3GPP TR 23.742 V0.4.0 (2018-08)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Study on Enhancements to the Service-Based Architecture
(Release 16)

[image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

3GPP, 5G, Architecture, Service, SBA
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2018, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

7Foreword

1
Scope
8
2
References
8
3
Definitions, symbols and abbreviations
8
3.1
Definitions
8
3.2
Symbols
9
3.3
Abbreviations
9
4
Architectural Requirements, Principles and Assumptions
9
4.1
Architectural Requirements
9
4.2
Architectural Principles
10
4.3
Architectural Assumptions
10
4.4
Service Definitions and Principles
10
5
Key Issues
10
5.1
Key Issue 1: Optimal modularization of the system
10
5.1.1
Description
10
5.2
Key Issue 2: User Plane Aspects
11
5.2.1
Description
11
5.3
Key Issue 3: Improvements to service framework related aspects
12
5.3.1
Description
12
5.4
Key Issue 4: Architectural support for highly reliable deployments
12
5.4.1
Description
12
5.5
Key Issue 5: SBA backward and forward compatibility
13
5.5.1
Description
13
5.6
Key Issue 6: System flexibility and service provisioning
13
5.6.1
Definition
13
5.6.2
Description
13
5.7
Key Issue 7: Roaming
13
5.7.1
Description
13
5.X
Key Issue X: <Key Issue Title>
14
5.X.1
Description
14
6
Solutions
14
6.1
Solution 1: Simply replace N4 with service operations
14
6.1.1
Introduction
14
6.1.2
High-level Description
14
6.1.2.1
General aspects
14
6.1.2.2
Bootstrap procedures
14
6.1.2.3
UPF Service
14
6.1.2.4
SMF Service
15
6.1.2.5
Co-existing of UPF using PtP interface and UPF using service based interface
15
6.1.3
Illustrated Procedures
16
6.1.3.1
SMF Pause of Charging procedure
16
6.1.3.2
Node Level Procedures between SMF and UPF
16
6.1.3.3
Session Level Procedures between SMF and UPF
18
6.1.4
Impacts on existing NFs, NF services and interfaces
19
6.1.5
Evaluation
19
6.2
Solution 2: Amendments to NF Service Interaction model
19
6.2.1
Introduction
19
6.2.2
High-level Description
19
6.2.2.1
Reduction of NFservice complexity
20
6.2.2.2
Reliability improvements
20
6.2.2.3
Solution Preconditions, Assumptions and Requirements
20
6.2.2.4
High-level Solution's Architecture
21
6.2.2.4.1
SAPo (Service Access Points) and SAPA (Service Access Point API)
22
6.2.2.4.2
Registration- Discovery and Authorization Management
22
6.2.2.4.3
Communication Mechanism
22
6.2.2.4.4
Policy Enforcement
23
6.2.2.4.5
Load Balancing
23
6.2.2.4.6
Failover Management
23
6.2.2.4.7
Roaming architecture
23
6.2.2.4.8
SAPo Implementation and Deployment options
24
6.2.3
Illustrated Procedures
25
6.2.3.1
Registration and de-registration of NF instances/NF service instances
25
6.2.3.2
Delivery of messages
26
6.2.3.2.1
Communication Service Enabler Roaming Case
28
6.2.3.3
Failover Handling Procedures
29
6.2.4
Impacts on existing NFs/NF services and interfaces
29
6.2.5
Evaluation of the Solution
31
6.3
Solution 3: Distributed Service Framework
31
6.3.1
Introduction
31
6.3.2
High level description
31
6.3.3
Services and illustrated Procedures
33
6.3.3.1
Registration of service instances
33
6.3.3.2
Service invoking procedures
33
6.3.4
Impacts on existing Services and Interfaces
34
6.3.5
Evaluation of the Solution
34
6.4
Solution 4: Distributed 3GPP Aware Service Framework
34
6.4.1
Introduction
35
6.4.2
High level description
35
6.4.2.1
Roaming architecture
36
6.4.2.2
Network slicing aspects
37
6.4.3
Services and illustrated Procedures
40
6.4.3.1
Service Registration/Update/Deregistration
40
6.4.3.2
Service Discovery
41
6.4.3.3
Service Request/Response
41
6.4.4
Impacts on existing Services and Interfaces
41
6.4.5
Evaluation of the Solution
42
6.5
Solution 5: Flexible Service Framework Deployment
42
6.5.1
Introduction
42
6.5.2
High level description
42
6.5.3
Services and illustrated Procedures
44
6.5.3.1
Registration and de-registration of NF instances/NF service instances
44
6.5.3.2
Discovery of NF services and communication between consumer and producer
44
6.5.3.3
Non-standardized services
47
6.5.4
Impacts on existing NF/NF Services and Interfaces
47
6.5.5
Evaluation of the Solution
47
6.6
Solution 6: Services Framework enhanced with a Service Agent
47
6.6.1
Introduction
47
6.6.2
High-level Description
47
6.6.3
Illustrated Procedures
49
6.6.4
Impacts on existing NFs, NF services and interfaces
52
6.6.5
Evaluation
52
6.7
Solution 7: SBA with stateless and unsticky services
53
6.7.1
Introduction
53
6.7.2
High level description
53
6.7.2.1
Solution aspects
53
6.7.2.2
Issues related to long-living bindings between NFs / NF services
53
6.7.2.3
Issues related to stateful NFs
54
6.7.2.4
Solution Preconditions, Assumptions and Requirements
55
6.7.2.5
High-level Solution Architecture
55
6.7.2.5.1
NF instance/NF Service instance selection
56
6.7.2.5.2
Storage layer aspects
56
6.7.3
Services and illustrated Procedures
57
6.7.4
Impacts on existing Services and Interfaces
58
6.7.5
Evaluation of the Solution
58
6.8
Solution 8: Support for highly reliable deployments
58
6.8.1
Introduction
58
6.8.2
High-level Description
58
6.8.3
Services and Illustrated Procedures
58
6.8.3.1
Registration Services
58
6.8.3.2
Communication Services and Shared Data Layer
59
6.8.4
Impacts on existing services and interfaces
61
6.8.5
Evaluation
61
6.9
Solution 9: Temporary bindings between the service instances
61
6.9.1
Introduction
61
6.9.2
High-level Description
62
6.9.3
Illustrated Procedures
65
6.9.4
Impacts on existing NFs, NF services and interfaces
66
6.9.5
Evaluation
66
6.10
Solution 10: NF/NF services Reliability
66
6.10.1
Introduction
66
6.10.2
High-level Description
66
6.10.3
Illustrated Procedures
68
6.10.4
Impacts on existing NFs, NF services and interfaces
68
6.10.5
Evaluation
68
6.11
Solution 11: 5GC Reliability
68
6.11.1
Introduction
68
6.11.2
High-level Description
68
6.11.3
Illustrated Procedures
70
6.11.4
Impacts on existing NFs, NF services and interfaces
70
6.11.5
Evaluation
70
6.12
Solution 12: Common Network Data Service
70
6.12.1
Introduction
70
6.12.2
High-level Description
71
6.12.3
Illustrated Procedures
71
6.12.4
Impacts on existing NFs, NF services and interfaces
71
6.12.5
Evaluation
71
6.13
Solution 13: Utilize System Feature to enable system flexibility and service provisioning
71
6.13.1
Introduction
71
6.13.2
High-level Description
71
6.13.3
Illustrated Procedures
72
6.13.4
Impacts on existing NFs, NF services and interfaces
72
6.13.5
Evaluation
72
6.14
Solution 14: NF/ Service Set based Service Framework
72
6.14.1
Introduction
72
6.14.2
High level description
73
6.14.3
Illustrated procedures
74
6.14.4
Impacts on existing NFs, NF Services and Interfaces
74
6.14.5
Evaluation of the Solution
74
6.15
Solution 15: High reliable deployment via the binding information stored at Framework Function
75
6.15.1
Introduction
75
6.15.2
High level description
75
6.15.3
Illustrated procedures
75
6.15.4
Impacts on existing NFs, NF Services and Interfaces
77
6.15.5
Evaluation of the Solution
77
6.16
Solution 16: the optimization for profile of NF/NF service instance
77
6.16.1
Introduction
77
6.16.2
High-level Description
77
6.16.3
Illustrated Procedures
78
6.16.4
Impacts on existing NFs, NF services and interfaces
78
6.16.5
Evaluation
78
6.17
Solution 17: Modularization based on NF Services only
78
6.17.1
Introduction
78
6.17.2
High level description
79
6.17.2.1
Principles to be used for optimal modularization
79
6.17.2.2
Solution Preconditions and Requirements
80
6.17.2.3
High-level Solution Architecture
80
6.17.3
Modularized 3GPP System Architecture
81
6.17.4
Impacts on existing NF/NF Services and Interfaces
81
6.17.5
Evaluation of the Solution
81
6.18
Solution 18: Further AMF modularization
81
6.18.1
Introduction
81
6.18.2
High-level Description
81
6.18.3
Illustrated Procedures
82
6.18.4
Impacts on existing NFs, NF services and interfaces
82
6.18.5
Evaluation
82
6.19
Solution 19: UPF Services introduced in 5G eSBA
82
6.19.1
Introduction
82
6.19.2
High-level Description
83
6.19.3
Services and illustrated Procedures
84
6.19.4
Impacts on existing Services and Interfaces
84
6.19.5
Evaluation of the Solution
84
6.20
Solution 20: Service Framework based on CAPIF
84
6.20.1
Introduction
84
6.20.2
High level description
84
6.20.3
Services and illustrated procedures
87
6.20.3.1
Registration
87
6.20.3.2
Discovery
87
6.20.4
Impacts on existing Services and Interfaces
88
6.20.5
Evaluation of the Solution
88
6.21
Solution 21: Hierarchical service framework
88
6.21.1
Introduction
88
6.21.2
High level description
88
6.21.4
Impacts on existing NF/NF Services and Interfaces
90
6.21.5
Evaluation of the Solution
90
6.22
Solution 22: Services Framework enhancement
90
6.22.1
Introduction
90
6.22.2
High-level Description
90
6.22.3
Illustrated Procedures
92
6.22.3.1
Registration and de-registration of service instances
92
6.22.3.2
Discovery of service instances and communication between consumer and producer service instances
92
6.22.4
Impacts on existing NFs, NF services and interfaces
93
6.22.5
Evaluation
93
7
Evaluation
94
7.1
Design Principles andCriteria for Backward Compatibility
94
8
Conclusions
94
Annex A:
3GPP SBA and ETSI NFV concepts
95
A.1
Introduction
95
A.2
Architecture perspectives
95
A.2.1
3GPP Rel-15 architecture
95
A.2.2
ETSI NFV including MANO
95
A.3
The relationships
97
A.3.1
3GPP Network Function vs ETSI VNF
97
A.3.2
Microservice implementations and 3GPP Rel-15 SBA and ETSI NFV
98
A.4
Lifecycle management
98
Annex B:
Example of System Features
100
Annex C:
Change history
101

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

This technical report studies and evaluates architecture enhancements on potential optimizations to the Release 15 Service-Based Architecture (SBA) in order to provide higher flexibility and better modularization of the 5G System for the easier definition of different network slices and to enable better re-use of the defined services. Moreover, the technical report considers mechanisms in order to better support automation and high reliability of network function service(s). The following aspects are covered:

-
Optimizing the modularization of the system to improve its agility.
-
Extending the service concept from 5GC control plane to the user plane function(s).
-
Further improvements to service framework related aspects.
-
Architectural support for highly reliable deployments, considering.
-
Study backward and forward compatibility implications resulting from the above bullets.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 29.510: "5G System; Network function repository services; Stage 3".
[5]
3GPP TS 23.222: "Functional architecture and information flows to support Common API Framework for 3GPP Northbound APIs; Stage 2".

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Definition format (Normal)

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

Symbol format (EW)

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

Abbreviation format (EW)

<ACRONYM>
<Explanation>

4
Architectural Requirements, Principles and Assumptions
Editor's note:
This clause will list general architectural requirements, principles and assumptions for this study.
4.1
Architectural Requirements

Editor's note:
This clause will list general architectural requirements for this study.
Services shall be fully self-contained, reusable, and shall have independent life-cycle management (e.g. for scaling, healing, etc.).
The services deployed within a Network Slice shall be able to communicate efficiently with minimal information about the Network Slice configuration.
The service framework functionalities include service registration/discovery, communication between service instances and security functions.

The service framework:

-
shall provide registration and discovery.

-
shall enable efficient communication between service instances and allow distributed scaling.

-
shall enable service communication within one slice, between slices, within one service framework, instance between different service framework instances and between different PLMNs with minimal impact to service.

-
shall enable handling of failure scenarios with minimal impact to service.

-
should enable protection of the system against signaling storms.

-
should support protect the integrity and confidentiality of the communication.

-
should provide the authentication and authorization to access the service.

Editor's note:
Any service framework used for 5GC SBA will need to support 3GPP specific parameters for e.g. NF/Service selection. It's FFS how to capture this aspect in the requirements on the service framework.

4.2
Architectural Principles
Editor's note:
This clause will list general architectural principles for this study.
-
For interaction between UE/RAN and 5GC, the NF services interactions within 5GC have no impact on NG-RAN or UE, and 5GC interacts with UE and RAN via the specified Reference Point(s).

-
For interaction between EPC and 5GC, the NF services interactions within 5GC have no impact on EPC network entities, and 5GC interacts with EPC network entities via the specified Reference Point(s).
-
For interactions with the UPF, the NF services interactions within 5GC have no impact on the UP traffic processing model in UPF, including session level reporting by UPF. For all the session level reports, UPF shall report to SMF.
4.3
Architectural Assumptions
Editor's note:
This clause will list general architectural assumptions for this study.
The assumption is that 5GS architecture supports cloud deployments (fully virtualized) and can make use of cloud operation mechanisms, e.g. auto-scaling, self-healing in line with e.g. ETSI NFV specifications.
The implementation architecture is outside of 3GPP SA WG2 scope. For example, how 3GPP NFs/NF Services are grouped into (VNFs) and how the resources for VNFs are managed is outside of 3GPP SA WG2 scope.
4.4
Service Definitions and Principles
Editor's note:
This clause will list general service principles and assumptions for this study.

The following principles are general principles for design of services. The Principles are work in progress and will be revisited and evaluated at future meetings. Compromises on some of the principles may be required when deciding how the architecture envolve in Rel-16.

-
A service is designed to perform specific tasks, which are different from other services in the system.

-
A service has a unique identification. Services that perform different tasks have a different identification.

-
Service operations are the only way to communicate with a service.

-
Within a given communication context, a service may take the role of either service consumer or service producer. A service consumer is unaware of any internals of the service producer and vice versa.

-
A service is designed to operate on a specific set of data (data context, e.g. session data).

-
A service instance is a software executable that implements a service. Each service instance needs to be uniquely identified.

-
Service instances of the same service may share data via a shared storage resource.

-
Not all the service instances of the same service need to have access to a single, shared instantiation of the data context. This may depend on the implemented data consistency model.

5
Key Issues

5.1
Key Issue 1: Optimal modularization of the system
5.1.1
Description

Optimal modularization of the system shall:
-
enable deployment/configuration of single/separate 5GC services within a network slice or shared by a set of network slices (e.g. as for the case of AMF services) which will:
-
improve the system's agility in terms of tailoring its functionality and features, e.g. for network slicing.
-
improve flexibility in terms of dynamic addition and removal of services and independent lifecycle management of services instances within one network slice or a set of network slices.
-
enable/enhance re-usability of single services.
-
describe principles to be used for an optimal modularization/granularity of services that enables different deployment scenarios (e.g. different levels of service modularization for different NF types)/slice types.

-
achieve appropriate service granularity, i.e. compared to Release 15 NF service definition for existing features and functionalities:
-
remove dependencies between services in order to enable independent implementation and deployment of single/separate services.

-
enable services to be deployed by their own without mandatorily relying on a certain NF, through proper service modelling.
-
clarify how generic the service design should be to enable features to be used beyond the interactions described in procedure flows.
-
study relation between services and system features (modules), e.g. identify where services should be merged where necessary.
-
clarify self-contained, reusable, and independent life-cycle management of services.
5.2
Key Issue 2: User Plane Aspects
5.2.1
Description

In Rel-15, the Service Concept has been introduced into control plane of 5G core. This key issue will study extending the service concept from 5GC control plane to the user plane function(s), however, this key issue will focus on how to extend service concept only to the N4 interface, but not to the N3/N6/N9 interface.
This key issue study following aspects:
-
How to integrate the specific aspects of the UPF (e.g. its resources, states of PDU Sessions and user plane tunnels, etc.) into the service-based architecture model and make sure that those aspects of UPF are encompassed by existing principles of SBA and those going to be newly defined during this study.
-
What will UPF expose/consume on the service interfaces to/from SMF? e.g. service related to PDU Sessions and user plane tunnel establishment, etc. This includes the following aspect:

-
How to enable operator policies on reallocation of sessions handled by UPF instances within a slice e.g, scenarios where overall traffic load or service specific traffic load is being re-balanced and all UPF sessions or a subset of UPF sessions belonging to a UPF instance are reallocated to a new / different UPF instance. A subset of UPF sessions is selected based on operator policies, e.g., sessions related to a particular service, sessions of a particular QoS or protocol, or sessions destined for particular DNN(s). The impact for these scenarios shall be limited to the SMF, UPF and those involved in managing such operator policy.
NOTE:
Only SA2 related aspects of the problem shall be addressed in the study.
-
Possibility of structuring and separating services into control, reporting and exposure services.
-
Any impact to the session management procedure defined in TS 23.501 [2] and TS 23.502 [3] due to UPF having a service based interface?
-
The bootstrap procedures of UPF with service interface, e.g. Whether the Procedure defined in clause 4.17 of TS 23.502 [3] can be re-used or need to define new procedures?
-
Within the mix deployment of both the UPF using PtP interface and UPF using service based interface e.g. within a single PLMN, how to handle session management procedures e.g. UPF selection, UPF relocation, etc?
NOTE:
As stated in the Objectives of the eSBA SID, impacts to User Plane traffic processing are not expected in the eSBA study. Therefore, solutions proposed to address this key issue are not expected to impact functionality handling User plane traffic processing. In addition, solutions addressing this key issue shall not impactN3/N9 tunnelling protocols defined in Rel-15.

5.3
Key Issue 3: Improvements to service framework related aspects
5.3.1
Description

Aiming to further optimize 5G service based architecture this key issue will:

-
identify the set of common service framework functionalities, i.e. that are not part of the service logic.
-
study improvements of service framework related aspects, i.e.:
-
service addressing and communication, e.g., through direct/indirect ways.
-
service discovery, registration & authorisation, in line with the optimisations in Key Issue 1.
-
selection of a service instance when more than one instance is available to process a given service operation".
-
5GC Overload Handling in coordination with CT4.
-
other communication/interaction related functionalities.
study where to place the common service framework functionalities Any solutions should aim to ensure that implementations can use current as well as possible future implementation technologies and design patterns developed by communities outside 3GPP and should also avoid lock ins to specific technologies.

5.4
Key Issue 4: Architectural support for highly reliable deployments
5.4.1
Description

When the 5GC services are deployed in a cloud environment, it is expected that the overall reliability of the system shall be at least the same as the reliability of today's non-cloud based systems. Therefore, the service-based architecture should be designed in a way that seamless replacement, addition or removal of services is possible and does not require specific (re-)configuration (e.g. point to point interfaces or UE specific binding) of both the running and the new component(s).

NOTE 1:
It is assumed that this functionality introduced for CP NFs/NF services can be an enabler for ultra-reliable communication (URLLC).

NOTE 2:
This key issue focuses on the control plane functions of the 5GC.

This key issue will study architectural aspects supporting highly reliable deployments in virtualized environments (i.e. built for cloud) including e.g. (non-exhaustive list):
-
automation to support independent life cycle management as well as failover handling of 5GC NFs and/or service instances.

-
impact on service operation to support scenarios with and without long-living UE-specific bindings between service instances, e.g., by separating functional processing from state repository or other mechanisms.

-
support traceability and monitoring as needed to support automation.

NOTE 3:
Solutions may reuse, where applicable, the enablers for network automation studied in FS_eNA.
5.5
Key Issue 5: SBA backward and forward compatibility
5.5.1
Description

This study item analyses potential enhancements of the Rel-15 SBA. It is clear that operators who deploy the Rel. 15 SBA would need compatibility with and migration path towards a Rel-16 SBA.

While the actual backward compatibility and forward compatibility of each solution and the migration path from the Release15 baseline are expected to be part of the respective solution evaluation this key issue will
-
provide definitions for backward compatibility and forward compatibility

-
develop design principles for backward and forward compatibility and how to apply it to the design of the components of the 5GC

5.6
Key Issue 6: System flexibility and service provisioning
5.6.1
Definition
System Feature: Service (the definition of "service" refers to TR 21.905, clause 3) e.g. SMS, LCS delivered to end user and/or application by 5G system, which is enabled by a set of Network Functions and/or NF services in 5GC and NG-RAN in some cases.
5.6.2
Description
System flexibility enables the efficient support of 5G System Features in the network. The network may support multiple System Features, and these System Features may be added/updated/removed within a network in operation.

This key issue will study:

-
The principles for identifying System Features.

-
Identifying and listing the set of System Features provided by the 5G system.

-
How to associate a System Feature with the related NFs, system procedures/NF services.

-
Potential enhancements to the service framework for better support of system features e.g. service discovery.

-
How to provision a network based on System Features, including: the required NFs and/or NF services.

-
The relationship between System Features and Network Slices.

-
Interoperability between different deployments with different system features and multi-vendor deployment of System Features.
5.7
Key Issue 7: Roaming
5.7.1
Description

Aiming to further optimize roaming 5G service-based architecture this key issue will:
-
Study roaming related improvements.
NOTE:
This key issue is intended to study impacts from service framework improvements, roaming security requirements and related configurations. It is not intended to study other functional aspects of the 5GC roaming architecture.

5.X
Key Issue X: <Key Issue Title>
5.X.1
Description

Editor's note:
This clause provides a short description of the key issue.
6
Solutions
6.1
Solution 1: Simply replace N4 with service operations
6.1.1
Introduction
This solution addresses Key Issue 2 on User Plane Aspects.

6.1.2
High-level Description
6.1.2.1
General aspects

The basic idea is to replace N4 interface with service based interface.
The N4 point to point interactions between UPF and SMF are defined in clause 4.4 of TS 23.502 [3]. This solution proposes to replace them by introducing service interface into UPF and SMF, with corresponding services. The service interface on UPF is named as Nupf, and the service interface on SMF is existing one, i.e. Nsmf.
6.1.2.2
Bootstrap procedures
The clause 4.17 of TS 23.502 [3] already defined the "Network Function Service Framework Procedure". In the clause 4.17.6 of TS 23.502 [3], SMF Provisioning of available UPFs using the NRF is defined, and should be used as base line for UPF with service interface. In other words, locally configure UPF with service interface in SMF is not recommended.
UPF, with SBI interface or with PtP, shall register with NRF by including an indication of supporting PtP or SBI. If UPF indicates support of SBI, the UPF shall also register those services it provides via this SBI.
During the SMF Provisioning of available UPFs using the NRF procedure, the UPF Provisioning Information sent to SMF shall contain interaction method supported for each UPF, i.e. using PtP or using SBI. For the SMF Provisioning of available UPFs using configuration method, e.g. O&M, the configuration information of each UPF shall contain it's interaction method, i.e. using PtP or using SBI.
6.1.2.3
UPF Service
The following table shows the UPF Services and UPF Service Operations.

NOTE:
In the table, the right most column shows the clause of TS 23.502 [3] which corresponds the point to point procedure.
Table 6.1.2.3-1: NF services provided by the UPF

	Service Name
	Service Operations
	Operation

Semantics
	Example Consumer(s)
	Mapping from
TS 23.502

	Nupf_Session
	Establishment
	Request/Response
	SMF
	Clause 4.4.1.2

	
	Modification
	Request/Response
	SMF
	Clause 4.4.1.3

	
	Release
	Request/Response
	SMF
	Clause 4.4.1.4

	Nupf_Session_Reporting
	Subscribe
	Subscribe/Notify
	SMF
	See Editor's note 1.

	
	Unsubscribe
	
	SMF
	

	
	Notify
	
	SMF
	Clause 4.4.2.2

	Nupf_Node_Association
	Setup
	Request/Response
	SMF
	Clause 4.4.3.1

	
	Update
	Request/Response
	SMF
	Clause 4.4.3.2

	
	Release
	Request/Response
	SMF
	Clause 4.4.3.3

	Nupf_Node_Reporting
	Subscribe
	Subscribe/Notify
	SMF
	See Editor's note 2.

	
	Unsubscribe
	
	SMF
	

	
	Notify
	
	SMF
	Clause 4.4.3.4

	Nupf_PFD_Mgt
	Provision
	Request/Response
	SMF
	Clause 4.4.3.5

	
	Remove
	Request/Response
	SMF
	Clause 4.4.3.5

	Nupf_Data_Reporting
	Subscribe
	Subscribe/Notify
	SMF
	See Editor's note 3.

