Agenda item:

Source:
Title:
Document for:

Ericsson
Text proposal for new RACH preambles
Decision

1 Introduction

In TSGR1\#3(99)205, "New RACH preambles with low auto-correlation sidelobes and reduced detector complexity", a new set of RACH preambles were proposed for UTRA/FDD. This contribution provides a text proposal for introduction of the new preambles into S 1.11 and S 1.13 .

2 Text proposal for S1.11

5.2.2.1.2 RACH preamble part

The preamble part of the random-access burst consists of a signature of length 16 complex symbols $\pm 1(+j)$. Each preamble symbol is spread with a 256 chip real Orthogonal Gold code. There are a total of 16 different signatures, based on the Orthogonal Gold code set of length 16 (see $S 1.13$ for more details). 4096 chip long preamble code. The 8192 RACH preamble codes are divided into 512 preamble groups, each group consisting of 16 signatures (see S1.13 for more details).

3 Text proposal for S1.13

It is proposed to replace the subclauses 6.3.3.1 and 6.3.3.2 in S1.13 with the following subclause:

6.3.3.1 Preamble codes

The 8192 RACH preamble codes are divided into 512 preamble groups, each group consisting of 16 signatures. Each preamble code is a Golay complementary sequence of length 4096 chips, which can be represented as a function of a pair of 256 chip long Golay complementary sequences.
For each preamble group $p, p=0,1,2, \ldots, 511$, a specific preamble spreading code pair $X^{(p)}(k)$ and $Y^{(p)}(k)$ is used in conjunction with the signature $s, s=0,1,2, \ldots, 15$, to create the 4096 chip long preamble code $Z^{(p, s)}(l), l=0,1,2, \ldots$, 4095. The preamble spreading code pair $X^{(p)}(k)$ and $Y^{(p)}(k)$ are Golay complementary sequences of length 256 chips, i.e. $k=0,1,2, \ldots, 255$.
The 16 preamble codes $Z^{(p, s)}(l)$ corresponding to the 16 signatures and the preamble spreading code pair $X^{(p)}(k)$ and $Y^{(p)}(k)$ are defined in Table 1. The table describes what preamble spreading code to use during the corresponding period of the 4096 chip long preamble code. For example, $Z^{(p, 8)}(l)=-Y^{(p)}(l \bmod 256)$ for $l=768,769, \ldots, 1023$.
The preamble code is transmitted on both the I and Q branches, i.e. the preamble signal transmitted is $Z^{(p, s)}(l)+j Z^{(p, s)}(l), l$ $=0,1,2, \ldots, 4095$.

Table 1: The 16 preamble codes $Z^{(p, s)}(I)$ for the preamble spreading code pair $X^{(p)}(k)$ and $\boldsymbol{Y}^{(p)}(k)$.

