8 C12	C3 C1	C2 C5	C13	C16 C15	C4	101	1
					1				110	1
Crour C	C5	C15	C16	C14	C8	C5	C12	C14	111	
Group 6	C5	C15	C3	C14	C14	C14	C13	C2	000	t 5
	C5	C5	C7	C12	C14	C14	C12	C7	001	1
	C5	C12	C15	C10	C17	C10	C10	C12	010	1
	C5	C2	C15	C8	C3	C6	C10	C17	011	1
	C5	C9	C2	C6	C6	C2	C9	C5	100	4
	C5	C16	C6	C4	C9	C15	C8	C10	101	_
	C5	C6	C10	C2	C12	CH	C7	C15	110	_
	C5	C13	C14	C17	C15	C7	C6	C3	111	

	1	1	1							1	
Group7	C5	C3	C1	C15	C1	C3	C5	C8	000	ŧ ₆	
	C5	C10	C5	C13	C 4	C16	C4	C13	001		
	C5	C17	C9	C11	C7	C12	C3	C1	010		
	C5	C7	C13	C9	C10	C8	C2	C6	011		
	C5	C14	C17	C7	C13	C4	C1	C11	100		
	C6	C13	C12	CH1	C1	C11	C12	C13	101		
	C6	C3	C16	C9	C4	C7	C11	C1	110		
	C6	C10	C3	C7	C7	C3	C10	C6	111		
Group 8	C6	C17	C7	C5	C10	C16	C9	C11	000	ŧ _Z	
	C6	C7	C11	C3	C13	C12	C8	C16	001		
	C6	C14	C15	C1	C16	C8	C7	C4	010		
	C6	C4	C2	C16	C2	C4	C6	C9	011		
	C6	CH	C6	C14	C5	C17	C5	C14	100		
	C6	C1	C10	C12	C8	C13	C4	C2	101		
	C6	C8	C14	C10	CH	C9	C3	C7	110		
	C6	C15	C1	C8	C14	C5	C2	C12	111		
Group 9	C6	C5	C5	C6	C17	C1	Cl	C17	000	ŧ ₈	
- apr	C6	C12	C9	C4	C3	C14	C17	C5	001		
	C6	C2	C13	C2	C6	C10	C16	C10	010		
	C6	C9	C17	C17	C9	C6	C15	C15	011		
	C6	C16	C4	C15	C12	C2	C14	C3	1 00		
	C6	Cf6	C8	C13	C15	C15	C13	C8	101		
	C7	C5	C3	C17	C3	C5	C7	C10	110		
	C7	C12	C7	C15		C1		C15			
One 40	+				C6		C6		111	4	
Group 10	C7	C2	C15	C13	C9	C14	C5	C3	000	ŧ _o	
	C7	C9	C15	CH	C12	C10	C4	C8	001		
	C7	C16	C2	C9	C15	C6	C3	C13	010		
	C7	C6	C6	C7	C1	C2	C2	C1	011		
	C7	C13	C10	C5	C4	C15	C1	C6	100		
	C7	C3	C14	C3	C7	CH	C17	C11	101		
	C7	C10	C1	C1	C10	C7	C16	C16	110		
	C7	C17	C5	C16	C13	C3	C15	C4	111		
Group 11	C7	C7	C9	C14	C16	C16	C14	C9	000	ŧ ₁₀	
	C7	C14	C13	C12	C2	C12	C13	C14	001		
	C7	C4	C17	C10	C5	C8	C12	C2	010		
	C7	C11	C4	C8	C8	C4	CH	C7	011		
	C7	C1	C8	C6	C11	C17	C10	C12	100		
	C7	C8	C12	C4	C14	C13	C9	C17	101		
	C7	C15	C16	C2	C17	C9	C8	C5	110		
	C8	C14	CH	C6	C5	C16	C2	C7	111		
Group 12	C8	C4	C15	C4	C8	C12	C1	C12	000	ŧ ₁₄	
	C8	C11	C2	C2	C11	C8	C17	C17	001		
	C8	C1	C6	C17	C14	C4	C16	C5	010		
	C8	C8	C10	C15	C17	C17	C15	C10	011		
	C8	C15	C14	C13	C3	C13	C14	C15	100		
	C8	C5	C1	C11	C6	C9	C13	C3	101		
	C8	C12	C5	C9	C9	C5	C12	C8	110		
	C8	C2	C9	C7	C12	C1	C11	C13	111		
	C8	C9	C13	C5	C15	C14	C10	C1	000	ŧ ₁₂	
Group 13		C16	C17	C3	C1	C10	C9	C6	001		
Group 13	C8				-	t				1	
Group 13			C4	C1	C4	C6	C8	C11	010		
Group 13	C8 C8	C6 C13	C4 C8	C1 C16	C4 C7	C6 C2	C8 C7	CH CH6	010 011		