	
	Unsubscribe
	
	SMF
	

	
	Notify
	
	SMF
	Clause 4.4.4

Editor's note 1:
In order to receive/not receive session level reporting, the SMF needs to subscribe/unsubscribe to UPF. How to do this is FFS.
Editor's note 2:
In order to receive/not receive node level reporting, the SMF needs to subscribe/unsubscribe to UPF. How to do this is FFS.
Editor's note 3:
In order to receive/not receive data reporting, the SMF needs to subscribe/unsubscribe to UPF. How to do this is FFS.
Editor's note 4:
To address other key issues, for those service operations related to same PDU session, how to reach correct UPF for this PDU Session is FFS.
Editor's note 5:
Whether those service and service operations could be combined or not is FFS.
6.1.2.4
SMF Service

In order to interact with UPF, the following table shows the SMF Services and SMF Service Operations.

NOTE:
In the table, the right most column shows the clause of TS 23.502 [3] which corresponds the point to point procedure.
Table 6.1.2.4-1: NF services provided by the SMF

	Service Name
	Service Operations
	Operation

Semantics
	Example Consumer(s)
	Mapping from
TS 23.502

	Nsmf_Node_Association
	Update
	Request/Response
	UPF
	Clause 4.4.3.2

	
	Release
	Request/Response
	UPF
	Clause 4.4.3.3

6.1.2.5
Co-existing of UPF using PtP interface and UPF using service based interface
Editor's note:
It is FFS that within the mix deployment of both the UPF using PtP interface and UPF using service based interface e.g. within a single PLMN, how to handle session management procedures e.g. UPF selection, UPF relocation, etc.?
In order to support mix deployment of both the UPF using PtP interface and UPF using service based interface e.g. within a single PLMN, the SMF should know what kind of interface the UPF is using, before actual contact the UPF. For those UPFs been provisioned into SMF either by O&M or by NRF way, the SMF should know which interaction method each UPF use, i.e. this UPF using PtP or that UPF use SBI.
More details can be found in section 6.1.3.2 (node level procedures) and 6.1.3.3 (session level procedures).
6.1.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.

6.1.3.1
SMF Pause of Charging procedure

The details of this procedure using N4 interface could be found in clause 4.4.4 of TS 23.502 [3]. Below is the procedure showing with the service operations.

[image: image3.emf]

SMF UPF

1 .

Nupf_Data_Reporting_Notify

1 .

Nupff_Data_Reporting_Notify

2 . Trigger to

pause charging in

SMF

3 Nupf_Session_Modification_Request

4 Nupf_Session_Modification_Response

Figure 6.1.3.1-1: SMF Pause of charging procedure

1.
The UPF receives downlink data packets for a PDU Session that does not have an N3 tunnel and the UPF sends Nupf_Data_Reporting_Notify to the SMF. The packets are buffered or discarded in the UPF based on operator policy.

2.
Based on operator policy/configuration the SMF triggers the procedure to pause PDU Session charging. Triggering criteria are based on SMF operator policy/configuration.

3.
SMF invoke the Nupf_Session_Modification_Requet service of the UPF where the Usage Reporting is configured, modifying the Usage Reporting Rules for the PDU Session so that the usage collection for charging is stopped. In home routed roaming scenarios, the V-SMF sends a Nsmf_PDUSession_Update request to the H-SMF with a "Start Pause of Charging" Indication. The H-SMF then requests the H-UPF to stop usage collection as mentioned before.

4.
UPF confirms with a Nupf_Session_Modification_Response.
6.1.3.2
Node Level Procedures between SMF and UPF
In Figure 6.1.3.2-1, which shows the Node association setup procedure for mix deployment, in this procedure, the SMF first determine the interaction method that the UPF is using in step 1, i.e. it is SBI or PtP.
Here are two cases, that SMF could determine the interaction method of this UPF.
In the case 1), the SMF using the NRF method to get UPF provisioning of available UPFs defined in clause 4.17.6 of TS 23.502 [3]. The UPF indicates the interaction method it uses, e.g. PtP or SBI during the NF service registration procedures. Thus during the SMF provisioning of UPF instances using NRF, the SMF gets the each UPF's provisioning information contains the interaction method.
In the case 2), the SMF may be locally configured with the information about the available UPFs, e.g. by OA&M system when UPF is instantiated or removed, the interaction method of each UPF may also be configured.
If the UPF is using SBI, the SMF invoke the node association service by sending the Nupf_Node_Assocation_Setup_Request message to the UPF in step 2a, and get response in step 2b. If the UPF is using PtP, the SMF sends the N4 Association Setup Request to the UPF in step 3a, and get response in step 3b. Once the association is success, in step 4, the SMF may remember the interaction method used of the UPF, e.g. in the UPF association context.

[image: image4.emf]SMFUPF

1. SMF determines UPF

interaction method

2a. Nupf_Node_Association_Setup_Request

2b. Nupf_Node_Association_Setup_Response

2b. Nupf_Node_Association_Setup_Response

3a. N4 Association Setup Request

3b. N4 Node Association Setup Response

3b. N4 Node Association Setup Response

4. SMF remember the

interaction method of this

UPF

Figure 6.1.3.2-1: Node association setup procedure for mix-deployment
In Figure 6.1.3.2-2, which shows the Node association update procedure for mix deployment, in this procedure, the SMF first determine the interaction method that the UPF is using in step 1. During step 1, the SMF may know the interaction method from the UPF association context. If there is no such context, the SMF finds the interaction method as the step 1 of the Node association setup procedure for mix deployment.
If the UPF is using SBI, the SMF invoke the node association service in step 2a, and get response in step 2b. If the UPF is using PtP, the SMF sends the N4 Association Update Request to the UPF in step 3a, and get response in step 3b.

[image: image5.emf]SMFUPF

1. SMF reads the locally stored

context, to find out the

interaction method the UPF

2a. Nupf_Node_Association_Update_Request

2b. Nupf_Node_Association_Update_Response

2b. Nupf_Node_Association_Update_Response

3a. N4 Association Update Request

3b. N4 Node Association Update Response

3b. N4 Node Association Update Response

Figure 6.1.3.2-2: Node association update procedure for mix-deployment
Basically, other Node Level procedures, such as Association release, PFD management procedures may follow the general logical sequence described in the Node association update procedure for mix-deployment.
6.1.3.3
Session Level Procedures between SMF and UPF
The session level procedures normally happen after SMF has association with UPF. Within the PDU session establishment procedures, one or more UPF may be selected for such PDU session. During mobility procedure, UPF may be relocated. In such cases, the SMF should use the Node association setup procedure for mix deployment described in clause 6.1.3.2 to associate with selected UPFs.
Taking the procedure in clause 4.3.2.2.1 of TS 23.502 [3] as basis, figure 6.1.3.3-1 shows the PDU session establishment procedure for mix deployment. In this procedure, once the UPF is selected in Step 8, the SMF then knows the interaction method that the UPF is using, i.e. it is SBI or PtP(as those two cases described in clause 6.1.3.2.). Then SMF stores the interaction method that each UPF uses for this PDU session in the SM context of this PDU session.
If the selected UPF is using PtP, the steps in BOX A and BOX C is executed. If the selected UPF is using SBI, the steps in BOX B and BOX D is executed.

[image: image6.emf]SMFUPF

8. UPF selection, and

and SMF determines the selected

UPF interaction method

10as. Nupf_Session_Establisment/Modification_Request

10bs. Nupf_Session_Establisment/Modification_Response

10bs. Nupf_Session_Establisment/Modification_Response

AMF(R)ANAMFPCFUDMDN

Step 1 –7 of UE-requested PDU Session Establishment for non-roaming and roaming with local breakout

in section 4.3.2.2.1 of TS23.502[3]

Step 9. SMF initiated SM Policy Association Modification

in section 4.3.2.2.1 of TS23.502[3]

Step 10a and 10b, N4 session Establishment/Modification

Request and Response in section 4.3.2.2.1 of TS23.502[3]

A: UPF using PtP

B: UPF using SBI

Step 11 –15 of UE-requested PDU Session Establishment for non-roaming and roaming with

local breakoutin section 4.3.2.2.1 of TS23.502[3]

16as. Nupf_Session_Modification_Request

16bs. Nupf_Session_Modification_Response

16bs. Nupf_Session_Modification_Response

Step 16a and 16b, N4 session Modification Request and

Response in section 4.3.2.2.1 of TS23.502[3]

C: UPF using PtP

D: UPF using SBI

Step 17 –20 of UE-requested PDU Session Establishment for non-roaming and roaming with local breakout

in section 4.3.2.2.1 of TS23.502[3]

Figure 6.1.3.3-1: UE-requested PDU Session Establishment for non-roaming and roaming with local breakout for mix-deployment
For the PDU session modification and PDU session release procedure, this SMF also finds the interaction method before talk to UPFs. That is, the SMF retrieves the interaction method of UPF from the SM context, and then use corresponding method i.e. PtP or SBI to interact with the UPF.
6.1.4
Impacts on existing NFs, NF services and interfaces

Impacts to the UPF:
-
UPF need indicates interaction method i.e. PtP or SBI to NRF;
-
UPF need provides those services it could provide via this SBI to NRF;
Impacts to the SMF:
-
SMF needs determine UPF's interaction method i.e. using PtP or SBI, before interact with UPF;
-
SMF needs store UPF's interaction method;
Impacts to the NRF:
Need to support new parameters when UPF using SBI register with NRF.
6.1.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.

6.2
Solution 2: Amendments to NF Service Interaction model
6.2.1
Introduction
This solution addresses key issues 3 "Improvements to service framework related aspects".

The service based architecture of R15 inherits aspects from the reference point based p2p interaction concepts. In this direct interaction model the NF services themselves have several responsibilities that are not part of the NF services' business logic. NF service instances have, for example, to discover other NF service instances as their communication peers, to select one of them, to supervise the message flow, to perform message authorization actions and to maintain the communication relationship with the selected peer for subsequent transactions. Service consumers also need to be involved in load balancing between their potential communication peers before or during a communication relationship.

This puts some redundant burden on the implementation of the NF services which can limit the development and deployment agility and interoperability. But even more critically, the delegation of some of these responsibilities to the NF services can cause limitations for automation flexibility and for customer service availability, especially in case of failures of NF service instances, and therefore have a negative influence on the overall system availability and reliability.

This solution proposes amendments to the NF service interaction model that addresses these issues outlined above on architectural level.

6.2.2
High-level Description

This solution covers two main aspects which are shortly discussed in the following clauses:
-
Reduction of the complexity of the NFservices.
-
Improvement to the overall system reliability and availability.
6.2.2.1
Reduction of NFservice complexity

This aspect addresses the reduction of the complexity of NF services by identification and extraction of functionality that is common to all NF services and placing it into a component outside of the actual NF service.

These common functionalities include:

-
Discovery of communication peers.
-
Selection of communication peers, including load-balancing between selectable communication peers.
-
Delivery of messages between communication peers, and matching of responses where needed.
-
Policy enforcement, authorization of the message delivery.
-
Handling of addition, removal and replacement of NF service instances, i.e. when new selectable peers become available or existing peers disappear from the system.
6.2.2.2
Reliability improvements

This aspect addresses the way how NF service instances communicate with each other. Today the NF services themselves have the responsibility for the discovery and selection of peers for inter-service communication and for keeping the state of these communication relationships alive for subsequent transactions. This behaviour is based on the assumption and pre-condition that both communication peers are highly available and reliable themselves, which is not valid anymore in a cloud based deployment environment.

In case of failures in one NF service instance, each corresponding communication peer must be notified about it and perform failover strategies to find and connect to a replacement peer NF service instance and to restore and synchronize the communication and application state.

This solution removes the need for such failover mechanisms to be implemented as part of every NF service.

6.2.2.3
Solution Preconditions, Assumptions and Requirements

Preconditions:

-
There is no long-living binding between NF service instance(s) and application context(s).
NOTE:
This precondition can be fulfilled e.g. by separation of "compute" resources from "storage" resources.

Assumptions:

-
There exists a mechanism (e.g. Service Mesh, messages oriented middleware …) to decouple communication peers from each other, in order to:

-
Remove the need for implementation of peer-discovery, -selection and -binding from each service

-
Remove the need for implementation of dedicated failover strategies from each service-
That mechanism provides functionality that allows NF service instances to send messages to a type of peer NF service (not a dedicated service instance).

-
That mechanism provides functionality that allows NF service instances to receive messages from another service instance.

-
The API(s) provided by such existing mechanisms is/are different from the 3GPP SBIs.

-
That mechanism has internal functionality to perform peer-discovery and -selection on behalf of the sending NF service instance, i.e. it implements, or interacts with, a service repository such as the NRF.

-
That mechanism can deliver messages from the sending peer to the selected receiving peer.

-
That mechanism provides means to support short-lived peer-bindings, if required for certain communication patterns. Bindings may exist for a single message exchange or over a sequence of such exchanges as needed.

-
That mechanism is message content agnostic, i.e. it supports any payload.

-
That mechanism supports interaction between different data centers / points of presence, while hiding the deployment topology of the system from each of the NF service instances.

-
That mechanism supports authorization and enforcement of policies for the delivery of messages, including location affinity rules in case of distribution across multiple PoPs.

Requirements:

-
The NF service logic must be designed to be interoperable with the selected mechanism.

-
The NF services shall be able to use the APIs, provided by the selected mechanism, i.e. an adaptation function is needed between the 3GPP SBIs used by the NF services and the selected mechanism.

6.2.2.4
High-level Solution's Architecture

The following figure illustrates a high-level architecture, where the common functionalities are separate from the business logic of the NF service implementations and provided by common service framework functionalities.

[image: image7.emf]

Figure 6.2.2.4-1: Non-roaming architecture

-
The architecture consists of the following 3 building blocks:

-
3GPP defined NF services and their SBIs

-
The common functionalities that are expected from an existing mechanism as described in clause 6.2.2.3

-
A Service Access Point (SAPo) function that performs adaptation, as needed, between the NF services and the common service framework functionalities

The access to the functionalities of the service framework is offered via Service Access Point (SAPo) functional elements which provide a northbound API, the Service Access Point API (SAPA) towards the NF services. Multiple SAPo instances (as needed by operator deployment) may exist as shown in the diagram above. Each SAPo instance allows registration and deregistration of NF service instances as well as sending and receiving messages by the NF service instances. SAPos may also monitor the presence of registered NF service instances, e.g. via a keep-alive mechanism. The SAPA is object of standardisation by 3GPP. It defines the API for the common set of service framework functionalities.

SAPA is generic in terms of the access to the common set of service framework functionalities, and agnostic of the content of messages exchanged between NF services. Therefore, technically speaking, any NF service instance can make use of any SAPo instance. However, in actual deployments, SAPos might be pooled for use by certain sets of NF service instances. Such configuration, and number of deployed SAPos, depends on the SAPo deployment options described in subclause 6.2.2.4.8 and on operator deployment strategy.

The actual implementation of the service framework is implementation specific and not object of standardization by 3GPP. It is assumed that existing solutions (e.g. service mesh, enterprise message systems, …) can be leveraged to implement the proposed service framework solution. The Service Access Points (SAPo) are hiding such implementation details of the service frameworks behind a common API (SAPA). Therefore, NF services are able to run on any service framework implementation for which a SAPo, compatible with the 3GPP-defined SAPA, exists.

As stated, the SAPA must be standardised on both stage2 and stage3 level so that multivendor interoperability of the NF services is supported. It is possible in principle that the "southbound" interface of the SAPo also uses a standard protocol, e.g. AMQP (standardised by OASIS) for enterprise message systems. In this case, it is not precluded that SAPo is integrated into a service implementation; however, this combined implementation would then only operate with AMQP-based frameworks and lose its generic interworking capability with any SAPA-based (3GPP) framework.

The intention of this architecture is to de-couple communication peers from each other, to simplify the internal structure of the NF services and to overcome limitations of the traditional P2P interaction concept, especially with respect to failover handling.

The functional blocks of the service framework and their role in the architecture are described in the following clauses.

NOTE:
As with the NRF in Release 15 the mentioned Service Framework Functions can be slice specific or shared across slices.

6.2.2.4.1
SAPo (Service Access Points) and SAPA (Service Access Point API)

Service Access Point is a functional entity that acts as an adapter between the implementation specific service framework and the NF services that make use of the service framework functionalities. The SAPA is the "contract" between services and the SAPo, which is defined, standardised and documented by 3GPP.
The SAPA provides methods for the registration/de-registration of NF services instances as well as for the sending and receiving of messages.

Editor's note:
The details of the message exchange between NF services and the SAPo, including what needs to be clarified in the study or can be left to the normative phase, are FFS.

NOTE: Protocol details (e.g. whether the SAPA provides 1:1 replica of R 15 SBI or uses a simple encapsulation of R 15 SBI), can be left to stage 3 decisions.
The implementation of the SAPo depends on the vendor specific implementation of the service framework; therefore it can be assumed that each service framework vendor will provide its own SAPo implementation. Subclause 6.2.2.4.8 discusses possible ways how SAPos can be implemented and provided.

6.2.2.4.2
Registration- Discovery and Authorization Management

The architecture figure depicts functional blocks for the registration-, authorization- and discovery- management as part of the service framework. This functionality correlates with the functionality of the Network Repository Function (NRF).

The SAPA must contain methods to perform registration, de-registration, authorization. SAPA does not require methods for discovery, because the service producer selection by a service consumer is not required in this solution (it is an implicit functionality provided by the framework).

Editor's note:
Solution 5 provides a way how discovery can be treated in a backward compatible manner.
6.2.2.4.3
Communication Mechanism

The Communication Mechanism is the core part of the service framework because it is in full control of the message exchange. It is responsible for the routing and forwarding of messages between consumer and producer NF instances/ NF service instances and supports the automatic establishment and destruction of temporary bindings between NF instances/NF service instances when needed. Messages are in this model addressed to types of producer NFs/NF services, not to individual producer NF instances/ NF service instances. The routing mechanism takes over the responsibility of the discovery and selection of communication peers, as well as the process of the actual delivery of messages between the peers. The internal protocols and mechanisms used by the communication mechanism for the plain message delivery are implementation specific.

NOTE 1:
Management of temporary bindings is described in other solution proposals.
The SAPA must therefore contain methods allowing service instances to delegate message delivery and receiving to the service framework. This might also include mechanism for the notification of message delivery failures.
Editor's note:
How to support selection of, and communication with, a specific (set of) peer(s) (e.g. in case of UDM, UPF), whether it is needed and/or the temporary bindings can be reused, is ffs.
The Communication Mechanism shall also monitor the message delivery process and might use this information for support of load-balancing as well as for the detection of failure conditions.

NOTE 2:
Cross data center communication follows the same principles as with release 15 deployments.

6.2.2.4.4
Policy Enforcement
The described Communication Mechanism decouples the communication peers from each other and applies common procedures to all messages exchanged between communication peers. Amongst other things this allows for a common enforcement of communication related policies, if required.

For example, the Communication Mechanism may provide a policy enforcement mechanism to limit the message rate in receiving and sending directions up to discarding of messages in case of overload.

Another example is to handle location affinity in deployments where the service frameworks spans over multiple locations.

In general, it is expected that the specification and management of these policies is specific to the framework. Any specific policy that affects the SAPA would be standardised by 3GPP.

NOTE: Some policies applicable to the SAPA, e.g. throttling message rates by an NF service instance for overload protection / mitigation, should be discussed at stage3.
6.2.2.4.5
Load Balancing
Due to the proposed monitoring of the message delivery process, the routing management component shall have a certain degree of awareness of facts like:

-
message retention/delivery times,

-
delivery failures for certain message types or communication peer instances,

-
overall system load, etc.

Such facts, combined with potential additional implementation specific algorithms, might be used by the service framework to apply load-balancing to the message delivery process.

NOTE: Details on the message delivery, i.e. pushed to a producer instance by the service framework or pulled by a service instance are subject for stage 3 decision. Existing realisations of service frameworks should be taken into account when defining these details.
6.2.2.4.6
Failover Management

A major point that this solution addresses is a drastically simplified management of failover situations. In the traditional P2P based interaction model with long-living bindings between communication peers (as specified in R15) the responsibility for failover handling is put on the service implementations.

The solution, described in this document proposes an implicit management of failover situations in the service framework and removes this burden from the NF service implementation. This is achieved by the decoupled, unsticky communication relations between the NF service instances in combination with a stateless NF service design (request messages are not sent to a specific instance of a NF service, but to a NF service type instead). This makes NF service instances in general replaceable without specific recovery procedures to be specified. If the communication mechanism detects certain NF service instances being unresponsive, then the corresponding message will be routed to another NF service instance that can process it without impacting the customer service. This ensures that only "healthy" NF service instances are used.

e.g. a heartbeat mechanism might be introduced that allows an early detection of failed service instances and supports the health monitoring mechanism.
6.2.2.4.7
Roaming architecture

Following figure illustrates the architecture in the roaming case.

[image: image8.emf]
Figure 6.2.2.4.7-1: Roaming architecture

The SEPP (Security Edge Protection Proxy) is connected to the Service Framework via a R-SAPo (Roaming-SAPo) and registers itself with an indication of the reachable PLMNs. The roaming procedures are transparent to the NF/NF services.

The R-SAPo does not expose SBI methods, but instead just forwards messages to and receives messages from SEPP.

6.2.2.4.8
SAPo Implementation and Deployment options

This clause describes two different options how SAPos can be implemented and deployed, to indicate consequences for the overall system deployment and implementation flexibility.

In these two options the SAPo can either be integrated and delivered with the Service Framework (SFW) or be a part of the NF service implementations directly.

[image: image9.png]
Figure 6.2.2.4.8-1: SAPo integrated in the Service Framework

The sequence above illustrates a NF/NF service registration procedure for the case that the SAPo is part of the Service Framework. In this case the register request from the NF service instance [01] and the returned response [03] are 3GPP compliant service invocations. The SAPo translates them to and from a Service Framework specific format.

With this deployment option, NF services as well as the Service Framework are in general replaceable by different implementations, since they are de-coupled by a 3GPP standardized SAPA. A NF service implementation can operate on different Service Frameworks as well as different NF service implementations can operate on the same Service Framework.

[image: image10.png]
Figure 6.2.2.4.8-2 SAPo integrated in the Service implementation

The second deployment option shows the case when the SAPo is integrated into the NF service implementation. In this case the register request from the NF service instance [01] and the returned response [03] are Service Framework specific service invocations and therefore not 3GPP compliant. The NF service implementations might in this case share a framework specific library that encapsulates the interaction with a dedicated implementation of the Service Framework.

With this deployment option, the NF service implementations are only replaceable for the same type of Service Framework. An operation on a different framework would require adaptations in the NF service implementation. On the other hand, this deployment option might allow for framework specific optimizations, e.g. to improve performance.
6.2.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.
The procedures illustrated in the following clauses are based on deployment option 1, as described in previous chapter.
6.2.3.1
Registration and de-registration of NF instances/NF service instances

This clause describes the high-level procedures for the registration of NF instances/NF service instances at the service framework. In general, the procedures for the registration of NF/NF service (instances) are unchanged compared to R15.

Registration of NF instances/NF service instances:
[image: image11.png]
Figure 6.2.3.1-1: NF/NF service instance registration procedure

01.
The NF instance/NF service instance sends a 3GPP compliant register message to the Service Framework to register itself. The integrated SAPo performs all necessary actions to adapt the registration message to a format compliant with the vendor specific service framework implementation and forwards it to the framework.

02.
The vendor specific service framework implementation performs any required steps to handle this registration.

03.
The Service framework returns a 3GPP compliant register response back to the NF service instance.

De-Registration of NF instances/NF service instances:
[image: image12.png]
Figure 6.2.3.1-2: NF/NF service instance de-registration procedure

01.
The NF instance/NF service instance sends a 3GPP compliant de-register message to the Service Framework to de-register itself. The integrated SAPo performs all necessary actions to adapt the de-registration message to a format compliant with the vendor specific service framework implementation and forwards it to the framework.

02.
The vendor specific service framework implementation performs any required steps to handle this de-registration.

03.
The Service framework returns a 3GPP compliant de-register response back to the NF service instance.

6.2.3.2
Delivery of messages

As agreed in TR 23.742, clause 6.5, a NF/NF Service consumer can request services, i.e., NFs/NF Services by name, using the Communication Service. The Communication Service is referred to in TR 23.742, clause 6.5 as "message passing function". The solution assumes that the specific business logic is used to derive the name the message passing function uses to route the message. This is illustrated in Figure 6.2.3.2-1 below:

[image: image13.emf]Communication ServiceService X Instance-12. CommsService_request (ServiceName (e,g., ³session.smf.3gpp.org´��[business logic parameters])4. Comms Service sets up routing path to a selected Service Instance of Service Y5b. CommsService_request ([business logic parameters])Service Framework1. Service X selects Service Y¶s name to request services in line with its business logic, e.g.,³session.smf.3gpp.org´3. The Service Framework may use operator polices to select a suitable instance of Service Y to handle the service request E.g., Location, S-NSSAI or DNNService Y Instance-2Service Y Instance-15a. CommsService_request ([business logic parameters])

Figure 6.2.3.2-1: Communication Service Enabler

1) Service X Instance-1 determines as part of its business logic that a service needs to be invoked. Service X Instance-1 derives a Service name based on its specific business logic. E.g., if a Mobility Management Service Instance is requesting services leading to the establishment of a PDU Session, the relevant instance selects e.g,."session.smf.3gpp.org and it provides the associated business logic parameters. It is FFS how specific business logic derives the address or the name of the service producer.
Note that using similar naming, Network Slicing can be supported either as part of the business logic or through NF/NF Service naming. e.g., if a Mobility Management Service Instance is requesting services leading to the establishment of a PDU Session in a particular Network Slice, e.g., Service X Instance-1 selects e.g,."session.smf.s-nssai_1.3gpp.org" (e.g., as specified in TR 21.905 [1]),) and it provides the associated business logic parameters. Note that in this solution, the Service consumer can use any name to request a Service from the Service producer. This name can be constructed using any of the examples provided above, including the UUID as described in IETF RFC 4122.
2) Service X Instance-1 requests communication services from the Service Framework indicating the Service Name and associated business logic parameters.

