


3GPP TSG-SA WG4 Meeting #128	S4-241108 
Korea, Jeju, 20 - 24 May 2024

Title:	[FS_AVATAR] Morph Target Animation
Source:	Tencent
Document for:	Discussion and Agreement
Agenda Item:	9.8

	SA4#128 (20 – 24 May 2024, Korea, KR)
	· Identify interoperability requirements,
· Document existing Avatar solutions and formats,
· Refine reference architecture and workflows,
· Identify potential candidates for the Avatar representation format,
· Communicate with relevant 3GPP and external groups on relevant aspect, e.g. SA3 on authentication and MPEG on representation formats for Avatars



1. Introduction
Presented initially after the SA4 meeting in Chicago, the concept of using morph target is introduced again in this contribution taking the previous comments into account, particularly on their use with Unreal.
2. Morph target animation
2.1 Introduction
Morph target animation, also known as shape key animation or blend shape animation, is a technique commonly used in computer graphics and 3D modeling to create smooth and realistic deformations of 3D models, including avatars as illustrated in [ref: https://docs.unrealengine.com/udk/Three/MorphTargets.html]. It is especially useful for animating facial expressions, character deformations, and other shape changes. 
Morph Target animation relies on the following steps:
-	Key Shapes/Targets: The first step in creating morph target animation is to define a set of key shapes or targets. Each target represents a specific deformation or shape change to be animated. For example, when animating a facial expression, targets may be a smiling face, a frowning face, and a neutral face.
-	Base Mesh: Considering for example a Mesh representation of the avatar, the based mesh is the default and neutral state of the avatar. This base mesh is the starting point for all animations.
-	Deformation Calculation: To create an animation, one or more of the target shapes are interpolated with the base mesh. The interpolation factor determines the influence of each target shape on the base mesh. Examples of interpolation include LERP (linear interpolation), SLERP (Spherical linear interpolation), facial rigging and bone-based animation…
-	Animation Control: The amount of deformation applied to the base mesh may be controlled by adjusting the interpolation factor. For example, the use of weighting factor on a skeletal rig will influence how much the body of the avatar moves.
-	Keyframes: Keyframes may be created at specific points in time to control the progression of the animation. Each keyframe specifies the interpolation factor for the target shapes. 
-	Real-Time Control: On a UE with 3D graphics capabilities, morph target animations may be controlled in real-time. This is intended to be used for interactive applications, such as video games, where the player input or some server-based animations determine the deformation of the avatar.
Morph target animation is particularly well-suited for animating facial expressions, lip syncing, and other detailed deformations, as it allows for precise control over the shape of the avatar model. It is commonly used in the animation and game development industries, and it is a key component in creating lifelike avatars.
2.2 Example using Unreal Engine
From a static mesh as the basis, an object may be converted into a skeletal object using Blender. The object can be exported in an .fbx file and opened in Blender.
The animations are created in Blender using the Shape Keys parameters in triangle mode.
The first shape key is the Basis (the Base Mesh as mentioned above). This is the principal state of the object. When adding another shape key, a secondary state is created and needs to be defined in terms of object animation.
Key shape edition is done by switching to edit mode (e.g. vertex mode) and selecting the vertex to be changed. One may want to activate the proportional editing to link the neighboring vertices.
Once the deformation is defined, the parameter "value" ranging from 0 to 1 allows to preview the animation from the Base Shape (0) to the key shape (1).
NOTE: Blender allows to select several key shapes and combine them into a single one as a new key shape.
NOTE: Unreal allows negative values to apply the opposite deformation, useful as it doesn’t require to create another key shape with the symetric deformation of the previous one.
Then the result can be exported (e.g., in fbx format), only the mesh is needed to be exported.
When importing the edited object in Unreal Engine, it is needed to indicate that it’s not a static mesh anymore but a Skeletal mesh in its properties. When selecting the object in Unreal, the morph target value of key 1 ranges from -1 to 1.
The animation is then handled in the event graph with a timeline defining intensity values at given instants.
Another example using Maya is described here: https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/FBX/MorphTargets/
3. Possible signalling of orientation and animation triggers
Assuming a 3D model of the avatar stored in the UE, the following commands would allow the correct and controlled display on the device:
Position and Orientation
Continuous updates may be sent on the avatar's position and orientation in the virtual world to ensure the UE animates the avatar accurately. This allows maintaining synchronization in virtual environments.
	Element
	Value
	Type (unit)

	message type
	"avatar_position_update"
	string

	avatar_id
	1234
	integer

	position_x
	123
	integer (millimeter)

	position_y
	456
	integer (millimeter)

	position_z
	789
	integer (millimeter)

	orientation_yaw
	0
	integer (degrees)

	orientation_pitch
	42
	integer (degrees)

	orientation_roll
	12
	integer (degrees)



The "position_[x,y,z]" and "orientation[yaw,pitch,roll]" data provide the user device with the 3D coordinates and orientation of the avatar's position in the virtual world. The UE uses this information to render the avatar's position and orientation accurately, ensuring that it is displayed in the correct location and orientation in the 3D environment.
Animation
If the avatar's animation is more complex, such as walking, running, or performing specific actions, the server may send animation data or animation states to the UE. This data may include information about which animations to play, the animation frames, and timing information.
	Element
	Value
	Type (unit)

	message type
	"avatar_animation"
	string

	avatar_id
	1234
	integer

	animation_command
	"walk"
	string

	timing_info
	1234345451
	integer (wallclock time)


The “animation_command” parameter specifies which animation is played on the avatar. The “timing_info” parameter indicates the time of the animation being played. The UE animation engine uses this data to synchronize and render the appropriate animation on the avatar, ensuring that it moves correctly and consistently with other avatars and objects in the virtual world.
Facial Expression
For realistic avatars, the server can send data related to facial expressions. This includes information about the avatar's emotions, lip-syncing, and other facial deformations.
	Element
	Value
	Type (unit)

	message type
	"avatar_facial_expression "
	string

	avatar_id
	1234
	integer

	key_shape
	"smile"
	string

	intensity
	75
	integer (percentage)


The "key_shape" parameter specifies the desired facial expression (e.g., "smile", "angry"…), and the “intensity” parameter "intensity" determines the strength or extent of that expression. The UE animation system uses this data to deform the avatar’s face, adjusting the facial features and expressions according to the specified emotion and intensity.
Text-to-Speech
If the avatar needs to respond to voice commands or simulate lip-syncing to spoken words, the server may need to transmit voice data or phoneme information to the user's device.
	Element
	Value
	Type (unit)

	message type
	"text-to-speech"
	string

	avatar_id
	1234
	integer

	speech_text
	"I love SA4 meetings"
	string

	timing_info
	1234345451
	integer (wallclock time)


When the user speaks or provides voice input, the “speech_text” parameter contains the transcribed or recognized speech. The user device’s voice processing and animation system may use this text to trigger lip-syncing animations.
Network State
The server may send signals related to network latency, bandwidth, and connection quality. This information may help the UE to adjust the animation to compensate for delays.
	Element
	Value
	Type (unit)

	message type
	"network-conditions"
	string

	latency
	35
	integer (millisecond)

	bandwitdh
	50000
	integer (kb/s)


The "latency" and "bandwidth" parameters provide information about network conditions. The user device may use this data to adjust the synchronization of animations, manage buffering, or optimize the rendering based on available bandwidth and latency, ensuring a smoother experience.

NOTE: the ecosystem refers to more than one product proposed by the industry.
4. Proposal
It is proposed to document the section 2 of this document in the Draft TR (if agreeable a pCR can be prepared) and document the secion 3 as a starting point for considering the necessary signalling of avatar animations.