	CO	C10	017	C12	C12	C11	CF	CO	404	1
	C8	C17	C16	C12	C16	C11	C4	C9	101	1
	C8	C17	C3	C10	C16	C7	C4	C14	110	-
	C8	C7	C7	C8	C2	C3	C3	C2	111	
roup 14	C9	C6	C2	C12	C7	C10	C14	C4	000	ŧ ₁₃
	C9	C13	C6	C10	C10	C6	C13	C9	001	-
	C9	C3	C10	C8	C13	C2	C12	C14	010	-
	C9	C10	C14	C6	C16	C15	CH	C2	011	1
	C9	C17	C1	C4	C2	CH	C10	C7	100	
	C9	C7	C5	C2	C5	C7	C9	C12	101	1
	C9	C14	C9	C17	C8	C3	C8	C17	110	
	C9	C4	C13	C15	C11	C16	C7	C5	111	
up 15	C9	C11	C17	C13	C14	C12	C6	C10	000	ŧ ₁₄
	C9	C1	C4	C11	C17	C8	C5	C15	001	
	C9	C8	C8	C9	C3	C4	C4	C3	010	
	C9	C15	C12	C7	C6	C17	C3	C8	011	
	C9	C5	C16	C5	C9	C13	C2	C13	100]
	C9	C12	C3	C3	C12	C9	C1	C1	101	1
	C9	C2	C7	C1	C15	C5	C17	C6	110	1
	C9	C9	CH	C16	C1	C1	C16	CH	111	1
up 16	C9	C16	C15	C14	C4	C14	C15	C16	000	ŧ ₁₅
ωp i σ	C10	C15	C10	C14	C9	C4	C9	Cl	001	110
	C10	C5	C14	C16	C12	C17	C8	C6	010	†
	C10	C12	Cl	C14	C15	C13	C7	CH	011	-
	C10	C2	C5	C12	C1	C9	C6	C16	100	-
	C10					C5	C5			+
		C9	C9	C10	C4			C4	101	1
	C10	C16	C13	C8	C7	C1	C4	C9	110	-
	C10	C6	C17	C6	C10	C14	C3	C14	111	
oup 17	C10	C13	C4	C4	C13	C10	C2	C2	000	ŧ ₁₆
	C10	C3	C8	C2	C16	C6	C1	C7	001	1
	C10	C10	C12	C17	C2	C2	C17	C12	010	
	C10	C17	C16	C15	C5	C15	C16	C17	011	
	C10	C7	C3	C13	C8	CH	C15	C5	100	1
	C10	C14	C7	C11	C11	C7	C14	C10	101	1
	C10	C4	CH	C9	C14	C3	C13	C15	110	1
	C10	C11	C15	C7	C17	C16	C12	C3	111	
oup 18	C10	C1	C2	C5	C3	C12	C11	C8	000	ŧ ₁₇
	C10	C8	C6	C3	C6	C8	C10	C13	001]
	C11	C7	C1	C7	C11	C15	C4	C15	010]
	C11	C14	C5	C5	C14	C11	C3	C3	011	
	C11	C4	C9	C3	C17	C7	C2	C8	100	
	C11	C11	C13	C1	C3	C3	C1	C13	101	
	C11	C1	C17	C16	C6	C16	C17	C1	110]
	CH	C8	C4	C14	C9	C12	C16	C6	111	1
oup 19	C11	C15	C8	C12	C12	C8	C15	CH	000	ŧ ₁₈
	CH	C5	C12	C10	C15	C4	C14	C16	001	1
	CH	C12	C16	C8	C1	C17	C13	C4	010	1
	CH	C2	C3	C6	C4	C17	C12	C9	011	1
	CH	C9	C7	C4	C7	C9	CH	C14	100	1
										1
	CH	C16	C15	C17	C12	C1	C10	C2	101	1
	CH	C6	C15	C17	C16	C1	C9	C7	110	-
	CH	C13	C2	C15	C16	C14	C8	C12	111	ļ
up 20	CH	C3	C6	C13	C2	C10	C7	C17	000	ŧ ₄₉
	C11	C10	C10	C11	C5	C6	C6	C5	001	[