3) The Service Framework selects a Service Instance of the requested Service, based on the business logic parameters provided by Service X Instance-1 and it may optionally use network operator polices for such selection

4) Depending on the internals of the Communication Service, within the Service Framework, the communication service derives a routing path to the selected Service Instance.

5a/b) The Communication Service delivers the message from Service X Instance-1 to the selected Service Y Instance(1/2), through the selected path.

6.2.3.2.1
Communication Service Enabler Roaming Case

[image: image14.emf]Communication ServiceService X Instance2. CommsService_request (ServiceName (eg., ³session.smf.plmn-id.3gpp.org´��[Business logic parameters])V-Service Framework1. Service X selects Service Y¶s name to request services in line with its business logic: E.g., ³session.smf.plmn-id.3gpp.org´Communication ServiceH-Service FrameworkService Y Instance 4. CommsService_request (e.g., session.smf.3gpp.org, [business logic parameters])6. CommsService_request ([business logic parameters])5. Comms Service in H-Service Framework sets up routing path to an instance of Service YvSEPPhSEPP3. Comms Service within V-Service Framework determines a path to H-Service Framework based on Service Y name4a. CommsService_request4b. CommsService_request

Figure 6.2.3.2.1-1: Communication Service Enabler - Roaming Case

1) Service X Instance-1 determines as part of its business logic that a service needs to be invoked and that this service is outside the current PLMN. Service X Instance-1 derives a Service name for Service Y, based on its specific business logic. E.g., if a Mobility Management Service Instance is requesting services leading to the establishment of a home routed PDU Session for a visiting roaming subscriber, Service X (e.g., mm1.amf.3gpp.org/subscriber-data/{supi}/) may select Service Y's name, which is offered in the HPLM, e.g,."session.smf.plmn-id.3gpp.org, and it provides the associated business logic parameters
2) Service X Instance-1 requests communication services from the V-Service Framework indicating the Service Name, the HPLMN ID and associated business logic parameters. Multiple instances of the Communication Service can be deployed according to the network operator deployment needs.

3) The Communication Service, within the V-Service Framework, routes the message to a Communication Service in the HPLMN according to the path derived from the Service Name in the HPLMN

4) The Communication Service in the VPLMN delivers the message from Service X to the Communication Service in the HPLMN.

5) The Communication Service in the HPLMN, uses the Service Name, operator policies and business logic parameters to derive the path toward the selected Service Y Instance.

6) The Communication Service in the HPLMN delivers the message from Service X Instance to the selected Service Y Instance, through the selected path.
6.2.3.3
Failover Handling Procedures

Due to the decoupled service communication and the implicit load-balanced distribution of messages to one of the registered producers of the same type there are no special procedures for failover foreseen.

One exception is the case when a consumer sends a message to a special service type and fails/crashes before it is able to receive and handle the corresponding response.

6.2.4
Impacts on existing NFs/NF services and interfaces
The procedures for registration, de-registration and update of NF instances or NF service instances as well as the SBIs do not change on Stage 2 level.

Service implementations don't need to handle the discovery of communication peers, the maintenance and potential recovery of the communication relationship as well as the enforcement of communication related policies.

Service implementations must register/de-register, and send and receive messages via SAPA.

NOTE:
Impact on granularity and therefore whether NFs or NF services or both exist is studied in key issue 1 "Optimal modularization of the system".
This solution supports service compatibility through the support of Rel-15 service interfaces in the Rel-16 Service Framework.

Figure 6.2.4-1 illustrates how Discovery and Communication Services can work without modification to Rel-15 NFs.

[image: image15.emf]NF (E.g., AMF)1. As part of the business logic (E.g., SMF Selection) a NF Service consumer uses target NF name and type to choose a target NF Service that can provides required services according to business logic (e.g., Session Management Service)Rel.15 SBIDiscovery and CommunicationNF (E.g., AMF)5. Construct HTTP request4. Service Operation (Business logic parameters)6. HTTP Request (smf.3gpp.org)7. HTTP Response (200)NF(E.g., AMF)1a. As part of the business logic a NF Service consumer uses target NF name and type to choose a target NF Service that can provide required servicesComms Service2. Discovery Request(smf, pdusession_establishment, [business logic parameters)3. Discovery Response (FQDN or IP Address)NF(E.g., SMF)2a. Discovery Request (smf,pdusession_establishment,[business logic parameters])5a. Comms Service sets up routing path to NF Service Instance5a. Service Operation ([business logic parameters])SBA R15 message routingSBA R16 message routingDiscovery Service3a. Discovery Response (FQDN of Service Framework NAP (e.g., session.smf.3gpp.org/pdu_session/{pdusessionid}/establish)4a. Service Operation (FQDN of Service Framework NAP (e,g., ³session.smf.3gpp.org/pdu_session/{pdusessionid}/establish´��[business logic parameters])Service FrameworkNRFHTTP Message Routing

Figure 6.2.4-1: Enabling backward compatibility to Rel-15 communication service

Figure 6.2.4-1 describes a comparable view of how Rel-15 message exchange across SBA compatible NF Services can work using the proposed Communication Service.

1)
A Rel-15 NF Service selects a target NF service name and NF type, based on the execution of the business logic.
1a)
The proposed Communication Service also enables NF Service to select a target NF Service name, in accordance to their business logic by using Discovery Service within the Service Framework. Note that since the proposal assumes name based routing, a Rel-15 NF can keep using the NF name and type to request Discovery Service from the Service Framework

2/3)
A Rel. 15 NF Services uses the target NF Service name and type, along with business logic parameters (e.g., S-NSSAI, DNN, SUPI) to obtain the IP Address or FQDN of the target NF Service

2a/3a)
The proposed Communication Service uses the target Service name to derive the path toward the relevant Service Instance. A Rel-15 NF Service could avail of the Service Framework Discovery Service to obtain the FQDN of a target Service Framework, that will route the message to the NF Service producer.
4)
A Rel-15 NF Service uses the FQDN or IP Addressed of the target NF Service to route the control plane message to the target NF Service producer

4a)
In the proposed Communication Service the Rel. 15 NF uses the URI provided by the Service Framework which along which will be use by the Communication Service to routes the message to a target Service Instance, according to network operator polices and business logic parameters. Note that the URI is not the URI of the service instance but the an identifier that pointing to the Service Framework that would process the message.
5/6/7)
A Rel. 15 system still needs to implement a Communication Service able to route control plane messages based on the FQDN or IP Address. The proposed Communication Service routes the message using the FQDN or IP Address provided by the NF Service as a name to derive path to the NF Service producer along with the business logic parameters.

Editor's note:
Further details regarding impacts are FFS
6.2.5
Evaluation of the Solution
Editor's note:
This clause provides an evaluation of the solution.
6.3
Solution 3: Distributed Service Framework

6.3.1
Introduction
This solution addresses key issues 3 "Improvements to service framework related aspects".

6.3.2
High level description

This clause proposes a framework that is based on Rel-15 and is designed as distributed manner to achieve high efficiency.

The service logics and the service framework are decoupled. A service consists of service logic and the "framework agent". The framework contains services defined by 3GPP such as framework agent, service registration, discovery, authorization, routing control, etc., as well as other supporting services that are not defined by 3GPP.
Service logics are only responsible for the processing of business logic, and do not need to care about service discovery. When there is a service invoke request, the request will be sent to the framework agent. A service, when be introduced into the system, will register to the framework through the framework agent. The framework agent will store the service instance ID and determine whether it is a new service based on the Service profile (e.g., service name, version, location of service, DNN, slice information). The framework agent will register the service to the framework if it is a new service, with the Service profile, otherwise the agent just store the service instance ID.

[image: image16.emf]
Figure 6.3.2.1: Distributed Service Framework of eSBA

The service framework as shown in Figure 6.3.2.1. The Service 1 and 2 in the Figure can either be instances of two NF services or one NF service. The Service framework consists the following aspects:

-
Framework agent: responsible for the communication between services, through proper message routing and service discovery as needed. Therefore, the agent contains service discovery logic as well message encapsulation/de-capsulation logic, when the service producer instance is not in the local agent that serves the service, the local agent discover the peer agent instance through the service profile. An agent, in implementation, can be integrated with service logic as software module or deployed in the same platform (e.g., data center). The service agent enforces message invoking monitoring, select the appropriate peer service instance and the appropriate routing to communicate based on the "Routing Control" functionality of the framework. A Data Center can deploy one or more framework agent instance. An agent can be invoked by one or multiple service logic instances. An agent can be invoked by one or multiple service logic instances.
NOTE: the framework provides deployment flexibility and it is per choice by operator to enable a/a set of framework agent(s) to serve some services, e.g., based on Service type, framework agent vendor, or data center.
Editor's note:
Considering the reliability of the framework agent, the load balancing and failover mechanism can be used by the Framework agent.
-
Routing Control: a logical centralized service that and provides service interaction message routing policy for framework agent. The routing control may consider factors such as versions, capacities of the service instances, which are unaware by services.

Editor's note:
Whether the interface between Routing Control and Framework Agent is FFS.
-
Registration, authorization and discovery. Similar as the NRF role defined in Rel-15. Provides service registration, authorization and discovery. The discovery service may be invoked by framework agent. The registration service will stores the registered service profile and the corresponding end address (the framework agent address).
The interactions shown in Figure 6.3.2.1 are through API invoking through the following service-based interfaces:

-
Ns1 is the interface between any service logic and the framework agent. It is defined by 3GPP as a general interface which does not specific for a certain service. A service logic will do service registration to the service framework, through Ns1.

-
Ns2 is the interface between a framework agent and a framework. Ns2 is defined by 3GPP. The interface is not responsible for sending and receiving specific service messages but responsible for the control of the agent, as well as service discovery as needed. Thus, Ns2 is based on the R15 defined Nnrf interface and needs to be further enhanced to support routing control and other enhanced function which is FFS.

-
Ns3 is the interface between framework agents. According to the framework's routing policy, the agent select the peer agent instance and establish a direct connection toward it to send and receive service messages for service logic, then the peer agent select the specific service instance to route the message. The interactions between services across service framework follows Rel-15 defined HTTP/2 based interfaces.

6.3.3
Services and illustrated Procedures
6.3.3.1
Registration of service instances

[image: image17.emf]NF Service AFramework AgentFramework2. Service registration, if needed3. Registration response1. Service registration4. Registration response

Figure 6.3.3.1-1: Service registration procedure
1.
When a service instance becomes operative for the first time (registration operation) or upon individual service instance activation/de-activation within the service instance (update operation) e.g. triggered after a scaling operation, the service instance register itself to Framework Agent (service profile, service instance ID).
Note: The framework agent address to which the service instance belongs is configured in the service instance in advance. The agent store the service profile, service instance ID and other parameters of the service instance.

2.
The agent check whether it is a new service profile or just a new service instance for an existed service profile, if it is a new service profile, the agent will register this new service profile to the framework, together with the framework agent address.

3.
Framework to framework agent: Registration response.

4.
Framework agent to service instance：Registration response.
6.3.3.2
Service invoking procedures
A agent provides the "Message Transfer" service which is defined with input parameter as:

-
User ID, Service profile of service provider, Message container.

The service is invoked when a service logic needs to communicate with other services. The agent establishes the connection to the remote agent if necessary and transfer the message to the peer, as shown in the Figure 6.3.3-1.

[image: image18.emf]NF Service AFramework AgentFrameworkNF Service BFramework Agent1. Invoke Message Transfer service of the agent 2. Service discovery, if needed3. Message Transfer7. Message Response5. Message Transfer6. Message Response4.selects a service instance

Figure 6.3.3.2-1: Service invoke procedure

Taken the AMF interaction with UDM as an example (e.g., AMF register with UDM using Nudm_UECM_Registration in the registration procedure).
1.
When a UE accesses to 5GC, the service consumer NF service A instance decides to register the UE and construct Nudm_UECM_Registration service message, then invoke the corresponding Framework Agent's Message Transfer service with parameter: User ID (SUPI), service profile of the service provider and the Message container(body of the Nudm_UECM_Registration service invoke) to transfer the service message to Framework Agent.

2.
The Framework agent will check whether the qualified Nudm_UECM_Registration service instance is available in local, if yes then the agent will forward the message to it. Otherwise, the agent will select a peer framework agent instance through service discovery procedure and establishes a connection to it.

3.
Local Framework Agent route the message to the peer agent,

4.
The peer agent selects a Nudm_UECM_Registration service (NF Service B) instance depending on the local policy or the policy from the framework

5.
The peer agent forwards the service invoking message to the selected service instance.

6.
The peer agent to the local agent: Response message.

7.
The local agent to the consumer service instance: Response message.

6.3.4
Impacts on existing Services and Interfaces

Editor's note:
Further details regarding impacts are FFS.

This distributed service framework is compatible with R15 and extends the NRF based service framework.
6.3.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.
6.4
Solution 4: Distributed 3GPP Aware Service Framework

Service framework is a set of common services which are not part of any business logic but can be used by any business logic. It consists of common services like Discovery, Authorization, Overload Control, Security, etc.

This solution is backward compatible with Rel-15 SBA.

The service framework proposed here will be distributed across multiple data centers/hosts.

This solution also addresses key issue 5 on backward compatibility.
6.4.1
Introduction
This solution addresses key issues 3 "Improvements to service framework related aspects".

6.4.2
High level description

This clause proposes a framework that is based on R15 SBA with some possible R16 enhancements and is designed as a service framework to enable inter service communication in a consistent and uniform way.

The business logic and the service framework are decoupled. A service consists of business logic which can be independently configured, deployed and scaled. The service framework contains a set of common services such as service registration, discovery, authorization, routing control, etc. Service Framework may be realized in an operator network using various mechanisms and could support various models of distribution and connectivity with the business logic. However, the functions provided by the framework and implementation aspects of the framework are not intended to be defined by 3GPP. What may be defined by 3GPP, if required, are certain requirements around functions provided by the service framework (e.g. an overload control algorithm).

The Service Framework will have an adaptation layer, which is 3GPP aware, and which is thus able to select a producer based (among other considerations) on 3GPP info. The Business Logic always communicates with the Service Framework via the service adaptor using the defined SBI service messages. The service adaptor may consume or modify the message in the process of delivering it based on configuration and the Service Framework functionality. The service adaptor can be configured as an HTTP outbound proxy such that all messages sent from a consumer or producer goes through the service adaptor. Note that the service adaptor functionality can be realized by various models of distribution and connectivity to ensure it is not a bottleneck or single point of failure.
Examples of capabilities that could be supported by Service Adaptor are:

-
Utilization of 3GPP Information Elements in HTTP headers and JSON content in performing discovery, selection, load balancing, prioritization etc.

-
Adaptation to framework implementation

-
Supports distributed multi-host/multi-datacentre architecture

The Service Framework should be capable of performing transparent routing or non-transparent routing. In the transparent routing mode, the service framework routes messages between consumers and producers without modifying identities/URIs used to locate corresponding resources. In this case, such identities/URIs are assumed to be routable between consumers and producers. In the non-transparent mode, the service framework may modify identities/URIs used by consumers and producers to locate corresponding resource for the purpose of hiding such information from recipients (topology hiding) or to transform non-routable identities/URIs to routable ones.
API revisions that may be performed as part of Rel-16 shall facilitate presence and functioning of a Service Framework. Considerations such as placing of information related to routing, discovery, priority etc in headers vs. content shall take into account presence of Service Framework. Similarly, authorization and authentication aspects shall take into account the presence of Service Framework. The service framework introduction shall ensure backward compatibility with Rel-15 services.
Business logic is only responsible for the processing of business logic, and does not need to care about service discovery. When there is a service invocation request, the request will be sent to the service framework (as an outbound proxy).
The interactions between services across the service framework follow the SBA defined HTTP/2 based interface. This includes the interactions with the NRF.

The service framework forwards a request from one service to another service.

Figure 6.4.2.1 below illustrates the service framework and its interaction with the business logic of the 3GPP NF.

[image: image19.emf]Service 1(Business Logic 1)Optional[NRF (Business Logic)]Svc Reg. ManagementDiscovery ManagementAuthorization ManagementLoad BalancingOverload controlMore services...Service FrameworkService 2(Business Logic 2)Service n(Business Logic n)SBISBISBISBIService Adaptor

Figure 6.4.2.1: Distributed Service Framework of eSBA

To support the backward compatibility with R15 the NRF can be used along with Service Framework. R15 NFs can continue to interface with R15 NRF via the Service Framework, including performing the selection of a service producer instance. However, in order to fully achieve the separation of business logic from the common service framework, a key part of service producer selection logic which has been included in the service consumer (in release 15) should be moved to the Service Framework.
Follows are some of the key functionalities, which the service framework supports:
Service registration, Service discovery, Service authorization, Load balancing, Overload control and more.

Editor's note:
Additional services provided by the service framework such as failover handling, retries, etc. are FFS.
6.4.2.1
Roaming architecture

The following figure illustrates the architecture in the roaming case:

[image: image20.emf]Service 1(Biz Logic 1)Svc Reg. ManagementMore services...Service FrameworkSBISBIService AdaptorVPLMNService n(Biz Logic n)[NRF](Biz Logic)SBIService 1(Biz Logic 1)Svc Reg. ManagementMore services...SBISBIService AdaptorService n(Biz Logic n)[NRF](Biz Logic)SBIvSEPPSBIhSEPPSBIService FrameworkHPLMN

Figure 6.4.2.1-1: Roaming architecture

The SEPP (Security Edge Protection Proxy) functions as defined in TS 23.501 [2]. It communicates with the Service Framework via the Service Adaptor using the 3GPP SBIs.
The interactions between NFs/services and the SEPP for roaming procedures are handled by the service framework: the service framework sends messages to the SEPP when they are intended for another PLMN and sends messages received by the SEPP from another PLMN to the appropriate internal NF consumer/producer.
6.4.2.2
Network slicing aspects
The Service Framework based on operator preferences may get deployed at three possible levels: PLMN level, slice common level, slice level. Figure 6.4.2.2-1 below illustrates a deployment option where each slice has its own Service Framework. This design adheres to slice isolation principles, simplifies the service framework logic, and enables the operator to implement different types of frameworks per slice. The PLMN level NFs such as the AMF, UDM and NSSF are viewed in this regard as being located in a special type of "slice", and thus use their own Service Framework. In this deployment option, Service Frameworks will need to communicate with each other to convey messages between NFs/services served by different Service Frameworks.

NOTE 1: How different Service Framework instances discover each other is outside of the scope of 3GPP, i.e. this is similar to how different instances of NRFs in discover each other in Release 15.

[image: image21.emf]SBISBIService 2(Biz Logic 2)Service n(Biz Logic n)Service FrameworkService 1(Biz Logic 1)Service 2(Biz Logic 2)Service n(Biz Logic n)Service FrameworkService 1(Biz Logic 1)Service 2(Biz Logic 2)Service n(Biz Logic n)Service FrameworkService 1(Biz Logic 1)PLMN LevelNW Slice 1NW Slice 2SBI

Figure 6.4.2.2-1: Service Framework deployed in NS Level

Figure 6.4.2.2-2 below illustrates a deployment option where a Service Framework is deployed in a slice common level, i.e. it is shared across multiple slices. This design enables visibility of the Service Framework to multiple slices, and may be more suitable to deploy than a slice level Service Framework to minimize the number of service frameworks when multiple slices have similar characteristics, and thus having a common logical service framework can simplify the deployment model. In this deployment model, the PLMN Level NFs such as the AMF, UDM, NSSF, may still use their own Service Framework.

NOTE 2: How different Service Framework instances discover each other is outside of the scope of 3GPP, i.e. this is similar to how different instances of NRFs in discover each other in Release 15.

[image: image22.emf]SBISBISBISBISBISBISBIService 2(Biz Logic 2)Service n(Biz Logic n)Service 1(Biz Logic 1)Service 2(Biz Logic 2)Service n(Biz Logic n)Service FrameworkService 1(Biz Logic 1)Service 2(Biz Logic 2)Service n(Biz Logic n)Service FrameworkService 1(Biz Logic 1)PLMN LevelNW Slice 1NW Slice 2SBISBISBI

Figure 6.4.2.2-2: Service Framework deployed in an NS-Common Level
Figure 6.4.2.2-3 below illustrates a deployment option where a Service Framework is deployed in a PLMN level, i.e. all NFs in the PLMN (including those inside a slice) communicate via a common logical Service Framework (which can be deployed as a distributed framework). This design enables visibility of the Service Framework to the entire core, and may be simpler to deploy than a slice level Service Framework. In this deployment option, there is no need for an inter service framework communication.

[image: image23.emf]SBISBISBISBISBISBISBIService 2(Biz Logic 2)Service n(Biz Logic n)Service 1(Biz Logic 1)Service 2(Biz Logic 2)Service n(Biz Logic n)Service FrameworkService 1(Biz Logic 1)Service 2(Biz Logic 2)Service n(Biz Logic n)Service 1(Biz Logic 1)PLMN LevelNW Slice 1NW Slice 2SBI

Figure 6.4.2.2-3: Service Framework deployed in a PLMN Level
6.4.3
Services and illustrated Procedures

6.4.3.1
Service Registration/Update/Deregistration

According to TS 23.502 [3] clause 4.17, a Rel-15 NF service producer, e.g. SMF instance, registers itself by sending an Nnrf_NFManagement_NFRegister Request message (the NF profile of NF serviceproducer) to the NRF to inform the NRF of its NF profile when the NF service producer becomes operative for the first time.
Later on the NF service producer can update the NRF for changes in profile by sending the NRF an Nnrf_NFManagement_NF Update_Request message.

Finally the NF service producer can let the NRF know about its unavailability by sending the NRF an Nnrf_NFManagement_NFDeregister_Request message.

According to this solution, a Rel-15 NF service producer can register itself by simply sending the Nnrf_NFManagement_NFRegister Request message to the service framework (i.e. to its HTTP outbound proxy).

The service framework can then decide whether to send the message to the NRF or whether to consume the message internally, and register the service producer within the service framework itself (e.g. in its own database).

If the service framework forwards the Request message to the NRF, the NRF processes the Request and returns a corresponding response to the service framework.
When service framework supports registry functions, it is up to implementation on how the internal framework service registry and NRF express themselves together as a logical NRF.

Some examples are listed below for illustration purposes:

1. Service registry is not implemented in the framework and NRF acts the sole service registry

2. Service registry framework itself provides NRF services

In general, all discovery and registration requests are expected to be routed through Service Framework and hence Service Framework can process such requests based on shared responsibilities between Service Framework and NRF.

The service framework then forwards the response back to the service producer.

If the service framework consumes the Request message internally, it processes the Request and returns a corresponding response to the service producer.

6.4.3.2
Service Discovery

Service Discovery can be performed in either of the following two modes: Explicit Mode (supports backward compatibility) and Implicit mode.

In the Explicit mode, service discovery is done explicitly in the same way it is done in Rel 15. This is illustrated in TS 23.502 [3] clauses 4.17.4 and 4.17.5. The only difference in Rel-16 is that the service consumer will send the Nnrf_NFDiscovery_Request to the service framework (as its HTTP outbound proxy) instead of sending it directly to the NRF.

In the Implicit mode, service discovery is delegated to the service framework. This can be achieved by means of configuration, i.e. the service consumer can be configured to skip service discovery by simply sending the actual service request to the service framework. For example, AMF can be configured to send Npcf_AMPolicyControl_Create request to the service framework without going first through the procedure of service discovery.

The Implicit mode is an optional feature left for operator configuration and may not be backward compatible with R15.
Upon receiving the actual request from the service consumer, the service framework, if needed, performs the service discovery request on behalf of the service consumer. It consumes the service discovery response internally andperforms service producer selection to decide where to send the service request received from the service consumer. Some service invocation requests may require additional parameters added as headers or JSON payload to support service producer selection as previously defined for some NF. The service consumer is able to maintain the binding to the service producer by using the response URI included in the service producer response, so the Service Framework does not need to cache the producer selection for each request.
6.4.3.3
Service Request/Response

As described in clause 6.4.2, the service framework can be defined as an HTTP outbound proxy of a service consumer. Based on that, any request of a source service consumer is simply forwarded to the service framework as is. The service framework can then apply any special processing (eg Load balancing) and forward the request to the target service consumer. The service logic will send all the information elements (e.g S-NSSAI, DNN, SUPI etc) in the service request.