l	$\begin{gathered} 0 \\ \text { to } \\ \text { to } \\ 255 \\ \hline \end{gathered}$	$\begin{aligned} & 266 \\ & \text { to } \\ & 51 \\ & \hline \end{aligned}$	$\begin{aligned} & 512 \\ & \text { to } \\ & 767 \end{aligned}$	$\begin{gathered} 768 \\ \text { to } \\ 1023 \\ \hline \end{gathered}$	$\begin{gathered} 1024 \\ \text { to } \\ 1279 \\ \hline \end{gathered}$	$\begin{gathered} 1280 \\ \text { to } \\ 1535 \\ \hline \end{gathered}$	$\begin{gathered} 1536 \\ \text { to } \\ 1791 \\ \hline \end{gathered}$	$\begin{gathered} 1792 \\ \text { to } \\ 2047 \\ \hline \end{gathered}$	$\begin{gathered} 2048 \\ \text { to } \\ 2303 \\ \hline \end{gathered}$	$\begin{gathered} 2304 \\ \text { to } \\ 2559 \\ \hline \end{gathered}$	$\begin{gathered} 2560 \\ \text { to } \\ 2815 \\ \hline \end{gathered}$	$\begin{gathered} 2816 \\ \text { to } \\ 3071 \\ \hline \end{gathered}$	$\begin{gathered} 3072 \\ \text { to } \\ 3327 \end{gathered}$	$\begin{gathered} 3327 \\ \text { to } \\ 3583 \\ \hline \end{gathered}$	$\begin{gathered} 3584 \\ \text { to } \\ 3839 \\ \hline \end{gathered}$	$\begin{gathered} 3840 \\ \text { to } \\ 4095 \\ \hline \end{gathered}$
$Z^{(p, 0)}(l)$	X	X	Y	Y	X	-X	-Y	Y	X	-X	Y	-Y	X	X	-Y	-Y
$Z^{(p, l)}(l)$	X	X	Y	Y	X	-X	-Y	Y	-X	X	-Y	Y	-X	-X	Y	Y
$Z^{(p, 2)}(l)$	X	-X	Y	-Y	X	X	-Y	-Y	X	X	Y	Y	X	-X	-Y	Y
$Z^{(p, 3)}(l)$	X	-X	Y	-Y	X	X	-Y	-Y	-X	-X	-Y	-Y	-X	X	Y	-Y
$Z^{(p, 4)}(l)$	X	X	Y	Y	-X	X	Y	-Y	X	-X	Y	-Y	-X	-X	Y	Y
$Z^{(p, 5)}(l)$	X	X	Y	Y	-X	X	Y	-Y	-X	X	-Y	Y	X	X	-Y	-Y
$Z^{(p, 6)}(l)$	X	-X	Y	-Y	-X	-X	Y	Y	X	X	Y	Y	-X	X	Y	-Y
$Z^{(p, 7)}(l)$	X	-X	Y	-Y	-X	-X	Y	Y	-X	-X	-Y	-Y	X	-X	-Y	Y
$Z^{(p, 8)}(l)$	X	X	-Y	- Y	X	-X	Y	-Y	X	-X	-Y	Y	X	X	Y	Y
$Z^{(p, 9)}(l)$	X	X	-Y	-Y	X	-X	Y	-Y	-X	X	Y	-Y	-X	-X	-Y	-Y
$Z^{(p, 10)}(l)$	X	-X	-Y	Y	X	X	Y	Y	X	X	-Y	-Y	X	-X	Y	-Y
$Z^{(p, 1)}(l)$	X	-X	-Y	Y	X	X	Y	Y	-X	-X	Y	Y	-X	X	-Y	Y
$Z^{(p, 12)}(l)$	X	X	-Y	-Y	-X	X	-Y	Y	X	-X	-Y	Y	-X	-X	-Y	-Y
$Z^{(p, 13}(l)$	X	X	-Y	-Y	-X	X	-Y	Y	-X	X	Y	-Y	X	X	Y	Y
$Z^{(p, 14)}(l)$	X	-X	-Y	Y	-X	-X	-Y	-Y	X	X	-Y	-Y	-X	X	-Y	Y
$Z^{(p, 15)}(l)$	X	-X	-Y	Y	-X	-X	-Y	-Y	-X	-X	Y	Y	X	-X	Y	-Y

$X^{(p)}(k)$ and $Y^{(p)}(k)$ are constructed from the Golay complementary sequences $A^{(v)}(k)$ and $B^{(v)}(k), v=0,1,2, \ldots, 255$ and k $=0,1,2, \ldots, 255$, defined by the following recursive relation:

$$
\begin{array}{ll}
a_{0}{ }_{0}^{(v)}(0)=1, & a_{0}{ }_{0}^{(v)}(m)=0, m=1,2, \ldots, 255 \\
b_{0}{ }^{(v)}(0)=1, & b_{0}{ }^{(v)}(m)=0, m=1,2, \ldots, 255
\end{array}
$$

$$
\begin{aligned}
& a_{n}^{(v)}(k)=a_{n-1}^{(v)}(k)+W_{n}^{(v)} \cdot b_{n-1}^{(v)}\left(k-D_{n}\right), \\
& b_{n}^{(v)}(k)=a_{n-1}{ }^{(v)}(k)-W_{n}^{(v)} \cdot b_{n-1}{ }^{(v)}\left(k-D_{n}\right),
\end{aligned}
$$

$$
A^{(v)}(k)=a_{8}^{(v)}(k), \quad B^{(v)}(k)=b_{8}^{(v)}(k),
$$

where $n=1,2, \ldots, 8$ is the iteration number.
The variables D_{n} are delays: $D_{1}=1, D_{2}=4, D_{3}=2, D_{4}=32, D_{5}=64, D_{6}=16, D_{7}=128, D_{8}=8$.
$W_{n}{ }^{(v)}, v=0,1, \ldots, 255$, are defined as the 8 -bit binary representations of integers $\{0,1,2, \ldots, 255\}$, i.e.

$$
W_{n}^{(v)}=(-1)^{H_{n}(v)}, \quad v=0,1, \ldots, 255, \quad n=1,2,3, \ldots, 8,
$$

where $H_{n}(v)$ is the n-th bit in the 8 -bits long binary representation of some positive integer v, i.e.

$$
v=\sum_{n=1}^{8} H_{n}(v) \cdot 2^{n-1}
$$

Finally, $X^{(p)}(k)$ and $Y^{(p)}(k)$ are defined as:

$$
\begin{array}{ll}
X^{(p)}(k)=A^{(p)}(k) \text { and } Y^{(p)}(k)=B^{(p)}(k) & \text { for } p=0,1,2, \ldots, 255, \text { and } k=0,1,2, \ldots, 255, \\
X^{(p)}(k)=B^{(p-256)}(k) \text { and } Y^{(p)}(k)=A^{(p-256)}(k) & \text { for } p=256,257, \ldots, 511, \text { and } k=0,1,2, \ldots, 255 .
\end{array}
$$