I									T	İ
	CH	C17	C14	C9	C8	C2	C5	C10	010	
	C12	C16	C9	C13	C13	C9	C16	C12	011	
	C12	C6	C13	CH	C16	C5	C15	C17	100	
	C12	C13	C17	C9	C2	C1	C14	C5	101	
	C12	C3	C4	C7	C5	C14	C13	C10	110	
	C12	C10	C8	C5	C8	C10	C12	C15	111	
Group 21	C12	C17	C12	C3	C11	C6	C11	C3	000	ŧ ₂₀
	C12	C7	C16	C1	C14	C2	C10	C8	001	
	C12	C14	C3	C16	C17	C15	C9	C13	010	
	C12	C4	C7	C14	C3	CH	C8	C1	011	
	C12	C11	C11	C12	C6	C7	C7	C6	100	
	C12	C1	C15	C10	C9	C3	C6	C11	101	
	C12	C8	C2	C8	C12	C16	C5	C16	110	
	C12	C15	C6	C6	C15	C12	C4	C 4	111	
Group 22	C12	C5	C10	C4	Cl	C8	C3	C9	000	ŧ ₂₁
Oloup 22	C12	C12	C14	C2	C4	C4	C2	C14	001	121
	C12	C2			C7	C17				
		†	C1	C17			C17	C2	010	
	C12	C9	C5	C15	C15	C13	C11	C7	011	
	C13	C8	C17	C2	C15	C3	CH	C9	100	
	C13	C15	C4	C17	C1	C16	C10	C14	101	
	C13	C5	C8	C15	C4	C12	C9	C2	110	
	C13	C12	C12	C13	C7	C8	C8	C7	111	
Group 23	C13	C2	C16	CH	C10	C4	C7	C12	000	ŧ ₂₂
	C13	C9	C3	C9	C13	C17	C6	C17	001	
	C13	C16	C7	C7	C16	C13	C5	C5	010	
	C13	C6	C11	C5	C2	C9	C4	C10	011	
	C13	C13	C15	C3	C5	C5	C3	C15	100	
	C13	C3	C2	C1	C8	C1	C2	C3	101	
	C13	C10	C6	C16	CH	C14	C1	C8	110	
	C13	C17	C10	C14	C14	C10	C17	C13	111	
Group 24	C13	C7	C14	C12	C17	C6	C16	C1	000	ŧ ₂₃
	C13	C14	C1	C10	C3	C2	C15	C6	001	
	C13	C4	C5	C8	C6	C15	C14	C11	010	
	C13	C11	C9	C6	C9	CH	C13	C16	011	
	C13	C1	C13	C4	C12	C7	C12	C4	100	
	C14	C17	C8	C8	C17	C14	C6	C6	101	
	C14	C7	C12	C6	C3	C10	C5	C11	110	
	C14	C14	C16	C4	C6	C6	C4	C16	111	
Croup 25	C14	C4	C3	C2	C9	C2	C3	C4	000	
Group 25	C14	CH CH		C17	C12			C9		t ₂₄
		†	C7			C15	C2	1	001	
	C14	C1	CH	C15	C15	CH	C1	C14	010	
	C14	C8	C15	C13	C1	C7	C17	C2	011	
	C14	C15	C2	CH	C4	C3	C16	C7	100	
	C14	C5	C6	C9	C7	C16	C15	C12	101	
	C14	C12	C10	C7	C10	C12	C14	C17	110	
	C14	C2	C14	C5	C13	C8	C13	C5	411	
Group 26	C14	C9	C1	C3	C16	C4	C12	C10	000	ŧ ₂₅
	C14	C16	C5	C1	C2	C17	CH	C15	001	
	C14	C6	C9	C16	C5	C13	C10	C3	010	
	C14	C13	C13	C14	C8	C9	C9	C8	011	
	C14	C3	C17	C12	C11	C5	C8	C13	100	
	C14	C10	C4	C10	C14	C1	C7	C1	101	
	C15	C9	C16	C14	C2	C8	C1	C3	110	
•	1	1	Ī	ı	Ī	1	1	1	1	í
								1		
									l	