Based on normal HTTP routing, the response from the target service consumerwill be returned to the service framework. The service framework will then match the response with its original request and accordingly will forward the response back to the sourceservice consumer.

6.4.4
Impacts on existing Services and Interfaces

Editor's note:
Further details regarding impacts are FFS.

This distributed service framework is compatible with R15 and extends the NRF based service framework.
The R15 consumer is not aware of a R16 service framework existence configured for explicit mode, other than have it configured as its HTTP outbound proxy (which can be the case in Rel-15 as well when using an HTTP equivalent of DRA).

When the service framework is configured for explicit mode, the R16 consumer is not aware of a service framework existence, other than have it configured as it s HTTP outbound proxy (which can be the case in Rel-15 as well when using an HTTP equivalent of DRA). When the service framework is configured for implicit mode, the R16 SBI may require updates based on the identification of parameters associated with service producer selection if those parameters are not already present in the message. The R16 SBI may require updates regardless of the presence of a service framework as other new functionality is introduced, so the updates to provide easy access to selection related parameters should not be a significant impact.
Editor's note:
Clause 6.4.3.2 describes an implicit mode of a discovery, which is a mode in which service discovery is delegated to the service framework. In some cases the service request may need to include some extra parameters (e.g. DNN, SUPI) to enable the SF to perform the delegated service discovery. This has to be analysed across all services.
6.4.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.
6.5
Solution 5: Flexible Service Framework Deployment

6.5.1
Introduction
This solution addresses key issues 3 "Improvements to service framework related aspects" and key issue 5 "SBA backward and forward compatibility".

6.5.2
High level description

In Rel-15 the service framework consists of the functional components illustrated by the figure 6.5.2-1 below.
[image: image24.png]
Figure 6.5.2-1: Rel 15 service framework

The NRF handles the service registry and the consumer authorization. The NF may consist of one or several NF Service consumers and NF Service producers. An NF service consumer consists of the service business logic, service discovery and service instance selection. An NF producer consists of service business logic, service registration and optionally load balancing. If there is a Load balancer is dependent on implementation. NF service consumers communicates directly with NF service producers. The ovals in figure 6.5.2-1 can be seen as components of the service framework.

NOTE:
An NF service may include both the consumer and producer roles in the same NF service. They are discussed and shown separately in figures in order to clarify the functionality needed for the 2 different roles.

In a new service framework, these types of components will still need to exist in one way or the other. The solution in 6.2 introduces a service framework where all of these components are moved to a logically centralized service framework. This does not mean that in deployment time that the service framework is centralized. For simplicity reasons in this clause 6.5 centralized framework mean that it is logically centralized.

To enable co-existence of existing Re. 15 service and the possibility to choose at network design which type of service frame work is wanted by an operator, the following model is proposed as shown in figure 6.5.2-2 below.

[image: image25.emf]Service registryService DiscoveryService Instance selectionconsumer authorizationService registrationService consumer Business LogicService producer Business LogicLoad balancingNRFService consumerService producerVendor ProprietaryimplementationAPIAPIDirect communication(Via LB if present)Service Instance selectionMessage passingLoad balancingCentralisedService frameworkIn-direct communicationORVendor ProprietaryimplementationDepending on deployment scenario

Figure 6.5.2-2: Flexible service framework
The NF/NF services in can be kept as Rel‑15. If a centralized service framework is selected in the network design (deployment), the NRF will only provide the address(es) of centralized service framework to the NF service consumers, and thus indirect communication will be used. This means the service instance selection in the consumer will in principle be a NULL function (there is only one service instance to select). If a centralized service framework is not selected in the network design (in deployment), then rel. 15 procedures will be used, and service instance selection is done in the service consumer.

Standardized consumers always do discovery of a service producer. The reason for this is backward compatibility and the possibility to support both services frameworks. The discovery procedure is done seldom, and the basic part can be implemented in a few lines of code, and depending on implementation architecture used by a vendor, it may be a common SW entity that is re-used by all the vendor's consumer implementations. However, in Rel‑15 there are some special behaviour for discovery of for example UDM where MNC and MCC are important parameters to consider, and thus it may not be so that all consumers can have just a generic discovery procedure.

Standard consumer always has instance selection, however, if a centralize service framework is wanted, only address(es) the service framework's message passing function is used. This means that the contact point (FQDN or IP addresses will be to the message passing system, and that service producer resources are addressed via this contact point.

One should observe here that instance selection is not always generic. For example, when AMF selects an SMF instance the following should be considered:

-
Selected Data Network Name (DNN).

-
S-NSSAI.

-
Subscription information from UDM, e.g.

-
per DNN: whether LBO roaming is allowed
-
per S-NSSAI: the subscribed DNN(s)

-
per (S-NSSAI, subscribed DNN): whether LBO roaming is allowed
-
Local operator policies.

-
Load conditions of the candidate SMFs.

-
Access technology being used by the UE

This is different from when AMF selects another AMF then the following shall be considered:

-
AMF Region ID and AMF Set ID derived from GUAMI.

-
Requested NSSAI.

-
Local operator policies.

-
Availability of candidate AMFs.

-
Load balancing across candidate AMFs (e.g. considering weight factors of candidate AMFs in the AMF Set).

As can be seen some of the factors to consider for AMF when selecting SMF or AMF could be generalized, but some are unique per selection. If a centralized service framework is deployed, then also these unique factors must be considered within the centralized service framework, if existing functionality shall be retained.
6.5.3
Services and illustrated Procedures

Editor's note:
This clause describes services and related high-level procedures for the solution.

6.5.3.1
Registration and de-registration of NF instances/NF service instances

This clause describes the high-level procedures for the registration of NF instances/NF service instances at the service framework. In general, the procedures for the registration of NF/NF service (instances) are unchanged compared to Rel-15.
Registration of NF instances/NF service instances:

-
the NF instances/NF service instance uses the Rel-15 mechanism to register it self.
De-Registration of NF instances/NF service instances:

-
the NF instances/NF service instance uses the Rel-15 mechanism to deregister itself.
6.5.3.2
Discovery of NF services and communication between consumer and producer

A legacy consumer uses the Rel-15 mechanism to discover producers. New standardized consumers services always do service discovery. See clause 6.5.2. For examples of consumer to producer communication see below figures 6.5.3.2-1 and 6.5.3.2-2 for non-roaming and 6.5.3.2-3 and 6.5.3.2-4 for roaming.
[image: image26.emf]Consumer #1Producer#1NRFDiscoveryResponse (producer #1, #2,….)ResponseInstanceselecitonThis procedure can be repeated without re-doing discoverySF

Figure 6.5.3.2-1: Consumer to producer communication, no centralized service framework

Figure 6.5.3.2-1 is the Rel‑15 behaviour, and will be used if no centralized service framework is wanted.

[image: image27.emf]Consumer x #1Producer y#2NRFDiscoveryResponse (pseudo producer y #1)Request(psuedo producer y #1)Request(producer y #2) InstanceSelection”Only one to select!Centralized SFresponseResponseThis procedure can be repeated without re-doing discoveryInstanceSelection

Figure 6.5.3.2-2: Consumer to producer communication, with centralized service framework
In figure 6.5.3.2-2 represent an example of a consumer x instance #1 that wants to communicate with the producer y. The consumer does discovery and gets pseudo network address of the NF/NF service which will be the network address (IP addresses or FQDN) of the message passing function within the centralised service framework, and if needed corresponding optional discovery result. This is illustrated in the figure by pseudo producer y#1. The consumer x instance #1 can only select pseudo producer y#1 and sends the request to that address (which is the address of the message passing function). The message passing function will select a producer instance to be used for this operation, producer y #2 in this example. The message passing system may have several IP addresses for redundancy reasons.

The following figures shows roaming examples of how a logically centralised service framework deployed the visited network interacts with a Rel‑15 based Service framework in the home network and vice versa.

[image: image28.emf]Consumer #1Producer#2vNRFDiscoveryRequest(pseudo producer#1)Centralized SFvSEPP#1hSEPP#1DiscoveryhNRFDiscoveryrequestInstanceSelection ”only one”requestRequest(producer#2)InstanceSelection

Figure 6.5.3.2-3: Consumer to producer communication over roaming interface, centralized service framework in VPLMN

[image: image29.emf]Consumer #1Producer#2vNRFDiscoveryRequest(pseudo producer#1)Centralized SFvSEPP#1hSEPP#1DiscoveryhNRFDiscoveryrequestInstanceSelection requestResponseRequestInstanceSelection

Figure 6.5.3.2-4: Consumer to producer communication over roaming interface, centralized service framework in HPLMN
The SEPP in figures 6.5.3.2-3 and 6.5.3.2-4 may of course do topology hiding. These figures illustrated the principles.

6.5.3.3
Non-standardized services

Non-standardized services could be implemented targeting a specific network design model. These non-standard services may utilize a centralized service framework by for example to not do service discovery or instance selection. They may interact with the centralized service framework in a different way compared to the standardized services.

6.5.4
Impacts on existing NF/NF Services and Interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

No impact on existing NF/NF services and interfaces

6.5.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.

6.6
Solution 6: Services Framework enhanced with a Service Agent
6.6.1
Introduction
This solution addresses key issues #3 "Improvements to service framework related aspects" and #5 "SBA backward and forward compatibility".

In Rel-15, 5G System supports services framework as follows:

Following are 5 main steps involved:

-
Advertisement of NF/NF Service to NRF for Registration and Update. NRF manages the NFs and NF Services

-
Consumer performs Dynamic Discovery of NF Service Producer with the NRF

-
Consumer selects NF/NF Service Producer.

-
First level of authorization of NF Service Consumer by the NRF to contact the NF Service Producer

-
Distributed Routing of service request from NF Service Consumer towards NF Service Producer for unlimited scaling

6.6.2
High-level Description

In this solution, we propose to introduce Service Agent for the Service Producer and Service Consumer. Service Agent may function as follows:-
Case 1: Perform load balancing and serve as Gate Keeper (e.g. signalling storm protection) for the Service Producer instances.

-
Case 2: Serve as Gate Keeper (e.g. signalling storm protection) for the Service Producer instances.

Following principles are proposed:

-
Service Producer and Service Consumer may decide whether it exposes Service Instance URI or registers Service Agent URI only for a given Service with the NRF.

-
When Service Consumer performs discovery query, it may either receive:

-
URI of Service Agents only (Case 1); (or)

-
URI of Service Instances (Case 2).
Service Consumer can optionally perform discovery via Service Agent and in this case, Service Agent performs the discovery request with the NRF on behalf of the Service Consumer.

NOTE 1:
Even in Rel-15, it is up to the NF/NF Services to determine whether it is the URI of the Service Instance or the URI of the NF is registered with the NRF. Case 1) and Case 2) enables support for backward compatibility with Rel-15 NF/NF Services.

NOTE 2:
For case 1, Service Agent is registered and it is assumed the full URI is available (i.e. it could be seen as equivalent to the Rel-15 NF FQDN or IP address) thus backward compatibility is achieved. For case 2, backward compatibility is enabled by registering the service instances leveraging the attribute ipEndPoints (reference clause 6.1.6.2.3 in TS 29.510 [4]). This can use the IP address of the Service Agent to enforce that it is always in the path and a dedicated port per service instance.
	ipEndPoints
	array(IpEndPoint)
	O
	0..N
	IP address(es) and port information of the Network Function (including IPv4 and/or IPv6 address) where the service is listening for incoming service requests

-
Case 1: If Service Consumer/Service Agent of the Service Consumer receive URI of Service Agents, it performs Selection of the right Service Agent and uses the URI of the Service Agent for the target service request; Service Consumer sends the Service Request message to the selected Producer Service Agent and the Service Agent performs load balancing and forwards the request towards the selected Producer Service instance.

-
Case 2: If Consumer receive URI of Service Instance, it performs Selection of the right Service Instance and uses the URI of the service instance for the target service request.

-
No additional API needed between NRF and Service Agent. From Services and NRF perspective, it works as though there is direct communication between services and direct communication with NRF.

-
Service Agent can either be standalone or collocated with the Service. If there are multiple Service Agents for the same type of Service, multiple Service Agents could interact with each other (e.g. to address failure, load re-balancing situations).
The following figure illustrates the two architectural (deployment) options:

[image: image30.emf]Service 1Service 2Service 3Service AgentURI-1Service 1URI-1Service 2URI-2Service 3URI-3Service AgentNRFService AgentService 2Service 1Case 2: Service Instance end points registered (Service URI exposed)ProducerProducerDiscoveryConsumer

Figure 6.6.2-1: Service Framework with a Service Agent
Service 1, Service 2, Service 3 are instances of the same type of Service. Following figure illustrates that a cardinality mapping between Service and Service Agent could be m:n:

[image: image31.emf]Service 1Service 2Service 3Service 4Service Agent 1Service Agent 3Service Agent 2

Figure 6.6.2-2: Service Framework with a Service Agent
In the above figure, Service Agent-P refers to Producer Service Instances and Service Agent-C refers to Consumer Service Instances.

This architecture implies that trust relationships need to be established:

-
Trust between the Service Instance and the Service Agent (both in the Producer and Consumer side)

-
Service Agent of the Service Producer does the verification of the access token (and not the Service Producer anymore as in Rel-15).

-
The NRF needs to authorize the consumer to obtain services from any of the Service Producer instance served by the Service Agent (i.e. the access token should not point to a specific Service Producer instance as in Rel-15).

Items #1 and #2 are potential impacts only if the interface between Service and Service Agent is a multi-vendor interface.

6.6.3
Illustrated Procedures

Following call flow illustrates how a Service Consumer discovers a Service Producer and requests for a service via Service Agent (Case 1):

[image: image32.emf]Consumer

Service Agent

Service

Producer

Producer

Service Agent

Service

Consumer

6. Service Request

[Access Token]

7. Verify Access Token

[Access Token]

Secure connection established

Service Request

[Access Token]

8,

Service Request

9. Service Response

9. Service Response

NRF

1. Discovery Request

2. Discovery Request

3. Discovery Response

[Producer Service Agent(s]

4.

Select a Producer

Service Agent

5. Access Token Request/Response

[Access Token]

8.

Select a Producer

NF Service

Instance

9. Service Respons

e

Figure 6.6.3-1: Call flow for Case 1: Two Step Selection Method
-
The NF Service consumer requests discovery of the NF Service producer by invoking a Discovery Request API (e.g. providing service specific parameters such as MCC, MNC, Routing ID, Group ID etc for UDM selection) on its Service Agent interface with its associated Service Agent (Consumer Service Agent).

-
The Service Agent forwards the request to the NRF over a mutually authenticated secure connection.

-
The NRF authorizes the NF Service Consumer, determines the appropriate NF Producer Instance(s) or NF Producer Service Instance(s) and provides information of their associated Service Agents to the Service Consumer in the discovery response message.

-
The NF Service Consumer selects an appropriate Producer Service Agent from the list provided by the NRF considering service specific parameters (e.g. TAI, S-NSSAI, locality, priority etc). This is the first step in the selection process.

-
The NF Service Consumer obtains Access token from NRF via its associated Consumer Service Agent. The Access token will enable the Service Consumer to obtain service from any of the Service Producers associated with the selected Producer Service Agent.

-
The NF Service consumer requests service from the NF Service producer by invoking an API on its Service Agent interface with the selected Producer Service Agent. The NF Service Consumer includes the access token in this API. The request is made over a mutually authenticated secure connection.

-
The receiving Service Agent verifies the token in one of the following ways:

-
Request the NRF to verify the token. The NRF verifies the token and responds back to the Service Agent.

-
The Service Agent verifies the integrity of the token on its own. If integrity check is successful, the Service Agent next verifies the claims in the token.
-
If the authorization check is successful, the Service Agent selects a target Producer NF Instance or NF Service Instance, and forwards the API Request to the selected NF Service Producer.

-
The NF Service Producer provides the requested service to the NF Service Consumer.
From this point onwards, the Service Agent of the NF Service producer is involved in routing of the messages between the two NFs.
Following call flow illustrates how a Service Consumer discovers a Service Producer and requests for a service via Service Agent (Case 2):

[image: image33.emf]Consumer Service AgentService ProducerProducer Service AgentService Consumer6. Service Request[Access Token]7. Verify Access Token[Access Token]Secure connection establishedService Request[Access Token]9. Service ResponseNRF1. Discovery Request2. Discovery Request3. Discovery Response[Producer Service Agent(s]4.Select a Producer Service 5. Access Token Request/Response[Access Token]8.Routes to a Producer NF Service Instance

Figure 6.6.3-2: Call flow for Case 2: One Step Selection Method

The same call flow steps as for figure 6.6.3-1 applies with the following differences:

-
Step 4 - Service Consumer selects the Service Producer Instance directly.

-
Step 8 - Service Agent of the Service Producer routes the Service Request message directly to the Service Producer Instance (i.e. no selection needed).

[image: image34.emf]Consumer Service AgentService ProducerProducer Service AgentService ConsumerSecure connection established8. Service Request[Access Token]12. Service ResponseV-NRF1. Discovery2. Discovery 6.Select a Producer Service Agent7. Access Token Request/Response[Access Token]9.Select a Producer NF Service InstanceH-NRFV-SEPPH-SEPP3. Discovery4. Discovery5. Discovery

Figure 6.6.3-3: Call flow for Case 1: One Step Selection Method - Roaming Scenario
The same call flow steps as for figure 6.6.3-1 applies with the following differences:

-
Requests between Services/Service Agents in the VPLMN and HPLMN are transmitted via V-SEPP and H-SEPP.

6.6.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.
6.6.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.

6.7
Solution 7: SBA with stateless and unsticky services

6.7.1
Introduction
This solution addresses key issues 4 "Architectural Support for Highly Reliable Deployments".
When the 5G system is deployed in the cloud, the overall reliability of the system shall be at least at the same level as non-cloud implementations / deployments. In a typical cloud environment, NFs or NF services may fail at any time and in general more frequently than traditional network nodes. For this reason, the 5G system shall be able to deal with the unexpected loss of NF instances / NF services instances in a way that avoids impact on the customer service or detrimental side effects on the network (e.g. signalling storms) when such failures occur.

Unexpected loss of NF instances/NF service instances leads to system and / or customer service impact when the failed instance has active bindings (e.g. tightly coupled UE-specific information) with other NF instances / NF service instances. This might require the standardisation of complex recovery mechanisms to return to normal operation while minimising end user service impact.

Such complex mechanisms would have to include the transfer of the failed instance's load / service contexts to other existing instances or to newly instantiated "replacement" NF / NF service instances. This may cause limitations to network automation, e.g. when:
-
Newly instantiated NFs / NF services that replace the failed instance need to be specifically configured to act as replacement for the failed instance.
-
Existing NFs / NF services need to be specifically configured to integrate the newly instantiated NFs / NF services as the replacement of the failed instance.
-
Existing NFs / NF services need to be specifically configured to take over for the failed instance.
-
Previously existing bindings and / or service contexts have to be restored and be moved to existing or the new instance(s).

It should be noted that the restoration of pre-existing bindings or service contexts might not be possible in many cases, i.e. the recovery procedure implies the loss of the bindings or service contexts.

In the following clauses, a solution is presented that avoids the above issues and does not require the specification of complex recovery procedures that would probably have to be specific per NF / NF service type and / or failure scenario.
6.7.2
High level description

6.7.2.1
Solution aspects

The solution proposed here contains two main aspects to address the above issues:
-
Specifying the NFs / NF services as "unsticky" so that long-living bindings between NF / NF service instances are avoided.
-
Specifying the NFs / NF services as "stateless" (separation of compute and storage resources), i.e. NF / NF service instances store state / service context information in an external storage layer (e.g. UDSF) when the state / service context is stable (e.g. at the completion of a transaction).
Thereby, failed instances can effortlessly be replaced by newly instantiated or already existing ones, which can then promptly recover the stored state / service context from the storage layer when and as needed.

6.7.2.2
Issues related to long-living bindings between NFs / NF services

Today the UE gets assigned serving NFs (e.g. based on the UE's location). The UE will continue to be served by these NF instances until a trigger to re-allocate a serving NF occurs (e.g. UE moves out of the service area of its current serving NF instance(s)). Thereby bindings are created between the UE and its serving NF instances, and orderly re-bindings (i.e. change of serving NF instance) can only occur by system procedures (e.g. mobility) specified in 3GPP.

In the Rel-15 5GC, serving instances of AMF, SMF, SMSF and PCF NF/NF services are selected per UE. This creates UE specific bindings between the selected AMF, SMF, SMSF and PCF NF/NF services instances.

Furthermore, the identities of the serving NFs/NF services are stored in the UDM/UDR NF/NF services, which creates another set of bindings in the 5GC.

Loss of any of the UE's serving instances destroys the associated bindings and thereby breaks the UE's service context environment in the network, causing the correlated customer service to fail.

In a cloudified 5G system, a long-living binding to a dedicated NF or NF service instance always means a long-living binding to a dedicated SW instance that represents the NF / NF service. Consequently, the above system and service impact may occur any time a SW instance is lost (e.g. due to HW failure or SW bug), but it is only the case when there is a one-to-one assignment of an NF/NF service to an individual HW/SW instance, which could be avoided by different solutions, e.g. a pool of SW/HW instances are offered by a single point of access as a single NF/NF service.

In case there is a one-to-one assignment of an NF/NF service to an individual HW/SW instance, a summary of identified problems and challenges with long-living bindings in the cloud (non-exhaustive list) can be given as follows:
-
Complex scaling operations across the network:

-
when scaling out:
-
make the new instances known to other services to 'start using them', this leads to high configuration effort;

-
need to transfer bindings from already existing instances to new ones, this leads to the need for complex reallocation procedures.

-
when scaling in:
-
make other instances aware that the to-be-removed instance shall no longer be used;

-
transfer bindings to other instances or await orderly unbinding (e.g. UE detaches).

-
Need for load-(re)balancing:

-
with long-living bindings a load distribution for new bindings has to be done;
-
in case of unequal load of service instances a dedicated re-distribution of load, implying transfer of the binding(s), has to be done (additional load re-distribution mechanism needed).
-
in case of failure:

-
customer impact is likely in case of service instance failure;
-
reallocation (transfer of bindings) similar to scale-in but additional challenges need to be handled due to the "unexpected scale in";
-
complex configuration or complex automation procedures.
6.7.2.3
Issues related to stateful NFs

A typical NF / NF service is defined by its service logic (executed by some compute resources) and some service context data (located in a storage resource) on which the service logic is applied. The service logic data is well-defined in 3GPP specifications for the 5G system, while the service context/session data is defined only when it is required for external interactions with other NF/NF services via standard interfaces, e.g. it is defined the UE permanent data that is stored in UDR that is required by another entity to perform its service logic; while it is not defined the internal session/context data that is required internally by each NF/NF service to perform its service logic.

Historically, 3GPP network entities retain service contexts locally even when they are not used, i.e. not currently being subject to service logic processing.

If a NF / NF service instance holds unused service context information (e.g. a UE's MM context) internally (i.e. compute and storage resources are not separated) and the instance becomes unavailable (due to HW or SW failure) the service context data is lost and the customer's service is impacted.
As defined in 3GPP UDC (from Rel-13 on), subscription data is stored externally, while in Rel-15 Storage architecture solution indicates that not only subscription data, but as well policy data, application data and structured data for exposure is stored externally in UDR. Apart from that, internal session/context data may be stored in external storage resources by each implementation.

In case service data is stored in the same SW/HW entity as the one used for processing (logic and data is not separated), then identified problems and challenges with NF / NF service internal storage of service context information in the cloud are similar to the issues listed in relation of long-living bindings, as also the service contexts need to be managed in a similar way to the bindings and case of scaling, load (re-)balancing or failure recovery. In addition, local storage of service contexts within NF instances / NF service instances limits the use of such context data by other entities as it is necessary to have knowledge about the location of the desired context data within a specific NF instance / NF service instance.

6.7.2.4
Solution Preconditions, Assumptions and Requirements

Preconditions:

-
the 5G system is made up a suitable set of 3GPP defined "modules" (NFs and/or NF services) that allow fast spin-up and teardown of instances.

Assumptions:

-
There exists a suitable storage layer/resources that can be used by all relevant NF / NF service instances for storing and retrieving service context data.

-
The service context data stored in the storage layer corresponds to the 3GPP defined NF / NF service context data that a NF / NF service processes when applying its service logic. This corresponds to data that is stored according to Rel-15 storage architecture into UDR, plus session/context data that may be stored externally (e.g. in UDSF).
-
Adequate reliability and availability of the storage layer can be achieved and is realised by methods internal to the storage layer.

NOTE 1:
the existence of NFs and/or NF services in Rel-16 is determined under key issue 1.

Requirements:

-
The service context information that is stored in the storage layer and necessary for multivendor interoperability between services shall be structured and standardised in 3GPP, similar to e.g. a UE context that is passed between AMFs during a relocation procedure. This corresponds to the data defined to be stored in Rel-15 UDR.