	C15	C16	C2	C12	CF	C4	C17	Co	444	1
O 07	C15	C16	C3	C12	C5	C4	C17	C8	111	
Group 27	C15	C6	C7	C10	C8	C17	C16	C13	000	t 26
	C15	C13	CH	C8	CH	C13	C15	C1	001	-
	C15	C3	C15	C6	C14	C9	C14	C6	010	-
	C15	C10	C2	C4	C17	C5	C13	CH	011	-
	C15	C17	C6	C2	C3	C1	C12	C16	100	-
	C15	C7	C10	C17	C6	C14	CH	C4	101	-
	C15	C14	C14	C15	C9	C10	C10	C9	110	-
_	C15	C4	C1	C13	C12	C6	C9	C14	111	
Group 28	C15	C11	C5	CH	C15	C2	C8	C2	000	ŧ ₂₇
	C15	C1	C9	C9	C1	C15	C7	C7	001	-
	C15	C8	C13	C7	C4	CH	C6	C12	010	-
	C15	C15	C17	C5	C7	C7	C5	C17	011	-
	C15	C5	C4	C3	C10	C3	C4	C5	100	-
	C15	C12	C8	C1	C13	C16	C3	C10	101	-
	C15	C2	C12	C16	C16	C12	C2	C15	110	
	C16	C1	C7	C3	C4	C2	C13	C17	111	
Group 29	C16	C8	CH	C1	C7	C15	C12	C5	000	‡ ₂₈
	C16	C15	C15	C16	C10	C11	C11	C10	001	
	C16	C5	C2	C14	C13	C7	C10	C15	010	
	C16	C12	C6	C12	C16	C3	C9	C3	011	
	C16	C2	C10	C10	C2	C16	C8	C8	100	
	C16	C9	C14	C8	C5	C12	C7	C13	101	
	C16	C16	C1	C6	C8	C8	C6	C1	110	
	C16	C6	C5	C4	C11	C4	C5	C6	111	
Group 30	C16	C13	C9	C2	C14	C17	C4	C11	000	ŧ ₂₉
	C16	C3	C13	C17	C17	C13	C3	C16	001	
	C16	C10	C17	C15	C3	C9	C2	C4	010	
	C16	C17	C4	C13	C6	C5	C1	C9	011	
	C16	C7	C8	C11	C9	C1	C17	C14	100	
	C16	C14	C12	C9	C12	C14	C16	C2	101	
	C16	C4	C16	C7	C15	C10	C15	C7	110	
	C16	C11	C3	C5	C1	C6	C14	C12	111	
Group 31	C17	C10	C15	C9	C6	C13	C8	C14	000	ŧ ₃₀
	C17	C17	C2	C7	C9	C9	C7	C2	001	
	C17	C7	C6	C5	C12	C5	C6	C7	010	
	C17	C14	C10	C3	C15	C1	C5	C12	011	
	C17	C4	C14	C1	C1	C14	C4	C17	100	
	C17	C11	C1	C16	C4	C10	C3	C5	101	
	C17	C1	C5	C14	C7	C6	C2	C10	110	
	C17	C8	C9	C12	C10	C2	C1	C15	111	
Group 32	C17	C15	C13	C10	C1	C15	C17	C3	000	ŧ ₃₁
	C17	C5	C17	C8	C16	CH	C16	C8	001	
	C17	C12	C4	C6	C2	C7	C15	C13	010	
	C17	C2	C8	C4	C5	C3	C14	C1	011]
	C17	C9	C12	C2	C8	C16	C13	C6	100	
	C17	C16	C16	C17	C11	C12	C12	CH	101	
	C17	C6	C3	C15	C14	C8	CH	C16	110	
	C17	C13	C7	C13	C17	C4	C10	C4	111	
Frame	Frame #1		Frame #2		Frame #3		Frame #4			
position										