-
The service context information that is stored in the storage layer and necessary for recovery of instances of the same NF/NF service, is required to be standardized by 3GPP to achieve multi-vendor deployments of instances of the same NF/NF service. This will correspond to new data to be stored in UDR (as long as this data is meant to be standardized).
-
Part of the service context information that is stored in the storage layer may be shared by other types of NF/NF services, if so, it is required to be standardized by 3GPP. This will correspond to new data to be stored in UDR (as long as this data is meant to be standardized).

-
Deployment of the storage layer (e.g. UDR, UDSF) ensures that stored information is available as close to the requesting NF instance/NF service instance as needed.

NOTE 2:
This does not exclude any additional vendor-specific data being stored in the storage layer.

6.7.2.5
High-level Solution Architecture

It is proposed that:
-
Any available specific instance of a requested NF/NF service type within a slice or shared among available slices can handle an incoming message dedicated to that service, that means:
-
NF instance/NF service instances do not store other instance's IDs for sub-sequent requests.
-
Requests by service consumers do not contain NF instance/NF service instance IDs but only the type of the requested service.
-
How the specific NF instance/NF service instance that shall handle a particular request is selected or if and by who it needs to be selected, and what information to use in the selection process, depends on the inter-NF / NF service communication method (cf. key issue 3) and is out of scope of this solution.

NOTE 3:
NF/NF service type is a unique identification of the service.

-
When the service context information reaches stable state (based on the needs for recovery of an instance of this service), then it shall be stored in a storage layer external to the service instance; that means:
-
Any authorized service instance of the same type can access the service context data.
-
When the service context information reaches stable state (for the data that may be shared by other types of NF/NF services), then it shall be stored in a storage layer external to the service instance; that means:

-
Any authorized service instance of a different type can access the service context data
Examples of service context information are:

-
Subscription -, policy -and application specific data.

-
Mobility management data.
-
Session/context data (related to user subscription and its UE session-, registration-and connection state).
-
standardized or exchanged as part of standardized NF service interfaces with other NFs. Represents a stable state, that can be recovered/re-created by a NF service in failure scenarios.

Dependencies to other solutions to key issues:
-
Solution 2 in the key issue 3 "Improvements to Service Framework" relies on the unstickiness and the statelessness of service instances (see clause 6.2.2.3 pre-condition).
6.7.2.5.1
NF instance/NF Service instance selection

Selection on NF instance/NF Service instance is subject of solution in 6.2.

6.7.2.5.2
Storage layer aspects

The storage layer is considered to be primary and only storage for stable context data and offers both to store opaque (vendor specific structured or unstructured) context data as well as standardized structured context data. The minimum context data that need to be standardized is determined by what data are required to support multi-vendor interoperability.
On potential race conditions related to the storage layer:

-
Read operation of any context data in the storage layer is possible at any point in time and state of the NF service instances.

-
Update operations could e.g. lock the context data for time it is processed by a service instance. However, locking may slow down every process affecting the performance of every operation to address conflicts that are rare to happen, and additionally not potential race conditions can be solved by locking.
A simple example of a potential race conditions where locking the context data would not solve entirely the race condition is shown in the figure below illustrating an example of "circular deadlock", in case of concurring paging and service request for a UE:

[image: image35.wmf]U

E

R

A

N

A

M

F

/

1

A

M

F

/

2

S

M

F

/

2

S

M

F

/

1

U

P

F

D

o

w

n

l

i

n

k

D

a

t

a

1

:

D

a

t

a

N

o

t

i

f

i

c

a

t

i

o

n

2

:

L

o

c

k

p

r

o

c

e

d

u

r

e

(

P

a

g

i

n

g

)

3

:

D

a

t

a

N

o

t

i

f

i

c

a

t

i

o

n

A

c

k

4

:

S

e

r

v

i

c

e

r

e

q

u

e

s

t

5

:

L

o

c

k

p

r

o

c

e

d

u

r

e

(

S

e

r

v

i

c

e

r

e

q

u

e

s

t

)

6

:

N

s

m

f

_

P

D

U

S

e

s

s

i

o

n

_

U

p

d

a

t

e

S

M

C

o

n

t

e

x

t

R

e

q

u

e

s

t

7

:

L

o

c

k

p

e

n

d

i

n

g

(

S

e

r

v

i

c

e

r

e

q

u

e

s

t

)

s

e

t

u

p

c

a

l

l

b

a

c

k

8

:

N

a

m

f

_

C

o

m

m

u

n

i

c

a

t

i

o

n

_

N

1

N

2

M

e

s

s

a

g

e

T

r

a

n

s

f

e

r

9

:

L

o

c

k

p

e

n

d

i

n

g

(

P

a

g

i

n

g

)

;

s

e

t

u

p

c

a

l

l

b

a

c

k

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

6

.

3

.

4

Figure 6.7.2.5.2
As illustrated above the locking of the context data in step 2 and 5, has created a deadlock in step 7 and 9.
Different techniques to solve this kind of deadlocks are available, and may be different depending on the kind of race conditions. To avoid possible conflict between different solutions, solutions for most race condition case would need to be standardized, and mechanisms to remove deadlocks for cases not caught by standards. If OCC (Optimistic Concurrency Control) is used, this needs standardized methods to handle consistent rollback for all services and procedures.

In essence, race conditions may be handled through following methods, both having some drawbacks to consider:
-
Procedure lock: that requires standardized solution to avoid circular deadlock, which may impact the overall performance

-
OCC: that requires standardized methods to handle consistent rollback for all services & procedures
-
Whether race conditions during interaction of the storage layer and NF services instances can occur or not depends on how the services and procedures are defined and on the amount of shared context. These need to be addressed on a case by case basis during normative phase.

NOTE:
race conditions can occur only as long as there is transient state within an NF service instance as described below. Race conditions cause by conflicting producer NF service instance selection by NF service consumers cannot occur because as per solution 2 NF service consumers do not select producer NF service instances (this is done by the service framework)

Regarding local knowledge of data:

Local knowledge of data in the sense of locally at the NF service instance is only required until a procedure is completed (i.e. while it has some transient state) and a stable state can be stored to the data layer. Storage layer is assumed to be a distributed database and it is up to implementation/a deployment issue how the synchronization between any instances of the storage layer is achieved.

Relation to network slicing:

In case of network slicing, an instance of the storage layer can either serve multiple network slices or be slice specific (based on operator deployment).
Editor's note:
How to handle timers and triggers for context stored in the storage layer and whether this is an internal storage layer functionality or a functionality of a separate service to be defined as part of modularization key issue is FFS.
6.7.3
Services and illustrated Procedures

Editor's note:
This clause describes services and related high-level procedures for the solution.

6.7.4
Impacts on existing Services and Interfaces

Editor's note:
Further details regarding impacts are FFS.

6.7.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.

6.8
Solution 8: Support for highly reliable deployments

6.8.1
Introduction
To support highly reliable deployments enabling seamless replacement, addition or removal of services and new components without the need for reconfiguration of either running components or new components, separation of functional processing from state management is essential. Such an approach enables independent life cycle management as well as failover handling of NFs and Service Instances.

6.8.2
High-level Description

Editor's note:
This clause outlines solution principles, assumptions and high-level architectures, etc.

Externalisation of finalised transactions carried out during the execution of a procedure is essential towards enabling separation of functional processing from state handling. In addition, the Communication Service within the Service Framework, through which messages are carried, should support registration of entities and routing of messages resilient to failover and capable of operating even when life-cycle management operations are carried out. Such common service framework functionalities need to be added to the general SBA capability of 5GS:
-
To enable the use of stateless NF Services, it is proposed that relevant state information of finalised transactions may be pushed to a Shared Data Layer Service (e.g. the UDSF) and hence made available to other NF Services which require the specific data for further processing.

-
The Shared Data Layer Service is a repository where relevant state information may be stored and fetched as required.

-
The Communication Service within the Service Framework provides routing management aligned with the availability of new service instances and reactive to topology/service failures in short term range (i.e. ms range).

6.8.3
Services and Illustrated Procedures

6.8.3.1
Registration Services

NF services register to the Service Framework using the Service Framework Registration capabilities. E.g., using NRF. Registration through the Service Framework also enables NF Services to use the Service Framework Communication services.

Editor's note:
This clause describes services and related high-level procedures for the solution.

[image: image36.emf]NF ServiceService Framework4. Rsp: Register2. Req: Register3.Store Service Profile1. NF Service Instance becomes operative

Figure 6.8.3.1-1

1.
NF Service Instance consumer becomes operative for the first time.

2.
The NF Service Registers with the Service Framework and provides the service profile (e.g. Service Type and Service ID) the be used by the Service Framework for forwarding determination.

3.
The Service Framework stores the NF service information that enables routing to instances of a service.

4.
The Service Framework confirms successful registration.

6.8.3.2
Communication Services and Shared Data Layer

The Communication services allow the transport of messages across NF Services. Share Data Layer Services may be distributed and they may be accessed based on the Service Type, Network Slice and possible, specific users.

The Communication Services operates may operate on a single Slice or across multiple Network Slices. E.g., Using the Slice Selection Type.

[image: image37.emf]1. Incoming Request#1 from NF/Service consumer nNF Service XNF Service YService FrameworkShare Data Layer Service (e.g., eUDSF)3. SF_Routing_Incoming_Request4a. SF_RoutingReq5a. SF_RoutingReq7c.SF_Reouting4c. SF_Routing5c. SF_Routing7a. SF_RoutingReq8a. SF_Routing_Outgoing2. Determine NS Service Producer Endpoint (e.g., through NRF) and forward message6. Process Request for Service4b.Determine Service Producer Endpoint and forwards message5b.Determine Service Producer Endpoint and forwards message7b.Determine Service Producer Endpoint and forwards message8c. SF_Routing_Incoming_Request8b.Determine Service Producer Endpoint and forwards message9. Repeat steps 4-8

Figure 6.8.3.2-1

1.
The Service Framework receives a Request from a NF/NF Service requesting a particular Service (e.g., Session Establishment).
2.
The Service Framework determines the Endpoint of a NF Service instance capable of servicing the Request. The Service Framework may use the NRF to resolve the NF Service Instance Endpoint address.
3.
The Service Framework forwards the request the available Service Instance Endpoint. To achieve this, the Service Framework maintains a list of available NF Service Instances of a particular type, capable of servicing a request.
4.
a-c. The NF Service Endpoint then retrieves necessary context information from the Shared Data Layer and it locks the context to enable processing of data before any other NF Service can access the Context data.
5.
a-c. The Shared Data Layer acknowledges context locking and provides data information relevant to a specific service.
6,
The NF Service process the message for the NF service using the data information retrieved from the Shared Data Layer Service.
7.
a-c. The NF Service updates relevant data and it unlocks the context for use by another process.
8.
a-c. The NF Service forwards the result of the execution of a NF service through the Service Framework along with any relevant information carried in the message container.
9.
Steps 4-8 are used.
6.8.4
Impacts on existing services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

Relevant NF Services may expose and retrieve finalised transactions and its states for processing requests. These NF Services and its components have to register and de-register to the Registration and Discovery Service, within the Service Framework. This may be the same procedure as the NF Service to the NRF registering.

Services use the Communication Service within the Service Framework to route messages to the relevant Service Endpoint instance, without having to first retrieve its address from the NRF. The NRF functionality may be contained within the Service Framework.

6.8.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution
6.9
Solution 9: Temporary bindings between the service instances

6.9.1
Introduction
Editor's note:
This clause lists the key issue(s) addressed by this solution.
This solution is to address the Key Issue 4 and in particular the impact on service operation to support scenarios with and without long-living UE-specific bindings between service instances.

One requirement for 5GS architecture in Release 16 is to support a design paradigm of stateless service instances; where any service instance in the cluster of instances can process the service request, and where the selected service instance after processing the task stores the session data externally (e.g. in UDSF). Thus no binding relations should exist between individual service instances. The service instances should not store the instance ID or IP address of the other service instance after the service request has been completed. The aspects of stateless service instances are not part of this solution, but corresponding solutions are provided e.g. in Solutions 7 and 8.
However, in 5GS some e2e signalling flows consist of a sequence of services and/or service operations between the same Network Functions. For example, in Release 15 in UE Requested PDU Session Establishment (clause 4.3.2.2 in TS 23.502 [3]), typically four service operations are performed in sequence between AMF and SMF: Nsmf_PDUSession_CreateSMContext, Namf_Communication_N1N2MessageTransfer, Nsmf_PDUSession_UpdateSMContext and Namf_EventExposure_Subscribe. In stateless design, if the service instances would need to store and retrieve the session state (UE context) from an external storage (UDSF) between all of the above transactions, this causes unnecessary processing delay. Therefore, in scenarios where the next service operation is expected to come soon after the previous is completed, it must be possible to store the session state locally and force the counterpart service instance to re-use the same service instance of the provider for the next service operation.

This solution provides a mechanism for the service instances to create temporary bindings between the instances, and a mechanism to release such bindings. The solution can be seen to complement the Solutions in 7 and 8.
6.9.2
High-level Description

Editor's note:
This clause outlines solution principles, assumptions and high-level architectures, etc.
The solution assumes that the service instances may become stateless in this case the old service instance and new service instance of the session are able to share the session data e.g. via UDSF. How do they share the data is not part of this solution.
The following figures describe the principles in the solution. The first figure describes how the service provider is able to establish a temporary binding as part of the service response.

[image: image38.emf]

Figure 6.9.2-1: Creating the binding in Service Response
1.
Service consumer initiates a service request for Service1 (S1). As there is no prior binding between the service instances, the service consumer discovers the service instance of S1 e.g. using NRF. The service discovery returns the Instance ID (IID) of service instance 1 (IID1). Service consumer targets the service request to IID1.

2.
Instance IID1 wants to create a temporary binding with service consumer, and returns the binding information in the service response. The binding information includes the Service S1 and the corresponding Instance ID.

3.
For the next service operation with the same service, the service consumer does not discover the service instance but instead uses the IID1 as a target for the service requests. Note that service consumer instance in step 1 can be stateless and therefore a new consumer instance is used in step 3.

4.
The Instance IID1 responds with an indication that the binding with the Service S1 can be released.

5.
As it may be the service consumer did not send the service request in step 3, the IID1 can also release the binding proactively e.g. due to timeout without receiving the service request.

6.
Next time the NF consumer needs to send a service operation for the same service, the service consumer discovers the service instance again for Service S1 (e.g. using NRF), and uses the discovered service instance as a target for the service requests (IID2 in this example). It is assumed the IID1 and IID2 can share the session state e.g. via UDSF.
The next figure describes how the service consumer is able to establish a temporary binding as part of the service request.

[image: image39.emf]

Figure 6.9.2-2: Creating the binding in Service Request
1.
Service consumer initiates a service operation for Service 1 (S1). As there is no prior binding between the service instances, the service consumer discovers the instance of service provider for S1 e.g. using NRF. The service discovery returns the Instance ID (IID) of IIDx. Service consumer targets the service request to IIDx.

As service consumer wants to establish a temporary binding with IID1, it indicates the list of services and the corresponding Instance ID of the service instance that provides this service.

2.
The IIDx sends a service response.

3.
Next time the service instance of IIDx needs to send a service operation with the indicated service in step 1, the service consumer does not discover the service instance for the S1, but instead uses the indicated service instance as a target for the service requests (IID1 in this example). Note that service provider instance in step 1 can be stateless and therefore a new service consumer instance is used in step 3.

4.
The IID1 responds with an indication that the binding to S1 can be released.

5.
As it may be the service consumer did not send the service request in step 3, the IID1 can also release the binding proactively e.g. due to timeout without receiving the service request.

6.
Next time the service consumer needs to send a service operation for the same service, the service consumer discovers the service instance again for Service S1 (e.g. using NRF), and uses the discovered service instance as a target for the service requests (IID2 in this example). It is assumed the IID1 and IID2 can share the session state e.g. via UDSF.
When following procedure describes how the solution can be used together with the Solution 8. The Communication Service within the Service Framework provides service instance discovery and routing management between the service instances. The flow in the clause 6.8.3.2 is used as a baseline.

[image: image40.emf]1. Incoming Request#1 from NF/Service consumer nNF Service XNF Service YService FrameworkShare Data Layer Service (e.g., eUDSF)3. SF_Routing_Incoming_Request4a. SF_RoutingReq5a. SF_RoutingReq7c.SF_Reouting4c. SF_Routing5c. SF_Routing7a. SF_RoutingReq8a. SF_Routing_Outgoing2. Determine NS Service Producer Endpoint (e.g., through NRF) and forward message6. Process Request for Service4b.Determine Service Producer Endpoint and forwards message5b.Determine Service Producer Endpoint and forwards message7b.Determine Service Producer Endpoint and forwards message8c. SF_Routing_Incoming_Request8b.Determine Service Producer Endpoint and forwards message9. Repeat steps 4-8

Figure 6.9.2-3: Using this solution together with the Service Framework of Solution 8
1.
The Service Framework receives a Request from a service consumer requesting a particular Service. If there is an existing temporary binding to a particular service instance of the NF Service X, the request includes the Instance ID of the service instance of NF Service X as a target of the request.

If the service provider instance that acts as a service consumer in Step 1 wants to establish a temporary binding as part of the service request, it indicates the list of services it provides, and the corresponding Instance ID.

2.
The Service Framework selects the instance serving the Request. If the request in Step 1 includes the target Instance ID, the Service Framework resolves the endpoint address for the target Instance ID.

3.
The Service Framework forwards the request to the service instance.
4.
a-c. As in Solution 8. This step can be skipped when there is an existing binding to a particular service instance of the NF Service X.

5.
a-c. As in Solution 8. This step can be skipped when there is an existing binding to a particular service instance of the NF Service X.

6.
The NF Service processes the message for the NF service.

7-8.
If there was an existing temporary binding for the service instance of NF Service X, the response can indicate that this binding is now released. In this case, the service instance of NF Service X can update the relevant data in Shared Data Layer and unlock the context for another service instance. The context includes the possible temporary bindings established as part of the service request in Step 1.

If there was no existing temporary binding for the service instance of NF Service X and the service instance wants to create a temporary binding as part of the response, the response indicates the list of services and the corresponding Instance ID of the service instance that provides each service. In this case, the service instance of NF Service X does not unlock the context for another service instance in Shared Data Layer.
6.9.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.
The figure below shows an example flow how the mechanisms described in this solution can be applied to the communication between AMF and SMF in UE Requested PDU Session establishment procedure so that temporary binding can be created between the service instances of AMF and SMF.

[image: image41.emf]

Figure 6.9.3-1: The solution applied to PDU Session Establishment procedure

1.
The AMF instance which was initiated to process the PDU Session Establishment Request discovers the SMF instance for PDUSession service from NRF. The NRF provides the Instance ID of the selected service instance. The AMF targets the Nsmf_PDUSession_CreateSMContext Request to the instance IID2 of the SMF. The AMF includes in the request an Instance ID and an indication of the service(s) for which this instance ID must be used. In this example the AMF indicates it wants the AMF Instance IID1 to be used to request Namf_Communication service. The SMF stores the AMF instance ID and the service(s) associated to the AMF Instance ID.

2.
The SMF responds with the Nsmf_PDUSession_CreateSMContext Response. SMF provides the SM Context identifier. The SM context identifier shall not include the IP address of the SMF service instance. The SMF includes in the response an indication that the same SMF Instance of IID2 must be used with the upcoming Nsmf_PDUSession service operations.

3.
The SMF reserves the resources from the UPF. As SMF received the AMF Instance ID (IID1) in step 1, the SMF uses the Instance ID to resolve the IP address of the AMF service instance IID1 The SMF sends Namf_Communication_N1N2MessageTransfer Request to this AMF service instance.

4.
The AMF responds with the Namf_Communication_N1N2MessageTransfer Response. In this example the AMF does not update the binding information so the binding with Instance ID provided in step 1 continues, and must be used for possible upcoming Namf_Communication service operations.

5.
The RAN responds to AMF with the N2 message including the N3 Tunnel Information. As the AMF received the SMF Instance ID in step 2, the AMF uses the Instance ID to resolve the IP address of the SMF service instance IID2. The AMF sends the Nsmf_PDUSession_UpdateSMContext Request to the corresponding IP address. In typical scenario the AMF includes an indication that the previous binding of Namf_Communication service with IID1 can now be released, so the SMF knows to use the NRF to discover the AMF instance for any further service requests for Namf_Communication service. This ensures that when the SMF needs to trigger the release of the PDU Session, the SMF targets the related Namf_Communication_N1N2MessageTransfer service operation to the AMF instance discovered via NRF, and not to the same Instance of IID1 indicated in step 1.

6.
The SMF responds with the Nsmf_PDUSession_UpdateSMContext Response. In this example the SMF indicates that the binding to Instance ID of IID2 provided in step 2 shall be released, so the AMF knows to use the NRF to discover the SMF for any further service request of Nsmf_PDUSession service.

7.
The SMF subscribes to the UE mobility event notification from the AMF (e.g. location reporting, UE moving into or out of Area Of Interest), by invoking Namf_EventExposure_Subscribe service operation. As the AMF has not provided binding for this service, the SMF targets the request to the AMF instance discovered via NRF.

8.
A new AMF instance is selected to process the subscription to the UE mobility event notification. The AMF responds with the Subscription Correlation ID, and optionally with a binding indication.
6.9.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.
6.9.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.
6.10
Solution 10: NF/NF services Reliability

6.10.1
Introduction
In Rel-15, enablers were introduced for AMF reliability allowing also dynamic runtime load balancing and dynamic runtime load re-balancing. AMF Set was a key concept enabling scalability up to n AMFs within an AMF Set. We propose to introduce the Set concept also for other 5GC NFs and standalone 5GC NF Services that are introduced as part of this TR.

The Concept of NF/NF Services reliability should work irrespective of whether UDSF is deployed or not. Furthermore, concept of NF/NF Services reliability should work irrespective of whether UDSF is used as a primary storage or secondary storage.

6.10.2
High-level Description

It is proposed to introduce the concept of NF/NF Services Set for all 5GC NFs/NF Services. The NF/NF Services instances within a given NF/NF Services Set are expected to have access to the same storage layer (e.g. UDSF and when UDSF is deployed) or use backup NF instance by implementation specific means to share context amongst NF instances within the NF Set. Thus, in principle, any NF/NF Services instance, or one pair NF/NF Services instance within an NF/NF Services set should be able to process the UE transaction as it has access to UE context. The NF/NF Services instances within a given NF/NF Services Set share the following characteristics:

-
NF/NF Service instances support the same network slice(s). For instance, {NF/NF Service1, NF/NF Service2, NF/NF Service3} in a given Set supports the same IoT slice.

-
NF/NF Service instances may access to the same storage layer (e.g. UDSF and the UDSF is deployed) that is geographically close. For instance, {NF/NF Service1, NF/NF Service2, NF/NF Service3} in a given Set supporting the same IoT slice have access to the same UDSF instance. If the NF/NF service instances do not share the same storage layer, the UE contexts are stored in each NF/NF service instances, and backup in other NF/NF service instances within the same NF/NF service set.
-
NF/NF Service instances may also be geographically close to access to the same storage layer (e.g. UDSF and the UDSF is deployed).
-
Each NF/NF service instances may support one or more NF/NF service pointers. The NF/NF service instance pointer(s) that a NF/NF service instance supports are registered in NRF. The NF/NF service instance may add or remove its supported NF/NF service instance pointers registered in NRF during runtime load rebalancing.

-
If the NF/NF service instances have been assigned NF/NF service pointers, the NF/NF service instance allocates a NF/NF service instance pointer to a UE context during UE context establishment, and sends the NF/NF service instance pointer to peer NF/service instances.

Editor's note:
How long to keep the knowledge of NF/NF service instance pointer at peer NF/NF Service instance is FFS.
-
The peer NF/NF service instances may subscribe for the NF/NF service instance status change notification, when the status of NF/NF service instance has changed, e.g. NF/NF service instance pointer has been removed or added, a notification is sent to the peer NF/NF service instances.
-
If the peer NF/NF service instance has not subscribed to the NF/NF service instance status change notification, the peer NF/NF service determines that one NF/NF service pointer is not associated with the old NF/NF service instance when a rejection has been received from the old NF/NF service instance, or when the transmission of a transaction to old NF/NF service instance has been failure.

-
When the UE context is no longer served by the old NF/NF service instance, the peer NF/NF service selects a NF/NF Service instance from the same NF/NF Service Set if no backup NF/NF service instance is notified before.
-
If there is no NF/NF Service instance pointer associated with the UE Context, the peer (NF Service Consumer) NF/NF Service instance should be able to select any NF/NF service instance from NF/NF Service Set of NF Service Provider for forwarding a transaction targeted for a given UE, otherwise, the peer NF/NF Service instance selects a target NF/NF Service instance based on NF/NF service instance pointer associated with the UE context, which is the backup NF/NF service instance.

-
The Set of equivalent NF/NF Service Instances may be identified by a common "NF/NF Service Set ID".

Following characteristics apply for specific 5GC NFs that are specified in TS 23.501 [2]:

-
In case of SMF, SMFs within the SMF Set can access the same UPFs. This is to allow any SMF within the SMF Set to be selected when user plane traffic is ongoing for a given UE for a certain PDU Session. This is explained with an example below. In a certain network, not all SMFs are able to connect to all UPFs e.g. for domain reasons.

-
SMF1, SMF2, SMF3 - can connect only to UPF1, UPF2, UPF3.
-
SMF4, SMF5, SMF6 - can connect only to UPF4, UPF5, UPF6.
UE has PDU sessions with UPF1 as PDU Session Anchor; Now, if the SMFs have to be stateless and we want the ability to select any SMF for processing a transaction for a given UE/PDU Session, then it should be able to possible to select any of the SMFs but at the same time it needs to be ensured that they are selected from set of {SMF1, SMF2, SMF2}.

Editor's note:
the solution can be updated to adopt standalone NF/NF Services depending on the outcome of the architecture decided for FS_eSBA.

6.10.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.
6.10.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

6.10.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.

6.11
Solution 11: 5GC Reliability

6.11.1
Introduction
In Rel-15, different concepts have been adopted for reliability in various NFs. Its proposed to provide further possibilities to enhance the reliability in Rel-16. This solution proposes to define a Services Instance Set concept that can support high reliability and also has potential to improve other aspects of the 5GC architecture.

The solutions for reliability should work irrespective of whether UDSF is deployed or not.

6.11.2
High-level Description

It is proposed to introduce the concept of Service instance Set for 5GC. The Service instances within a given Service instance Set are expected to have access to the same data sets in a data storage entity e.g. UDSF. Thus, in principle, any Service Instance within a Service Instance set should be able to process UE transactions as it has access to UE context.

Following are the key principles for Service Instance Sets:
-
A Set of instances of the same service type.

-
All Service instances in a Set can access the same data storage e.g. UDSF.

Editor's note:
How this relates to solution for key issue 1 is FFS.
As shown in figure 6.11.2-1 a Service Instance Set has a storage resource accessible by all service Instances in the Set. A Service Instance Set may expose individual service instances towards consumers or it can use a load balancer. If a load balancer is used the Service Instance Set may appear as one Service Instance towards consumers.

[image: image42.emf]Service Instance SetServcie InstanceServcie InstanceServcie InstanceServcie InstanceServcie InstanceServcie InstanceServcie InstanceServcie InstanceLoad BalancerStorage Resource (e.g. UDSF)

Figure 6.11.2-1: A Service Instance Set with Shared storage resource and optional load balancer

When a Service Instance Set exposes multiple service instances towards a consumer, the consumer is allowed to reselect a different Service Instance (within the same set) between transactions. Race conditions with multiple requests for the same UE is up to implementation to resolve, potentially using mechanisms like redirect between Service Instances in the Set.

As shown in figure 6.11.2-2 a Service Instance Set may span multiple data centres

[image: image43.emf]Service Instance SetServcie InstanceServcie InstanceServcie InstanceServcie InstanceServcie InstanceServcie InstanceDC1DC2Storage Resource (e.g. UDSF)

Figure 6.11.2-2: A Service Instance Set can span across multiple data centres

As Service Instance Set's can span across multiple data centres the profile in the NRF should include proximity information for each service instance in order to facilitate proximity-based selection of service instances. This proximity information provides an indication of physical distance based on network deployment and topology, e.g. the DC identification could be used for this purpose.

Proximity complements Service Instance Set information, in a way that same Proximity value (e.g. same DC) may include different Service Instance Sets (e.g. for different vendors instances, deployment of multiple Storage Resources…). Service Instance Set may be considered optional value, since in some cases, Proximity could be sufficient for a consumer.
Editor's note:
It's FFS how to Rel-15 NFs and NF services are modelled with the Service Instance Set concept.
6.11.3
Illustrated Procedures
Editor's note:
This clause describes related high-level procedures for the solution.
6.11.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.
The impacts on NF Services, NF profile and selection rules are primarily driven by allowing reselection of different service instances between transactions and addition of proximity per service instance.

Impacts on (NF) profile in NRF:

-
Addition of Service Instance Set ID per service Instance

-
Addition of proximity information per service instance

Impacts on Selections and Reselection rules:

-
A consumer first discovers and selects one suitable Service Instance Set, optionally from a list of service instance sets received from the NRF. Once the Service Instance Set is selected it selects a suitable Service Instance for the next transaction

-
A consumer may reselect any Service Instance, within the same set, between different transactions

-
A consumer should consider the proximity information when selecting a Service Instance Set and re-selecting between Service Instances within the Service Instance Set

NOTE:
If the Service Framework hides the Service Instances from consumers it will be up to the Service Framework to implement the selection and reselection behaviour.

The Service Instance Set concept allows to decrease the dependencies on the NF concept in the 3GPP functional architecture. This can be achieved by the additions described above and by replacing the NF bindings established in the information flows with bindings between the service Instance Sets
6.11.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.
6.12
Solution 12: Common Network Data Service
6.12.1
Introduction
This solution addresses key issue 4 "Architectural support for highly reliable deployments". Especially on the following aspects:

-
impact on service operation to support scenarios with and without long-living UE-specific bindings between service instances, e.g., by separating functional processing from state repository or other mechanisms.

6.12.2
High-level Description
This solution propose to introduce a common network data service that further extend the NF/service defined in R15 by UDSF. The goal is to: simplify the service implementation, achieve independent data/logic handling thus decouples the technology evolution, and improve reliability/resiliency in the cloud environment.

Data service is generally used in IT infrastructure, e.g., as a common service provided as a PaaS where the data security, persistence, reliability, etc., are considered as the internal platform functionality and out of 3GPP scope. 3GPP shall defines the interface between NF service and the data service, which can best leverage latest technology of those infrastructure.

NOTE:
the solution is not to limit the usage of the data storage technologies developed outside of 3GPP.

The solution is based on Rel-15 defined UDSF service but has the following enhancement:
1)
The data service can be invoked by any consumer, e.g. any NF service in CN to achieve stateless capability. The data model of the context data is not necessarily been specified. 3GPP identifies the key context data that need to be stored by data service so that some system level reliability and stateless can be achieved. This does not prevent a service can still store local cached data for high performance.

2)
The data service provides network data service with standardized interface. The protocols to be used shall be specified (e.g., in stage 3) to achieve high performance data access service. Whether a single protocol or multiple protocols are defined is per stage 3 decision.

3)
Complete the definition of UDSF service definition. The Rel-15 "UnstructuredDataManagement" is defined but only as "Data Identifier" as input which shall be extended in this solution to further cover information that enables related network data can be stored in a secured, persistent way.

6.12.3
Illustrated Procedures
Editor's note:
This clause describes related high-level procedures for the solution.

6.12.4
Impacts on existing NFs, NF services and interfaces
Editor's note:
This clause describes impacts to existing services and interfaces.

6.12.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.
6.13
Solution 13: Utilize System Feature to enable system flexibility and service provisioning

6.13.1
Introduction
This solution addresses Key Issue 6 on system flexibility and service provisioning.
6.13.2
High-level Description
In 5G core network, a set of Network Functions and NF services are orchestrated to enable one system feature, and one system feature can be added/updated/removed in 5GC via deploying/updating/removing the corresponding NFs and NF services.

One System Feature can be independently deployed from other System Features in the network. The authorized System Features for a given UE can be explicitly identified by user subscription data.
Relationship between System Feature and the set of NFs/NF services enabling this System Feature is specified in Annex B. The relation between System Feature and the set of NFs/NF services enabling this system feature shall be stored in network management system.
NOTE:
one System Feature may also involve the support of NG-RAN.

When provisioning the network, one or multiple System Feature shall be deployed. The network management system determines the required NFs and/or NF services to be deployed according to the relationship of System Features and corresponding NF/NF services.
The NF/NF service profile may include the information of its supported system feature(s). The required system feature(s) may be included in service discovery request sent to the NRF by the NF/NF service consumer, and the NRF determine the target NF/NF service instance(s) according to the profile of NF/NF service instances.
Editor's note:
The NF instances may be updated to add/update/remove the supported NF services during provisioning, and how to add/update/remove NF service in NF instance is FFS, e.g. whether it needs to be standardized depends on vendor implementation.
Editor's note:
The System Feature mapping to (NF) Services (subject to specification) is FFS.
One Network Slice may deploy several System Features according to the service requirement, and multiple Network Slices may also separately deploy the same System Feature. The configuration information of one Network Slice includes the supported System Feature(s). When adding/updating/removing one System Feature in one Network Slice, the management system of network slice determines which NFs and/or NF services need to be added, updated or removed, and it also updates configuration information of this Network Slice.

The enhancement to service framework for better support of System Features include:

-
The network monitoring can be per System Feature to obtain monitoring information per System Feature, e.g. the statistics information of each System Feature.

Editor's note:
other enhancements to service framework are FFS.
6.13.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.

6.13.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.
6.13.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.

6.14
Solution 14: NF/ Service Set based Service Framework
6.14.1
Introduction

This solution addresses key issues 3 "Improvements to service framework related aspects".

The design principle of this solution:

-
Decouple the Producer Discovery and Instance selection procedure which is separately determined at the Consumer and Framework function. The Producer Discovery is to find the suitable NF/Service Set which provider the required NF/NF service consumer requested. The Instance selection is to find one provider instance within the indicated NF/Service Set.
-
When a Producer Instance is register to NRF via the Framework function, the Service Set and Instance pointer is provided to the Framework Function. When the Consumer communicate with the Producer Instance, it discover the Framework Function based on the Producer Service Set and the Framework determine the Producer Instance to be contacted. The change of Producer Instance within the Producer Set does not need be aware by the Consumer.
6.14.2
High level description
The high-level architecture of this solution is illustrated in the following figure:

[image: image44.emf]Framework Function 1NRFService a1Service a2NF AService a1Service a2NF ANF A Set Service x1 Service x1 Set Service x1 Framework Function 2Service b1Service b2NF BNF B Set Service y1 Service y1 Set Service y1 Service y2 Service y2 Set Service y2 Service b1Service b2NF BSEPPPLMN A PLMN B Service x1 Service x2 Set Service x2 Unit 1 Unit 2

Figure 6.3.14.2-1 NF/ Service Set based Service Framework Architecture

NF/Services are grouped into NF/Service Sets. Within one NF/Service Set, the capability of each NF/service Instance are same. For NRF view the Service Set defined in Rel-16 is similar as the NF Set defined in Rel-15, e.g. AMF set. One NF/Service Set can be deployed across DCs. Each NF/service set has one globally unique identity.
The NF/Service Sets are deployed in Units. Each Unit shares the same platform function and includes one or multiple NF/Service sets, and an Service Framework. It is located within one DC. The Service instances within a Unit may not expose to services outside of the Unit. The Framework Function provide functions like registration/discovery of internal service instances, communication between internal NF/Service instances and outside the Unit, load balance among service instances connected to it, etc. It is also possible that the NF/Service instances within the Unit communicate with outside directly without going through the Framework Function.

When the service instance registers to NRF, depend on whether it wants to expose outside, the information registered in NRF may be different. If the service instance is hidden toward outside, the set ID of the service instance and the Unit address pointing to the Framework Function are registered to NRF. If the service instance is directly registered to the NRF, i.e. no service instance hiding, the service instance ID and the Unit address pointing to the service instant itself are registered to NRF.
When one NF/Service Set is deployed across several DCs, the Unit Addresses associated with each DC are registered in NRF. And each Unit Address is associated with a weight factor.

When a consumer initiates communication, it first invokes service discovery. In case the Framework Function is used, the producer set ID together with Unit address pointing to Framework Function are provided to the consumer in the service discovery response. The consumer can initiate communication with producer by including the producer set ID in the message, and send the message to the indicated Unit address which points to the Framework Function. The Framework Function selects producer instances based on the producer set ID.

NOTE:
the producer set ID can be part of the Unit address to be communicated, e.g. information in the FQDN.

The Producer discovery messages may be between the consumer and the NRF directly, or the message may be relayed by an entity within the Unit, e.g. the Framework Function. If it is relayed, the framework function may respond the consumer directly without invoking discovery service toward the NRF, if the producer service can be found locally.

6.14.3
Illustrated procedures

The following figure depicts message exchange between a Consumer Instance and a Producer Instance. In the below figure, the Consumer Instance/Producer Instance is assumed to be a Service.

[image: image45.emf]ConsumerConsumer Framework Function3. Request Message (Consumer Set ID, Producer Set ID)4. Response Message Producer Framework FunctionNRFProducer1. Service Discovery Request2. Service Discovery Response (Producer Service Set ID)ConsumerProducer

Figure 6.3.14.3-1: Procedure of across Unit service communication
1.
The Service Consumer Instance initiates Service Eiscovery E. The message is sent E. Ehe request includes the parameters to find the Service Producer Instance, e.g. service set type, location info, and depending on service set type, some service specific info like DNN may also be included.
If the Discovery message is relayed via the framework function and the producer service can be found locally, the framework function respond the consumer directly without invoking discovery service toward the NRF.
 2.
In the service discovery response, the service producer service set ID and the Unit address are returned to the consumer instance.
 3.
The Consumer constructs a request message which includes the Service Producer set ID information received in step 2, and sends the message to the Unit address received in step 2. Depending on the type of the Unit address, i.e. pointing to the registered instance or framework function, the message may be sent directly to a producer instance or to an entity within the Unit, e.g. Framework Function, which chooses producer instance and forwards the message to the producer instance.
4.
The producer handles the request message, and sends response message to consumer instance.

6.14.4
Impacts on existing NFs, NF Services and Interfaces

The impacts on existing services and interfaces are:

NRF:

The NF/Service Set ID is registered to the NRF. However, the NF/Service Set can be regarded as Rel-15 NF Instance. NRF does not need differentiate on whether it is NF/Service Set or a NF Instance, no impact on the NRF.
Each NF/NF Service Set may be associated with one, or multiple Unit addresses together with an associated weight factor. When the NRF selects Unit address, the weight factor need be taken into account.
6.14.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.
6.15
Solution 15: High reliable deployment via the binding information stored at Framework Function
6.15.1
Introduction

This solution is to address the Key Issue 4 and in particular how to maintain the bindings between service consumer and respective service producer.

It is based on architecture defined in 6.14 NF/ Service Set based Service Framework. When one Service Instance communicate with other Service Instance, it include the binding ID information, which is generated by the service producer. The Service Consumer instance stores the received binding ID until the UE context is released. The binding information, i.e. the binding between the binding ID and service instance, is stored in a new functional module within the Service Framework where the service producer is deployed. When the binding is changed, e.g., the service instance is scaling in/out or failure, the communication peer does not need to be aware. Thus the high reliability can be reached if the service instance to be communicated is replaced, e.g. due to failure.
6.15.2
High level description

Similar as the definition of the AMF Instance at Rel-15, it is assumed that the service instance is identified by a Service Set ID and Instance pointer. When the Service Producer Instance is communicated per the Service Consumer request, the Service Producer Instance provides a binding identifier (i.e. binding ID) and returned to the Service Consumer. The Service Consumer use the binding ID to identify the Producer Instance to be contacted. Two types of bindings ID are defined:

-
Service Set ID based, bind to a service set but not limited to a dedicated Instance.
-
Service Set ID and Instance pointer based. Depending on the meaning of binding ID, it can be bound to a specific service instance but the service instance can be replaced, or only to one dedicated Instance.
The Service Consumer instance stores the received binding ID until the UE context is released, and includes it in the following request targeted to the same Service. When the message reached the Unit where the service producer instance is located, it is routed to a service producer instance based on the binding ID included in the message. The binding between the binding ID and a service producer instance is stored within the Unit, e.g. framework function. The instance Id may change, while the binding Id remains the same. In that case different transactions may reach to different Service Instance even using the same binding ID.

6.15.3
Illustrated procedures

The below procedure illustrate how to exchange the binding ID between the consumer and producer. And how the message is routed based on binding ID.

[image: image46.emf]ConsumerFramework FunctionProducer 18. Message 2(Producer’s binding ID)9. Unbind10. Message 3 (Producer’s binding ID)Producer 213. Message 3(Producer’s binding ID) 4. Res Message 1 (Producer’s binding ID)Framework Function2. Producer Instance selection5. Res Message 1 (Producer’s binding ID)6. Message 2(Producer’s binding ID)7. select Producer instance based on binding ID11. Binding doesn't exist, select instance based on set ID1. Message 1(Producer’s set ID, Consumer’s binding ID)14. Res Message 3(new Producer’s binding ID) 15. Res Message 3(new Producer’s binding ID) 3. Message 1(Producer’s set ID, Consumer’s binding ID)

Figure 6.15.3-1 Binding information stored at the Framework Function and its usage
The binding between service instance and the binding ID is handling within the Unit. As an example, the binding can be established when the service instance is started, e.g. as part of the service instance registration procedure. The Service Framework includes a function module which stores the following information: the Service Set ID, Instance Pointer, IP address. Thus no matter which type binding ID is used by the service instance later, the Function in the Unit, e.g. Framework Function, can always route the message to the service instance.

Binding ID exchange between the consumer and producer:
1.
The consumer allocates a binding ID, which is used for following transaction request from the peer service instance, and include this information in the message sent to producer. The type of binding ID consumer allocated is per how the consumer prefer following transaction request from peer side communicate with it.
If the following transaction request from peer side is preferred to be handled by any instance within the same service consumer set, the binding ID is Service Set ID based. If the following transaction request from peer side is prefer to be handled by this instance, the binding ID is Service Set ID and Instance Pointer based.

NOTE: the consumer's binding ID is included if the consumer can behave as service producer
2.
The Function in the Unit, e.g. the framework function, selects the producer instance.

3.
The Message 1 is forwarded to the selected producer instance.

4.
The producer instance provides a producer's binding ID to the consumer instance in response message. The type of binding ID allocated is similar as the step 1.

5.
The response message is forwarded to the Consumer. The Consumer stores the received Producer's binding ID as part of the UE context.

Binding ID usage for the following transaction:

6.
Consumer sends message 2, including producer's binding ID received at step 5.

7.
Producer 1 is selected based on producer's binding ID.

8.
Message 2 is forwarded to Producer 1.

Binding information updated:

9.
The binding between the binding ID and Producer 1 is released, e.g. due to producer instance scale in/out.

Message handling after the binding information is released:

10.
The consumer sends Message 3 which include the producer's binding ID provided by Producer 1.

11.
Since there is no producer instance associated with the binding ID, but the binding ID includes the Service Set ID information, a new producer instance is selected based on Producer service set ID.

12.
Message 3 is forwarded to Producer 2.

13.
The Producer 2 provides a new producer's binding ID which is associated with producer 2 or this Set.

14.
The response message is forwarded to the Consumer.
6.15.4
Impacts on existing NFs, NF Services and Interfaces

Editor's note: This clause describes impacts to existing services and interfaces. .
6.15.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.

6.16
Solution 16: the optimization for profile of NF/NF service instance
6.16.1
Introduction

This solution is related to Key Issue 4 on NF/NF service reliability.
6.16.2
High-level Description
This solution applies to the NF/NF service instances which require the provisioning of network service area. NF Service Region is introduced to simplify network service area management of NF/NF service instance in NRF.

NF/NF Service Set is utilized to support NF/NF service reliability. The NF/NF service instances in one NF/NF Service Set have the same network service area, and multiple NF/NF Service Sets also may support the same network service area. In this case, these NF/NF service instances can belong to the same NF Service Region.

NRF maintains the association between one NF Service Region and the corresponding network service area i.e. TAI list. This association information is provided by network management system e.g. OAM, and network management system also updates this association information when the network service area of the NF Service Region changes.

The identity of NF instance includes NF Service Region Identity and NF/NF Service Set Identity, and the profile of the NF/NF service instance maintained by NRF does not need to include their network service area in order to avoid repeatedly maintaining network service area per NF/NF service instance.
When NRF handles NF/NF service discovery request including target network service area, NRF is able to determine the target NF/NF service instance according to the target network service area, the maintained information of NF Service Region and the profile of NF/NF service instances. To support NF/NF service reliability, NRF is also able to determine the alternative NF/NF service instance according to NF Service Region Identity and NF/NF Service Set Identity indicated in discover request.
The relationship among NF Service Region, NF/NF Service Set and NF/NF service instance is depicted in the figure below:

[image: image47.emf]NF Service Region 1AMF Service Set 1AMF NF Service InstanceAMF Service Set 2AMF NF Service InstancePCF Service Set 1PCF NF Service InstancePCF Service Set 2PCF NFService Instance

Figure 6.16.2-1: NF/NF Service Region, Set, Instance
Depending on the configuration of network, NF/NF service sets with different NF/NF service type may belong to the same NF Service Region, it is also allowed that one NF Service Region only includes NF/NF service Set with the same NF/NF service type.
6.16.3
Illustrated Procedures
Editor's note: This clause describes related high-level procedures for the solution.
6.16.4
Impacts on existing NFs, NF services and interfaces
The solution impact the following NFs, NF services and interfaces:

-
NRF receives the provisioning information of NF Service Region from network management system.

-
The profile of NF/NF service instance includes NF Service Region ID and NF Set ID, and the network service area is not required in the profile of NF/NF service instance.
6.16.5
Evaluation

Editor's note: This clause provides an evaluation of the solution.
6.17
Solution 17: Modularization based on NF Services only
6.17.1
Introduction

As laid out in the corresponding Key Issue 1, optimal modularization of the 5G System shall enable deployment of 5GC services by their own without mandatorily relying on a certain NF. Optimal modularization of the 5GC is essential for network slicing and to enable better re-usability of the defined services according to slicing and/or e2e customer service requirements. Therefore, a higher granularity of the 5GC services than Rel-15 NFs / NF Services is necessary.

"Modules" of Rel-15 architecture are NFs and NF Services. While the former is clearly defined for multivendor interoperability the multivendor interoperability for NF Services is not specified.
The proposal of this solution is that release 16 defines NF Services only where the NF Services represent the desired 5GC "modules". These NF Services shall be deployable independent of NFs and shall support multivendor operability.

The drivers for modularization are the flexibility to exchange Network Function Services, to re-use Network Function Services, and/or to break Network Function Services down on a level where they can be easily implemented, tested, and debugged. The optimal modularization of the system shall improve the system's agility in terms of enhancing its functionality and features. With future NF Services becoming the representation of the modules, a corresponding modeling of the 3GPP defined NF services is necessary.

For this reason, the design of release 15 NF Services should be revisited in order to achieve these goals.

The future 5GC has to fulfil different, sometimes orthogonal, requirements from the different use-cases e.g. from verticals. Therefore, it is necessary to have a flexible design, which contains easy-to-use and re-useable NF Services, and the possibility to combine them in a flexible way (plug and play). Flexible systems provide the possibility to install NF Services according to the requirements of a certain network slice. These NF Services are the smallest deployable units for an operator, regardless of how they are implemented internally.

NF Services can be grouped in bigger packages to allow different deployment scenarios but this is up to vendor or operator policy and not subject to standardization.

Optimal modularization shall enable to deploy use-case specific network slices, i.e. is driven by network slice blueprints and specific additional requirements as currently being defined in GSMA:
-
https://www.gsma.com/futurenetworks/5g/network-slicing-use-case-requirements-whitepaper/
-
https://www.gsma.com/futurenetworks/digest/new-5g-network-slicing-report

 HYPERLINK "https://www.gsma.com/futurenetworks/digest/new-5g-network-slicing-report/" /
The actual modularized 3GPP system architecture is proposed in clause 6.17.3. In accordance with the key issue description, solutions shall also describe the principles to be used for an optimal modularization/granularity of the NF services; this is provided in clause 6.17.2.1.
6.17.2
High level description

6.17.2.1
Principles to be used for optimal modularization

Principles for modularising the 5GC architecture:

-
Achieve multivendor interoperability between NF Services

-
Have NF Services as independently deployable units

-
Specify loosely coupled NF services that are

-
instantiable without impact on other NF services

-
replaceable

-
in case of failure

-
by another (better performant) implementation

-
Each NF Service implements one specific functionality (i.e. has one specific and well-defined purpose) - separation of concern

-
Each NF Service shall provide a unique SBI.
-
NF Services to be modelled as fully self-contained units that operate on a dedicated context

-
NF Services shall have independent life-cycle management (e.g. for scaling, healing, etc.). NF Services can be deployed, updated, and removed during runtime without dependencies to other NF Services.
-
Re-usability: Any NF Service can be used by any other NF Services with appropriate authorization.

-
NF Services shall be agnostic to which consumer is making use of their functionality/API.
-
A NF Service provides always the same functionality, regardless of the origin of the invocation.

-
A NF Service provides expected outputs based on specific inputs.

-
Regarding Service Producers, Service Consumers can assume that all options defined for a NF Service (if any) are supported by all instances of that NF Service.

6.17.2.2
Solution Preconditions and Requirements

Preconditions:

-
The Rel-16 Service framework as well as the Management and Orchestration framework support deployment of NF Services instead of NFs.

Requirements:

-
See the modularization principles of this solution as described in clause 6.17.2.1

6.17.2.3
High-level Solution Architecture
Release 16 architecture consists of NF Services only. System procedures are based on a chain of these NF Services.