Table 11 Spreading Code allocation for Secondary SCH Code, case 3) of PSCH/CCPCH scheme

Text Proposal for 25.224

4.5 Synchronisation and Cell Search Procedures

4.5.1 Cell Search

During the initial cell search, the UE searches for a cell. It then determines the midamble, the downlink scrambling code and frame synchronisation of that cell. The initial cell search uses the Physical Synchronisation Channel (PSCH) described in \$\frac{\text{S1.21}\text{TS 25.221}}{25.223}\$. The generation of synchronisation codes is described in \$\frac{\text{S1.23}\text{TS}}{25.223}\$.

This initial cell search is carried out in three steps:

Step 1: Slot synchronisation

During the first step of the initial cell search procedure the UE uses the primary synchronisation code c_p to acquire slot synchronisation to the strongest cell. Furthermore, frame synchronisation with the uncertainty of 1 out of 2 is obtained in this step. A single matched filter (or any similar device) is used for this purpose, that is matched to the primary synchronisation code which is common to all cells. The procedure is according to the description for the FDD mode in S1.14.

Step 2: Frame synchronisation and code-group identification

The Step 2 is described for the case where PSCH and CCPCH are in timeslot k and k+8 with k=0...6.

During the second step of the initial cell search procedure, the UE uses the $\frac{\text{sequence of}}{\text{modulated}}$ Secondary Synchronisation Codes to find frame synchronisation and identify one of 32 code groups. Each code group is linked to a specific t_{Offset} , thus to a specific frame timing, and is containing 4 specific scrambling codes. Each scrambling code is associated with a specific short and long basic midamble code.

In Cases 2 and 3 it is required to detect the position of the next synchronization slots. To detect the position of the next synchronization slots, the primary synchronization code is correlated with the received signal at offsets of 7 and 8 time slots from the position of the primary code that was detected in Step 1.

Then, the received signal at the positions of the synchronization codes is correlated with the primary synchronization $Code\ C_D$ and the secondary synchronization codes $\{C_1,...,C_N\}$. Note that the correlations are performed coherently over M time slots, where at each slot a phase correction is provided by the correlation with the primary code. The minimal number of time slots is M=1, and the performance improves with increasing M.

The detection of secondary synchronisation sequence is done by correlating the received signal at the positions of the Secondary Synchronisation Code with all possible sequences of Secondary Synchronisation Codes, similar to FDD Mode. After four frames a sequence of eight codes is available providing all necessary information described above. Nevertheless, it should be noted that due to the special coding already three codes show the sequence unambiguously, i.e. a UE can determine the whole sequence when three codes have been received.

Step 3: Scrambling code identification

During the third and last step of the initial cell-search procedure, the UE determines the exact basic midamble code and the accompanying scrambling code used by the found cell. They are identified through correlation over the CCPCH with all four midambles of the code group identified in the second step . Thus the third step is a one out of four decision.

This step is taking into account that the CCPCH containing the BCH is transmitted using the first spreading code ($a_{Q=16}^{(h=1)}$ in figure 2 of \$1.23TS 25.223 section '6.2 Spreading Codes') and using the first midamble $\mathbf{m}^{(1)}$ (derived from basic midamble code \mathbf{m}_P , cf. \$1.21TS 25.221 -section '7.2.3 Training sequences for spread bursts'). Thus CCPCH code and midamble can be immediately derived when knowing scrambling code and basic midamble code.