[image: image48.emf]

NF Service B

Rel-16 Service framework

NF Service A

NF Service

C

NF Service 1

Network Function

NF Service 2

Figure 6.17.2.3-1 Modularization principles

Per the principles for optimal modularization described above, NF Service A/B/C/….. can be different from Rel-15 NF Services. Still, a Rel-15 NF can be constructed by implementing a NF Service A and NF Service B that behave like NF Service 1 and NF Service 2, respectively, and packaging them together as described in clause 6.x.1 above.

Editor's note:
It is FFS how the relationships / dependencies that exist between Rel-15 NF Services can be handled in the proposed Rel-16 modularization approach.
The following diagram puts this solution into context with solution 2 and solution 7:

The NF services communicate through the Service Framework via the Service Access Point API (SAPA). Since the NF Service does not have any dependencies to other NF Services and does not store states and data, there will be a request, receive, and a write of the states and data from/to the (shared) storage layer.

[image: image49.emf]

Figure 6.17.2.3-2: High level view on a NF Service

6.17.3
Modularized 3GPP System Architecture

Editor's Note:
Modularized architecture is FFS

6.17.4
Impacts on existing NF/NF Services and Interfaces

NF profile is not needed anymore. NF Service profile needs to be updated.

Editor's note:
Further details regarding impacts are FFS.

6.17.5
Evaluation of the Solution

With the Service Framework and the modularization, the full freedom is ensured to react on the requirements of the different use-cases to implement the use case specific network slices.

Editor's note:
FFS further evaluation of the solution.
6.18
Solution 18: Further AMF modularization
6.18.1
Introduction
This solution addresses the key issue 1 Optimal modularization of the system.

In Rel-15, one AMF instance is modularized as three services: Namf_Communication, Namf_EventExposure and Namf_MT. There are several issues with this modularization:

1)
The Namf_Communication service is not fully stateless because UE timers for IDLE mode UE are still running in the Namf_Communication service.

2)
The N1/N2 connection are shared by Namf_Communication service and Namf_MT service.

This solution is proposed to introduce an independent AMF service to manage the N1 and N2 connection for the UE.
6.18.2
High-level Description

The proposed new service name is Namf_ConnectionManagement. The Namf_ConnectionManagement service terminates the N1/N2 interface. Other AMF services can invoke the Namf_ConnectionManagement service to deliver or receive N1/N2 messages. When the UE is registered via different accesses in the same PLMN same Namf_ConnectionManagement service instance is used to serve the UE.
The following figure shows the proposed concept.

[image: image50.emf]AMF Service Set

Comm Set 2

Comm 21

Comm 22

Comm 2n

MT Set

MT1

MT 2

MT n

Eexpo Set

Eexpo 1

Eexpo 2

Eexpo n

.

.

.

.

.

.

.

.

.

Comm Set 1

Comm 11

Comm 12

Comm 1n

.

.

.

ConnectionManagement

Figure 6.18.2-1: AMF service set with new Namf_ConnectionManagement service
When the UE is in IDLE state, UE context are stored in the Data Repository. The timer for IDLE mode UE can be implemented in the Namf_ConnectionManagement service. When the UE is in CONNECTED state, the UE is sticky to the Namf_ConnectionManagement service instance only.
Editor Note: It is FFS what data is required to be stored in the Data Repository.
The Namf_Communication service may be further decoupled with finer granularity services.

Editor Note: It is FFS how to further decouple the Namf_Communication service with finer granularity services.
6.18.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.

6.18.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

6.18.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.

6.19
Solution 19: UPF Services introduced in 5G eSBA
6.19.1
Introduction
This solution addresses key issue 2 "Extend Service Concept into User Plane".
In Release 15 SBA design, the SBA applies to 5GC control plane only due to time constraints. This leads to both SBI and PtP interfaces exists in the core network, causing the protocol complexity. The user plane function (UPF) is the NF that possesses many functionalities. Therefore, extends the service concept into User Plane helps to modularize the functionalities so that the UPF can be flexible defined/deployed, e.g., per network slicing/edge computing requirement.

There are 13 main functionalities of UPF illustrated in 23.501, clause 6.2.3.
1.
Anchor point for Intra-/Inter-RAT mobility (when applicable).

2.
External PDU Session point of interconnect to Data Network.

3.
Packet routing & forwarding (e.g. support of Uplink classifier to route traffic flows to an instance of a data network, support of Branching point to support multi-homed PDU Session).

4.
Packet inspection (e.g. Application detection based on service data flow template and the optional PFDs received from the SMF in addition).

5.
User Plane part of policy rule enforcement, e.g. Gating, Redirection, Traffic steering).
6.
Lawful intercept (UP collection).

7.
Traffic usage reporting.

8.
QoS handling for user plane, e.g. UL/DL rate enforcement, Reflective QoS marking in DL.

9.
Uplink Traffic verification (SDF to QoS Flow mapping).

10.
Transport level packet marking in the uplink and downlink.

11.
Downlink packet buffering and downlink data notification triggering.

12.
Sending and forwarding of one or more "end marker" to the source NG-RAN node.

13.
ARP proxying as specified in IETF RFC 1027] and / or IPv6 Neighbour Solicitation Proxying as specified in IETF RFC 4861 functionality for the Ethernet PDUs. The UPF responds to the ARP and / or the IPv6 Neighbour Solicitation Request by providing the MAC address corresponding to the IP address sent in the request.

Some considerations to defines UPF services:
1.
UPF's functionality characteristics. There are 13 main functionalities of UPF illustrated in TS 23.501 [2]. Considering the N3 and N9 is not in the scope of eSBA, there are eleven functionalities of UPF can be categorized into three services, i.e. the Traffic Path Control Service (fulfilling UPF functionality 1,2,3), Policy Control Service(fulfilling UPF functionality 4,5,6,8,9,10) and Event Exposure Service(fulfilling UPF functionality 7,11). In addition, the UPF functionalities may be either session-level or UPF node-level i.e., N4 association.

2.
Context/data independencies.

Editor's Note:
It is need to investigate the independency of the NF services defined.
6.19.2
High-level Description
Based on the functionalities as well as the data/context managed, the 5G user plane NF services are defined as the following:
-
Traffic Path Control is the service to establish the traffic routing path for uplink/downlink data. It can be used to update the tunnel info when the UPF implements the mobility anchor, or a UPF is inserted into/removed from the existing data path.
-
N4 Association: the association of N4, between SMF and UPF. This is a UPF level (as compared with session level) handling service.
-
Policy Control is the service to configure corresponding PCF policy and/or policy trigger information on UPF for proper data traffic handling, and to achieve PFD management. SMF can invoke the policy control service to transfer the QoS, Lawful Interception, Charging or other policies to UPFs, and after this configuration, the policy can be enforced when the corresponding uplink/downlink data starts to transfer.
-
Event Exposure is the service which can report the UPF information to the consumers subscribed this event. For example, N4 node level reporting, the downlink data notification, etc.
6.19.3
Services and illustrated Procedures
Table 6.19.3-1: List of UPF Services
	Service Name
	Service Operations
	Operation

Semantic
	Known Consumer(s)
	Example Reference

	Nupf_TrafficPathControl service
	Create
	Request/ Response
	SMF
	Step 10a and 10b of clause 4.3.2.2.1.

Step 4a, 4b of clause 4.3.5.3

	
	Update
	Request/ Response
	SMF
	Step 16a and 16b of clause 4.3.2.2.1
Step 5a ,5b and 6a,6b of clause 4.3.5.3

	
	Release
	Request/ Response
	SMF
	Step 2a and 2b of clause 4.3.4.2

	Nupf_N4Association
	Setup
	Request/ Response
	SMF
	Steps of clause 4.4.3.1

	
	Update
	Request/ Response
	SMF
	Steps of clause 4.4.3.2 SMF initiated N4 association update procedure

	
	Release
	Request/ Response
	SMF
	Steps of clause 4.4.3.3 SMF initiated N4 association release procedure

	Nupf_PolicyControl service
	Create
	Request/ Response
	SMF,
	Step 10a and 10b of clause 4.3.2.2.1

	
	Update
	Request/ Response
	SMF
	Step 12a, 12b of clause 4.3.3.2
Step 3 and 4 of clause 4.4.4

	
	Release
	Request/ Response
	SMF
	Steps of clause 4.4.1.4

	Nupf_EventExposure service
	Notify
	Subscribe/Notify
	SMF,
	Step 1 of clause 4.4.4
Step 2a of clause 4.2.3.3

Editor's Note:
Whether there are other NFs besides SMF can invoke the UPF services is FFS.
6.19.4
Impacts on existing Services and Interfaces
The SMF needs to be updated to be able to invoke the corresponding UPF services.
The N4 PtP interface should be updated to support service based interface.
Editor's Note:
the protocol design of N4 SBI is per stage 3 and considering the performance.
Editor's Note:
how to achieve co-exist of PtP and the SBI-N4 is FFS.
Editor's Note:
Whether the procedure like Step 10a and 10b of clause 4.3.2.2.1 can be divided into two services invocation e.g.Nupf_PathControl_Create and Nupf_PolicyControl_Create is FFS.
6.19.5
Evaluation of the Solution
Editor's note:
This clause provides an evaluation of the solution.
6.20
Solution 20: Service Framework based on CAPIF
6.20.1
Introduction
This solution addresses Key Issues 3 "Improvements to service framework related aspects".

6.20.2
High level description

This clause proposes a framework that is based on Rel-15 CAPIF functionality as defined in TS 23.222 [5].

The CAPIF Core Function (CCF) provides following functionality:

-
On-boarding/off-boarding API invoker

-
Register/de-register APIs, Update APIs

-
APIs Discovery

-
Entity Authentication/Authorization

-
Enables secure communication
-
Logging, Monitoring and Auditing the service API invocations
-
Controlling the service API access based on configured policies
Editor's Note:
A clear summary of the functionality required by the eSBA Framework and the functionality provided by CAPIF, and the functionality provided by CAPIF but not required by the eSBA Framework should be provided.

[image: image51.emf]AI(Network Function Service Consumer)CCF (Framework)Network Function Service ProducerCAPIF-3CAPIF-4CAPIF-5Service Invocations (CAPIF-2)CAPIF-1RegistrationDiscoveryAuthorizationLoggingAuthenticationChargingPolicy ManagementMonitoring

Figure 6.20.2-1: High level architecture view
Network Function Service Producer implements the following functionality:

-
The API Exposing Function (AEF) can in principle be any entity exposing a Service API defined by 3GPP.

-
The API publishing function (APF) enables the API provider to publish the service APIs information in order to enable the discovery of service APIs by the API invoker.

-
The API management function (APIMF) enables the API provider to perform administration of the service APIs.
The API Invoker (AI) entities are any entities that invoke the APIs exposed by the CCF and AEF. The AI's can be located inside or outside the trust domain of the PLMN. They are considered in the TS 23.222 [5] to be external 3rd party applications. However, although CAPIF is designed for consumption of northbound APIs by 3rd party applications, the design principles and solutions can be applied to southbound APIs.
Put in the terminology used when discussing SBA, AEFs are Producers and AIs are Consumers.
Framework requirements fulfilled by CAPIF are as follows (in bold):

The service framework:

-
shall provide registration and discovery.

-
shall enable efficient communication between service instances and allow distributed scaling.

-
shall enable service communication within one slice, between slices, within one service framework, instance between different service framework instances and between different PLMNs with minimal impact to service.

-
shall enable handling of failure scenarios with minimal impact to service.

-
should enable protection of the system against signalling storms.

-
should support protect the integrity and confidentiality of the communication.

-
should provide the authentication and authorization to access the service.

The other requirements have partial support in CAPIF (e.g. performance management, fault tolerance, access control, topology hiding etc.) which may need enhancements in Rel-16 CAPIF.

The following provides more detail on the CAPIF reference points.

CAPIF-3, CAPIF-4 and CAPIF-5 are used to perform the following actions:

-
CAPIF-3

-
Authenticating the Service consumer based on its identity and credentials;

-
Providing authorization for the Service consumer prior to accessing the Service producer;

-
Authorization verification for the Service consumer upon accessing the Service producer;

-
Controlling the service access based on PLMN operator configured policies;

-
Logging the service invocations; and

-
Charging the service invocations.
-
CAPIF-4

-
Publishing the service information by the publishing function.
-
CAPIF-5
-
Accessing the service invocation logs by the management function;

-
Enabling the management function to monitor the events reported due to the service invocations;

-
Onboarding new Service consumers by provisioning the Service consumer information at the CAPIF core function, requesting explicit grant of new Service consumers onboarding and confirming onboarding success;

-
Offboarding Service consumers;

-
Enabling the API management function to configure policies at the CAPIF core function e.g. service invocation throttling, blocking invocation for certain duration; and

-
Enabling the API provider to monitor the status of services (e.g. pilot or live status, start or stop status of service API).

CAPIF-1 is used to perform the following actions:

-
Authenticating the Service consumer based on its identity and credentials;

-
Mutual authentication between the Service consumer and the CAPIF core function;

-
Providing authorization for the Service consumer prior to accessing the Service producer; and

-
Discovering the Service producer information.

To support the backward compatibility with Rel-15 the NRF can be used along with the CCF. Rel-15 NFs can continue to interface with the NRF and the NRF can proxy the message to the CCF.
Editor's note:
Details of the support of backwards compatibility with the NRF need to be investigated and documented.

Editor's note:
Roaming aspects of the use of CAPIF need to be investigated and documented.
6.20.3
Services and illustrated procedures

The following procedures are taken from TS 23.222, section 8. In the figures the API publishing function can be interpreted as a service producer.
6.20.3.1
Registration

In CAPIF terminology the registration of a service producer is registration of a Service API.

[image: image52.emf]API publishing functionCAPIF core function1.Service API publish request3.Service API publish response 2.Store API information

Figure 6.20.3.1-1: Publish service
1.
The API publishing function sends a service API publish request to the CAPIF core function, with the details of the service API.

2.
Upon receiving the service API publish request, the CAPIF core function checks whether the API publishing function is authorized to publish service APIs. If the check is successful, the service API information provided by the API publishing function is stored at the CAPIF core function (API registry).

3.
The CAPIF core function provides a service API publish response to the API publishing function indicating success or failure result and triggers notifications to subscribed API invokers as described in subclause 8.8.4.
6.20.3.2
Discovery

In CAPIF terminology the discovery of a service producer is discovery of a Service API.

[image: image53.emf]API invokerCAPIF core function

1.Service API discover request

3.Service API discover response

2.Retrieve service

API(s) information

Figure 6.20.3.2-1: Discover service
1.
The API invoker sends a service API discover request to the CAPIF core function. It includes the API invoker identity, and may include query information.

2.
Upon receiving the service API discover request, the CAPIF core function verifies the identity of the API invoker (via authentication). The CAPIF core function retrieves the stored service API(s) information from the CAPIF core function (API registry) as per the query information in the service API discover request. Further, the CAPIF core function applies the discovery policy and performs filtering of service APIs information retrieved from the CAPIF core function.

3.
The CAPIF core function sends a service API discover response to the API invoker with the list of service API information for which the API invoker has the required authorization.
6.20.4
Impacts on existing Services and Interfaces

Editor's note:
Further details regarding impacts are FFS.

6.20.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.
6.21
Solution 21: Hierarchical service framework
6.21.1
Introduction

This solution addresses key issues 3 "Improvements to service framework related aspects".

6.21.2
High level description

New technologies are coming for inter container communication, such as message bus communication solutions and service mesh solutions. This solution allows for integrating these solutions into the existing Rel-15 based service framework. See figure 6.21.2-1. As described in solution 5 "Flexible Service Framework" it is possible to deploy the Rel-15 service framework with both indirect and direct communication between services. Similarly, when applied in the hierarchical service framework model, both direct and indirect communication can be used and it's up to the operator to select the option to use in a deployment. If supported by the cluster specific service frameworks, services in different clusters may use direct communication.

[image: image54.emf]Service a1Service a2Service a3Service b1 Service b2Service x1Service x2NRFCluster specific service frameworkService c1Service c2Service d1Service d2Service a1Service a2Service a3cluster specific service frameworkService b1Service b2cluster specific service frameworkService cluster #1Service cluster #2Service cluster #3NF ANF BNF CNF ANF B Rel-15 based Inter cluster service frameworkServ z1Serv z2Serv z3Serv z3Serv z4Serv z6Serv z5Direct communicationIf usedService= internal service to the service cluster

Figure 6.21.2-1: hierarchical service framework

In this architecture the new innovations can be introduced within each service cluster. A service cluster may span just a POD, a data centre, or a network slice, it is really up to how an operator wants to deploy this architecture. The service cluster hides the specifics of the cluster specific service framework. All services that shall be reachable from the outside world are registered in the NRF. The different clusters can use rel 15 based mechanisms to register these services. Exactly how that is done within the service cluster is service cluster specific, it could be from the service itself or from some entity within the cluster specific service framework.

A cluster may contain NF/Services from different vendors supporting the cluster specific service framework. Examples of service frameworks that can be use in a service cluster are, Linkerd, Istio, a service framework solution as proposed in clause 6.2, 6.3, 6.4, 6.5, 6.6 or something specific to an operator or vendor.

Editor's note:
If a cluster should be part of the NF profile and be part of a discovery is FFS

If a service consumer within the service cluster need to connect to a service producer outside the service cluster, some entity in the service cluster (the service itself or the cluster specific service framework) will discover and select the service producer according to rel 15 principles. Inter cluster addressing of services are done according to rel. 15. The external entry and exit points of the service cluster for a service producer and service consumer may be the service itself, the NF, or some entity within the service cluster specific framework. The same principle will apply to roaming: from a service consumer perspective when the service producer in a different PLMN is outside the service cluster. Here all communication between a service consumer and a service producer must be via SEPPs, according to rel 15 principles,

The figure 6.21.2-1 shows an example of 3 different service clusters. The NF/NF services that are addressable outside the clusters have non-dotted lines. For example, NF A and its services are present in service cluster #1 and service cluster #2, service cluster #3 does not provide NF A and its services (at least not outside the cluster). The figure also shows some internal cluster services by dotted lines, for example services x1 and x2. These services are not reachable from outside the service cluster #1, only consumers within service cluster #1 may consume these services, and thus they are not registered within the NRF. It is even so that the services that are reachable from the outside world, may be built up of several services within the service cluster, however this would be completely hidden from outside of the service cluster. This is illustrated in service cluster #3, where NF B and service b1 and b2 are build-up of services z1 through z6. The addressable resources from the outside world in service cluster #3 are services b1 and b2, but internally, service z1 through z6 execute them (c1 and c2). Service z1 through z6 are hidden and not addressable from outside.

This architecture will allow for adopting new technologies, but at the same time keep existing Rel 15 NFs and NF services if needed.

The inter cluster service framework may be a distributed or centralized service framework according to 6.5 "Flexible service framework"
The figure 6.21.2-2 shows an example on how roaming can be addressed. The SEPP is shown as part of the Inter cluster service framework, and the SEPP is offering roaming services enabling inter-PLMN signalling between vNRFs and hNRF and between service consumers in service clusters in VPLMN and service producers in service clusters in HPLMN.

[image: image55.emf]Service a1Service a2Service a3Service b1 Service b2Service x1Service x2NRFCluster specific service frameworkService c1Service c2Service d1Service d2Service a1Service a2Service a3cluster specific service frameworkService b1Service b2cluster specific service frameworkService cluster #1Service cluster #2Service cluster #3NF ANF BNF CNF ANF B Inter cluster service frameworkServ z1Serv z2Serv z3Serv z3Serv z4Serv z6Serv z5Direct communicationIf usedService= internal service to the service clusterService a1Service a2Service a3Service b1 Service b2Service x1Service x2NRFCluster specific service frameworkService c1Service c2Service d1Service d2Service a1Service a2Service a3cluster specific service frameworkService b1Service b2cluster specific service frameworkService cluster #1Service cluster #2Service cluster #3NF ANF BNF CNF ANF B Inter cluster service frameworkServ z1Serv z2Serv z3Serv z3Serv z4Serv z6Serv z5Direct communicationIf usedService= internal service to the service clusterVPLMNHPLMNSEPPSEPPInter PLMN signalling

Figure 6.21.2-2 hierarchical service framework and roaming

6.21.4
Impacts on existing NF/NF Services and Interfaces

No impact on existing NF/NF services and interfaces.
Each service cluster need to integrate with the overall Rel-15 based inter cluster service framework.
6.21.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.
6.22
Solution 22: Services Framework enhancement
6.22.1
Introduction

This solution addresses key issue #3 "Improvements to service framework related aspects".

This solution is backward compatible with Rel-15 SBA.

The service framework proposed in this solution can be distributed across multiple data centers/hosts.

The solution reduces the complexity of the NF services by extraction of some common functionalities, includes:

-
Discovery of communication peers.

-
Policy enforcement, authorization of the message delivery.
6.22.2
High-level Description

This section proposes a service framework architecture that is based on R15 service based architecture with some improvements. The design aims to enable inter service communication in an efficient way.

In this solution, the service framework architecture includes the Service, Service Agent and the Service Framework.
The following figure illustrates the architecture:

[image: image56.png]
Figure 6.22.2-1: Service Framework architecture

NOTE:
In figure 6.22.2-1, each service can communicate with each other through SBI directly.
The service framework architecture includes the following aspects:

-
Service Framework: responsible for service registration, customer authorization, service discovery, service monitoring, service configuration profile management, etc. Service registration is invoked by the service through the Service Agent when the service is introduced into the system. Service configuration profile management is responsible for the addition, removal, version control of service configuration profile. Service discovery can be invoked by each service. Service Monitoring monitors the status of each service, e.g. the invoking time of the service, the abnormal behaviour of the service. Customer authorization is performed during the service discovery to authorize the customer service to access the producer service. The Service Framework is not responsible for the message delivery between services.

-
Service Agent: responsible for the management of the service instances within the same host. It monitors whether the service instance is alive, and handles the addition/removal/update of the service instances. It needs to feedback the service instance information to the Service Framework. The Service Agent is not responsible for the message delivery between services. The Service Agent doesn't need to be standardized.

-
Service: each service contains mainly business logic. After service discovery, the customer service instance communicates with the producer service instance directly through SBI.

The interfaces shown in Figure 6.22.2-1 follows the aspects below:
-
The communication between two services is through the SBI between services directly. The communication between the services and the Service Framework is through the SBI directly.
The details of the SBI is the responsibility of stage 3.

-
The Services, the Service Framework, and the SBIs are needed to be defined by 3GPP.

-
The Nsa interface is the interface between the Service and the Service Agent.

-
The Nsb interface is the interface between the Service Agent and the Service Framework.
Editor's note:
Whether Nsa and Nsb interfaces need to be standardized is FFS.
Relationship with the R15 SBA architecture:

-
There is no impact on the R15 NF / NF services.

Reliability consideration:

-
The reliability of the solution could be realized by making the services stateless. The service instance contains mainly the business logic which is considered as stateless. The stateful data can be stored in the middleware, e.g. data center.

-
The heartbeat mechanism could be used by the service instance to detect the availability of the peer service instance. If the service instance detects that the peer service instance is unavailable, it will select another service instance from the set of service instances obtained during the service discovery.

NOTE:
The reliability issue will not be further described in this solution.
NOTE:
The heartbeat is not sent within the SBI message.
This newly selected service instance shall be able to access the data stored by the previously service instance in the middleware. Based on the above analysis, the service framework architecture is compatible with the R15 service based architecture.

6.22.3
Illustrated Procedures

6.22.3.1
Registration and de-registration of service instances

In general, the procedures for the registration of service instance at the service framework are similar with the registration of NF service compared to R15.

6.22.3.2
Discovery of service instances and communication between consumer and producer service instances
The consumer service instance needs to discover the producer service instances through Service Framework. After the service discovery, the consumer service instance selects the producer service instance and communicates with it through SBI. The detailed procedure is in Figure 6.22.3.2-1.

[image: image57.emf]

Consumer service

instance #1

Producer service

instance #1

Service

Framework

1. Discovery

3. Response (producer service instances)

5. Request

6. Response

These procedures

can be repeated

without re-doing

discovery

2. Customer

authorization

Producer service

instance #2

4. Select producer

service instance #1

Figure 6.22.3.2-1: Consumer to producer service instance communication

Figure 6.22.3.2-1 represents an example of a consumer service instance #1 that wants to communicate with the producer service instance.
1.
The consumer service instance #1 does service discovery towards the Service Framework.

2.
The Service Framework authorizes the consumer service instance #1 to access the producer service instances.

3.
The Service Framework returns the addresses of a set of the producer service instances, e.g. producer service instance#1 and producer service instance #2, to the consumer service instance #1. The address of the producer service instances could be IP address or FQDN.

4.
After the service discovery, the consumer service instance #1 selects the producer service instance #1 from the set of producer service instances.

5 and 6. The consumer service instance #1 communicates with the producer service instance #1 through SBI.

6.22.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

6.22.5
Evaluation

Editor's note:
This clause provides an evaluation of the solution.
7
Evaluation
7.1
Design Principles andCriteria for Backward Compatibility
For an eSBA solution to be backward compatible mixed 5G Core deployments across the two releases (R-15 and R-16) should be possible. Exceptions and constraints where they exist for such deployments should be identified. More specifically;

1.
When Release 16 service framework is deployed, it should work or can co-exist with Release 15 NFs also present in that deployment; Release 15 NFs that cannot work or co-exist with Release 16 service framework should be identified.

2.
If there are differences between Release 15 NF/NF services and Release 16 NF/NF services, Release 15 NFs and Release 16 NF/NF service instances(s) should work with each other; If the solutions assume, Release 15 NF/NF services and Release 16 NF/NF services cannot work or co-exist with each other in such a mixed deployed system, this should be identified and mitigation should be identified.

3.
It should be possible to aggregate Release 16 NF/NF services to create functionally equivalent Release 15 NF/NF services; solutions with NF/NF services that cannot be aggregated in this manner should be identified.

4.
Mixed deployments where certain instances of a NF are Release 15 and functionally comparable / equivalent Release 16 aggregate service instances also exist should be possible; Release 15 NFs and equivalent Release 16 aggregate services where it is not possible should be identified.

5.
Roaming should be supported when Serving Network is Release 15 SBA and Home Network is Release 16 eSBA. Roaming should be supported when Serving Network is Release 16 eSBA and Home Network is Release 15 SBA. Roaming should also be supported when either of the two Serving or Home) has a mixed R-15/R-16 (e)SBA deployment.

6.
How to avoid Release incompatibility scenarios and improve coexistence in a mixed deployment should be considered e.g. by identifying at service instance registry its backward compatibility to work with a Release 15 NF etc.

8
Conclusions

Editor's note:
This clause will capture conclusions from the study.

Annex A:
3GPP SBA and ETSI NFV concepts

A.1
Introduction
In this annex we aim to align the understanding and terminology around architecture concepts in 3GPP and other fora's relevant for the eSBA study. It is important to understand and separate the different perspectives of the architectural concepts. This annex clarifies the differences and relationships between the following perspectives:

-
Logical functional architecture perspective - defined in 3GPP

-
Managed Element perspective - defined by ETSI, Vendor, etc.

-
Implementation architecture - defined by Vendor (considering requirements from Network Operators)

Note that SA WG5 is responsible for the management of 3GPP functions including NF LCM and the interactions with ETSI NFV MANO. This is, however, not further described in this annex.

A.2
Architecture perspectives

A.2.1
3GPP Rel-15 architecture

3GPP defines a logical functional architecture and, as a part of 3GPP Rel-15, has defined a logical functional Service Based Architecture i.e. 3GPP SBA.

The 3GPP Rel-15 SBA architecture defines a set of Logical Network Functions (NFs). Each 3GPP NF may produce and/or consume one or more service capabilities (3GPP NF Services) through a 3GPP defined Service Based Interface (SBI).

[image: image58.png]
Figure A.2.1-1: Simplified 3GPP Service based architecture according to 3GPP Rel-15

A.2.2
ETSI NFV including MANO

The ETSI NFV architecture specifies the management view of the resources required by the applications. This means that ETSI specifies how resources required by any software are managed and orchestrated via a generic management and orchestration (MANO) architecture framework. ETSI NFV specifies how the resources for a VNF instance can be life cycle managed, upgraded and inter-connected.

The VNF (Virtualised Network Function)

The term VNF is defined by ETSI NFV. A VNF is a managed element. i.e. it offers an aligned point of integration towards an Element management function and OSS/BSS, see Figure A.2.2-1. A VNF also need have clearly defined interfaces, whether standardized or proprietary, allowing it to communicate with other VNFs.

[image: image59.emf]

Figure A.2.2-1: ETSI NFV architecture (ETSI GS NFV 002 v1.2.1)

The VNFC (Virtual Network Function Component)

The VNFC is defined in the ETSI GS NFV- 003 specification and some characteristics of a VNFC are:

-
A VNF may be composed of one or multiple components, called VNFC.

-
A VNFC is a VNF Providers specific component of a VNF, and VNFC Instances (VNFCIs) are the executing constituents which make up a VNF Instance.
-
A VNF realized by a set of one or more VNFCs appear to the outside as a single, integrated system.
-
Some VNF LCM aspects can be solved with VNFC level operations (e.g. horizontal scalability, upgrade, self-healing).
So, VNFC instance runs in a VM or a container and implements either the full scope of the VNF or a subset of a VNF. A VNFC instance is considered one Unit of Deployment.

[image: image60.png]
Figure A.2.2-2: VNFC relation to VNF

A.3
The relationships

A.3.1
3GPP Network Function vs ETSI VNF

The ETSI NFV constructs of VNF and VNFC provide the flexibility of various implementation and deployment options for a 3GPP NF and its 3GPP NF Services.

A VNF can, but does not have to map 1:1 to a 3GPP NF and ETSI NFV allows also for other options, such as one VNF may be used to deploy and manage resources for multiple 3GPP NFs. In 3GPP Rel-15 5GCN the 3GPP NF is the smallest logical entity exposing multivendor interfaces.

How 3GPP NFs are grouped into managed elements (VNFs) is a task for the vendor (based on requirements to be fulfilled e.g. from operators) and it is outside of 3GPP SA WG2 scope. The grouping in Figures A.3.1-1, A.3.1-2, and A.3.1-3 are examples, not proposals, for how NFs could be grouped.
NOTE:
Depending on the eSBA work for 5GCN in Rel-16 there may be additional possibilities to group one or more services in a VNF.

[image: image61.png]
Figure A.3.1-1: 3GPP Rel 15 NF granularity of managed element deployed as a VNF

[image: image62.png]
Figure A.3.1-2: Grouping of 3GPP NFs into managed elements (VNFs)

[image: image63.png]
Figure A.3.1-3: Single managed element for entire 5GCN

A.3.2
Microservice implementations and 3GPP Rel-15 SBA and ETSI NFV

The implementation architecture is orthogonal to 3GPP SBA and is vendor specific.

The functionality and service capabilities of a 3GPP NF/NF Service will typically be realized by using several microservices.

As per ETSI NFV Release 3, a microservice can map 1:1 to VNFC but the granularity of the microservice is determined only by the implementations and deployment scenario. For example, while in some cases a full 3GPP NF Service can be implemented as a single monolithic component, in other cases implementations may use several microservices as part of the realization of the 3GPP NF Service.

Since it is application-agnostic, ETSI NFV does not have the awareness of what the 3GPP NF or the 3GPP NF Service is, nor which grouping of VNFCs or VNFs realize one 3GPP NF, or one 3GPP NF Service (this is within 3GPP SA WG5 scope).

A.4
Lifecycle management

The VNF resource LCM (Lifecycle Management) is defined by ETSI NFV, is outside 3GPP SA WG2 scope:
-
VNFs are always separately lifecycle managed i.e. they can be scaled and upgraded independently.
-
VNFCs can be upgraded independently and scaled independently.
NOTE:
This assumes ETSI NFV release 3, including ongoing/planned work. In addition, some implementations may require multiple co-located containers that are tightly coupled and share resources. Such implementations need to scale the containers and resources together as a single entity.

In ETSI NFV there are additional mechanisms available that allows the VNF provider to place constraints at the VNF to couple the LCM of several VNFs or VNFCs.
Annex B:
Example of System Features
Table B-1: Example of System Features
	R-15 system feature
	Required NF
	NF Services*

	SMS over NAS
	AMF, SMSF, UDM
	Nsmsf_SMService

Nudm_UECM

Namf_Communication

	LCS
	LMF, AMF, GMLC, UDM
	Nlmf_Location

Namf_Location

Nudm_UECM

NOTE 1:
The NF Services listed in this table are not yet complete nor exhaustive.
Annex C:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2018-04
	SA2#127
	S2-184645
	-
	-
	-
	TR skeleton (approved in S2-184645)
	0.0.0

	2018-04
	SA2#127
	
	-
	-
	-
	Implemented S2-184233, 4553, 4556, 4579, 4580, 4583, 4584, 4643, 4644. With editorial changes.
	0.1.0

	2018-06
	SA2#127bis
	
	
	
	
	Implemented S2-185976, 5978, 5980, 5982, 6145, 6146, 6147, 6148, 6150, 6151, 6293. With editorial changes.
	0.2.0

	2018-07
	SA2#128
	
	
	
	
	Implemented S2-187406, 7447, 7449,7451,7510, 7511, 7512,7514, 7517, 7519, 7520, 7521, 7626, 7627, With editorial changes.
	0.3.0

	2018-08
	SA2#128bis
	
	
	
	
	Implemented S2-188991, 8799, 8703, 8704, 8942, 8706, 8943, 8944, 8945, 8946, 8947, 8948, 8949, 8950, 8819, 8951, 8821, 8822, 8823, with editorial changes.
	0.4.0

Communication Service
Service X Instance-1

2. CommsService_request (ServiceName (e,g., “session.smf.3gpp.org”, [business logic parameters])
4. Comms Service sets up routing path to a selected Service Instance of Service Y
5b. CommsService_request ([business logic parameters])
Service Framework
1. Service X selects Service Y’s name to request services in line with its business logic, e.g.,
“session.smf.3gpp.org”
3. The Service Framework may use operator polices to select a suitable instance of Service Y to handle the service request E.g., Location, S-NSSAI or DNN
Service Y Instance-2
Service Y Instance-1
5a. CommsService_request ([business logic parameters])

SBI

SBI
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework
Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework

Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework
Service 1
(Biz Logic 1)

PLMN Level

NW Slice 1
NW Slice 2
SBI

_1597059601.vsd
�

API publishing function

CAPIF core function

1.Service API publish request

3.Service API publish response

2.Store API information

_1597230227.doc

[image: image2.png]

[image: image1]
_1597230849.doc

NF Service 2

Network Function

NF Service 1

NF Service C

NF Service A

Rel-16 Service framework

NF Service B

_1597231533.doc

4. Select producer service instance #1

Producer service instance #2

2. Customer authorization

These procedures can be repeated without re-doing discovery

6. Response

5. Request

3. Response (producer service instances)

1. Discovery

Service Framework

Producer service instance #1

Consumer service instance #1

_1597060277.ppt

Service a1

Service a2

Service a3

Service b1

Service b2

Service x1

Service x2

NRF

Cluster specific service framework

Service c1

Service c2

Service d1

Service d2

Service a1

Service a2

Service a3

cluster specific service framework

Service b1

Service b2

cluster specific service framework

Service cluster #1

Service cluster #2

Service cluster #3

NF A

NF B

NF C

NF A

NF B

Rel-15 based Inter cluster service framework

Serv z1

Serv z2

Serv z3

Serv z3

Serv z4

Serv z6

Serv z5

Direct communication

If used

Service

= internal service to the service cluster

_1597060278.ppt

Service a1

Service a2

Service a3

Service b1

Service b2

Service x1

Service x2

NRF

Cluster specific service framework

Service c1

Service c2

Service d1

Service d2

Service a1

Service a2

Service a3

cluster specific service framework

Service b1

Service b2

cluster specific service framework

Service cluster #1

Service cluster #2

Service cluster #3

NF A

NF B

NF C

NF A

NF B

Inter cluster service framework

Serv z1

Serv z2

Serv z3

Serv z3

Serv z4

Serv z6

Serv z5

Direct communication

If used

Service

= internal service to the service cluster

Service a1

Service a2

Service a3

Service b1

Service b2

Service x1

Service x2

NRF

Cluster specific service framework

Service c1

Service c2

Service d1

Service d2

Service a1

Service a2

Service a3

cluster specific service framework

Service b1

Service b2

cluster specific service framework

Service cluster #1

Service cluster #2

Service cluster #3

NF A

NF B

NF C

NF A

NF B

Inter cluster service framework

Serv z1

Serv z2

Serv z3

Serv z3

Serv z4

Serv z6

Serv z5

Direct communication

If used

Service

= internal service to the service cluster

VPLMN

HPLMN

SEPP

SEPP

Inter PLMN signalling

_1597059602.vsd
�

API invoker

CAPIF core function

1.Service API discover request

3.Service API discover response

2.Retrieve service API(s) information

SBI
SBI
SBI
SBI
SBI
SBI
SBI
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework

Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service 1
(Biz Logic 1)

PLMN Level

NW Slice 1
NW Slice 2
SBI

AI
(Network Function Service Consumer)
CCF (Framework)
Network Function Service Producer
CAPIF-3
CAPIF-4
CAPIF-5
Service Invocations (CAPIF-2)
CAPIF-1
Registration
Discovery
Authorization
Logging
Authentication
Charging
Policy Management
Monitoring

SBI
SBI
SBI
SBI
SBI
SBI
SBI
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework

Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework
Service 1
(Biz Logic 1)

PLMN Level

NW Slice 1
NW Slice 2
SBI
SBI
SBI

_1596983338.vsd
�

SMF

UPF

1. SMF determines UPF interaction method

2a. Nupf_Node_Association_Setup_Request

2b. Nupf_Node_Association_Setup_Response

3a. N4 Association Setup Request

3b. N4 Node Association Setup Response

4. SMF remember the interaction method of this UPF

_1596983340.vsd
�

SMF

UPF

8. UPF selection, and
and SMF determines the selected UPF interaction method

10as. Nupf_Session_Establisment/Modification_Request

10bs. Nupf_Session_Establisment/Modification_Response

Step 11 – 15 of UE-requested PDU Session Establishment for non-roaming and roaming with local breakout in section 4.3.2.2.1 of TS23.502[3]

Step 17 – 20 of UE-requested PDU Session Establishment for non-roaming and roaming with local breakout
in section 4.3.2.2.1 of TS23.502[3]

AMF

(R)AN

AMF

PCF

UDM

DN

Step 1 – 7 of UE-requested PDU Session Establishment for non-roaming and roaming with local breakout
in section 4.3.2.2.1 of TS23.502[3]

Step 9. SMF initiated SM Policy Association Modification
in section 4.3.2.2.1 of TS23.502[3]

Step 10a and 10b, N4 session Establishment/Modification Request and Response in section 4.3.2.2.1 of TS23.502[3]

A: UPF using PtP

B: UPF using SBI

16as. Nupf_Session_Modification_Request

16bs. Nupf_Session_Modification_Response

Step 16a and 16b, N4 session Modification Request and Response in section 4.3.2.2.1 of TS23.502[3]

C: UPF using PtP

D: UPF using SBI

Service 1
(Biz Logic 1)
Svc Reg. Management
More services...
Service Framework
SBI
SBI
Service Adaptor
VPLMN
Service n
(Biz Logic n)

[NRF]
(Biz Logic)
SBI
Service 1
(Biz Logic 1)
Svc Reg. Management
More services...
SBI
SBI
Service Adaptor
Service n
(Biz Logic n)

[NRF]
(Biz Logic)
SBI
vSEPP

SBI
hSEPP
SBI
Service Framework
HPLMN

_1596983339.vsd
�

SMF

UPF

1. SMF reads the locally stored context, to find out the interaction method the UPF

2a. Nupf_Node_Association_Update_Request

2b. Nupf_Node_Association_Update_Response

3a. N4 Association Update Request

3b. N4 Node Association Update Response

Communication Service
Service X Instance

2. CommsService_request (ServiceName (eg., “session.smf.plmn-id.3gpp.org”, [Business logic parameters])
V-Service Framework
1. Service X selects Service Y’s name
to request services in line
with its business logic: E.g.,
“session.smf.plmn-id.3gpp.org”
Communication Service
H-Service Framework
Service Y Instance

4. CommsService_request (e.g., session.smf.3gpp.org, [business logic parameters])

6. CommsService_request ([business logic parameters])
5. Comms Service in H-Service Framework sets up routing path to an instance of Service Y
vSEPP
hSEPP
3. Comms Service within V-Service Framework determines a path to H-Service Framework based on Service Y name

4a. CommsService_request
4b. CommsService_request

NF Service A
Framework Agent
Framework
NF Service B
Framework Agent
1. Invoke Message Transfer
service of the agent
2. Service discovery, if needed
3. Message Transfer
7. Message Response
5. Message Transfer
6. Message Response
4.selects a service instance

Service Instance Set
Servcie Instance
Servcie Instance
Servcie Instance
Servcie Instance
Servcie Instance
Servcie Instance
Servcie Instance
Servcie Instance
Load Balancer
Storage Resource (e.g. UDSF)

NF
(E.g., AMF)

1. As part of the business logic (E.g., SMF Selection) a NF Service consumer uses target NF name and type to choose a target NF Service that can provides required services according to business logic (e.g., Session Management Service)
Rel.15 SBI
Discovery and Communication
NF
(E.g., AMF)
5. Construct
HTTP request
4. Service Operation (Business logic parameters)

6. HTTP Request (smf.3gpp.org)
7. HTTP Response (200)
NF
(E.g., AMF)
1a. As part of the business logic a NF Service consumer uses target NF name and type to choose a target NF Service that can provide required services
Comms Service

2. Discovery Request(smf, pdusession_establishment, [business logic parameters)
3. Discovery Response (FQDN or IP Address)

NF
(E.g., SMF)
2a. Discovery Request (smf,pdusession_establishment,[business logic parameters])

5a. Comms Service sets up routing path to NF Service Instance
5a. Service Operation ([business logic parameters])

SBA R15 message routing
SBA R16 message routing
Discovery Service

3a. Discovery Response (FQDN of Service Framework NAP (e.g., session.smf.3gpp.org/pdu_session/{pdusessionid}/establish)
4a. Service Operation (FQDN of Service Framework NAP (e,g., “session.smf.3gpp.org/pdu_session/{pdusessionid}/establish”, [business logic parameters])

Service Framework
NRF
HTTP Message Routing

Service Instance Set
Servcie Instance
Servcie Instance
Servcie Instance
Servcie Instance
Servcie Instance
Servcie Instance
DC1
DC2
Storage Resource (e.g. UDSF)

NF Service A
Framework Agent
Framework
2. Service registration, if needed
3. Registration response
1. Service registration
4. Registration response

Framework Function 1
NRF

Service a1
Service a2
NF A

Service a1
Service a2
NF A
NF A Set
Service x1
Service x1 Set
Service x1

Framework Function 2

Service b1
Service b2
NF B
NF B Set
Service y1
Service y1 Set
Service y1
Service y2
Service y2 Set
Service y2

Service b1
Service b2
NF B
SEPP
PLMN A
PLMN B
Service x1
Service x2 Set
Service x2
Unit 1
Unit 2

_1595773471.vsd
AMF Service Set

Comm Set 2

Comm 21

Comm 22

Comm 2n

MT Set

MT1

MT 2

MT n

Eexpo Set

Eexpo 1

Eexpo 2

Eexpo n

...

...

...

Comm Set 1

Comm 11

Comm 12

Comm 1n

...

ConnectionManagement

Service 1
Service 2
Service 3
Service Agent
URI-1
Service 1
URI-1
Service 2
URI-2
Service 3
URI-3
Service Agent
NRF
Service Agent
Service 2
Service 1
Registration
Registration
Registration
Registration
Case 2: Service Instance end points registered (Service URI exposed)
Producer
Producer
Discovery
Consumer

Consumer x  #1
Producer y
#2
NRF
Discovery
Response (pseudo producer y #1)
Request(psuedo producer y #1)
Request(producer y #2)
Instance
Selection
”Only one to select!
Centralized SF
response
Response

This procedure can be repeated without re-doing discovery
Instance
Selection

Service 1
Service 2
Service 3
Service 4
Service Agent 1
Service Agent 3
Service Agent 2

Consumer
Consumer Framework Function
3. Request Message (Consumer Set ID, Producer Set ID)
4. Response Message
Producer Framework Function
NRF
Producer
1. Service Discovery Request
2. Service Discovery Response (Producer Service Set ID)
Consumer
Producer

Consumer
Framework Function
Producer 1
8. Message 2(Producer’s binding ID)
9. Unbind
10. Message 3 (Producer’s binding ID)
Producer 2
13. Message 3(Producer’s binding ID)
4. Res Message 1 (Producer’s binding ID)
Framework Function
2. Producer Instance selection
5. Res Message 1 (Producer’s binding ID)
6. Message 2(Producer’s binding ID)
7. select Producer instance based on binding ID
11. Binding doesn't exist, select instance based on set ID
1. Message 1(Producer’s set ID, Consumer’s binding ID)
14. Res Message 3(new Producer’s binding ID)
15. Res Message 3(new Producer’s binding ID)
3. Message 1(Producer’s set ID, Consumer’s binding ID)

_1593838236.doc

[image: image2.png]

[image: image1]
Consumer #1
Producer
#2
vNRF
Discovery
Request(pseudo producer#1)
Response
Centralized SF
vSEPP#1
hSEPP#1
Discovery
hNRF
Discovery
Discovery
Response (peudo p #1)
Response (psuedo p #1)
Response (pseudo producer #1)
request
Response
Response
Instance
Selection
request
Response (peudo p #1)
Response
Request
Instance
Selection

Consumer #1
Producer
#2
vNRF
Discovery
Response (peudo producer #1)
Request(pseudo producer#1)
Response
Centralized SF
vSEPP#1
hSEPP#1
Discovery
hNRF
Discovery
Discovery
Response (producer #1, #2,….)
Response (producer #1, #2,….)
Response (producer #1, #2,….)
request
Response
Response
Instance
Selection ”only one”
request
Request (producer#2)
Response
Instance
Selection

_1592236439.vsd
6. Service Request
[Access Token]

Service Producer

Consumer Service Agent

Producer Service Agent

Service Consumer

Secure connection established

Service Request
[Access Token]

5. Access Token Request/Response
[Access Token]

8.
Routes to a Producer NF Service Instance

8, Service Request

9. Service Response

9. Service Response

7. Verify Access Token
[Access Token]

9. Service Response

NRF

1. Discovery Request

2. Discovery Request

3. Discovery Response
[Producer Service Agent(s]

4.
Select a Producer Service

_1593010073.doc

Nupff_Data_Reporting_Notify

Nupf_Data_Reporting_Notify

Nupf_Session_Modification_Response

Nupf_Session_Modification_Request

UPF

4

3

SMF

SMF

pause charging in

Trigger to

.

2

.

1

.

1

Service registry

Service Discovery

Service Instance selection

consumer authorization

Service registration

Service consumer Business Logic

Service producer Business Logic

Load balancing

NRF

Service consumer

Service producer

Vendor

Proprietary

implementation

API

API

Direct communication

(Via LB if present)

Service Instance selection

Message passing

Load balancing

Centralised Service framework

In-direct communication

OR

Vendor

Proprietary

implementation

Depending on deployment scenario

Service 1
(Business Logic 1)
Optional[NRF (Business Logic)]
Svc Reg. Management
Discovery Management
Authorization Management
Load Balancing
Overload control
More services...
Service Framework
Service 2
(Business Logic 2)
Service n
(Business Logic n)
SBI
SBI
SBI
SBI
Service Adaptor

Consumer Service Agent
Service Producer
Producer Service Agent
Service Consumer
Secure connection established
8. Service Request
[Access Token]
10. Service Request
11. Service Response
12. Service Response
V-NRF
1. Discovery
2. Discovery
6.
Select a Producer Service Agent
7. Access Token Request/Response
[Access Token]
9.
Select a Producer NF Service Instance
13. Service Response
H-NRF
V-SEPP
H-SEPP
3. Discovery
4. Discovery
5. Discovery

_1590152692.doc

[image: image1.emf]NF ServiceService Framework4. Rsp: Register2. Req: Register3.Store Service Profile1. NF Service Instance becomes operative

NF Service
Service Framework
4. Rsp: Register
2. Req: Register
3.Store Service Profile

1. NF Service Instance becomes operative

_1592234138.vsd
6. Service Request
[Access Token]

Service Producer

Consumer Service Agent

Producer Service Agent

Service Consumer

Secure connection established

Service Request
[Access Token]

5. Access Token Request/Response
[Access Token]

8.
Select a Producer NF Service Instance

8, Service Request

9. Service Response

9. Service Response

7. Verify Access Token
[Access Token]

9. Service Response

NRF

1. Discovery Request

2. Discovery Request

3. Discovery Response
[Producer Service Agent(s]

4.
Select a Producer Service Agent

NF Service Region 1
AMF Service Set 1

AMF NF Service Instance
AMF Service Set 2

AMF NF Service Instance
PCF Service Set 1

PCF NF Service Instance
PCF Service Set 2

PCF NFService Instance

_1590151459.doc

[image: image1.png]
_1590151549.doc

[image: image2.png]

[image: image1]
_1590151614.doc

[image: image2.png]

[image: image1]
1. Incoming Request#1 from NF/Service consumer n
NF Service X
NF Service Y
Service Framework
Share Data Layer Service (e.g., eUDSF)
3. SF_Routing_Incoming_Request
4a. SF_RoutingReq
5a. SF_RoutingReq
7c.SF_Reouting
4c. SF_Routing
5c. SF_Routing
7a. SF_RoutingReq
8a. SF_Routing_Outgoing
2. Determine NS Service Producer Endpoint (e.g., through NRF) and forward message
6. Process Request for Service
4b.Determine Service Producer Endpoint and forwards message
5b.Determine Service Producer Endpoint and forwards message
7b.Determine Service Producer Endpoint and forwards message
8c. SF_Routing_Incoming_
Request
8b.Determine Service Producer Endpoint and forwards message
9. Repeat steps 4-8

_1586682106.doc
[image: image1.png]

[image: image2.emf]

