3GPP TSG-SA3 Meeting #119
draft_S3-244985-r1
Orlando, US, 11 -15 November 2024
Source:
Xiaomi
Title:
33.721: New Solution for Key Issue 4
Document for:
Approval

Agenda Item:
5.18
1
Decision/action requested

SA3 is kindly asked to approve the proposed new solution for key issue 4 in TR 33.721.
2
References

[1]
3GPP TR 33.721 v0.4.0
Study on security aspects of 5G Mobile Metaverse services
3
Rationale

This pCR proposes a new solution addressing key issue #4 in TR 33.721 [1].

4
Detailed proposal

*************** Start of the Change ****************

6.Y
Solution #Y: Avatar authentication and authorization supported by A-DACM architecture
6.Y.1
Introduction

This solution addresses KI #4 on authentication of digital representation.

In this solution, avatar authentication and authorization are achieved via the tokens (ID token, access token) using OpenID Connect 1.0 and OAuth 2.0, in the similar way as VAL user authentication defined in TS 33.434 [4]. The ID token is consumed by the VAL client in the UE for authenticating the avatar used by the user. The access token is consumed by the VAL server for authenticating and authorizing the avatar sent by the VAL client for accessing the requested metaverse service.
6.Y.2
Solution details

6.X.2.1
Description

The solution assumes the following:

-
Based on solution #6, a user has been authenticated as specified in clause 5.2 of TS 33.434 [4] for downloading his/her avatar from the A-DACM function to the UE he/she is using. The downloaded avatar in the UE can be shared by multiple metaverse VAL clients in the UE.
-
Based on solution #6, avatar object is digitally signed by the A-DACM function, which creates and manages the avatar, using its private key.
-
The SIM-S is configured with the certificate of the A-DACM function. The SIM-S checks the authenticity of the the avatar object if sent by the VAL client with the certificate before providing the tokens (ID token, access token) to the VAL client.
-
SIM-S generates the tokens based on the checking results from the A-DACM function storing the avatar profile, which contains the information of the linkage between avatar and user(s), and the mapping between avatar and allowed metaverse services.
-
The VAL UE and VAL server are configured with the certificate of the SIM-S.
6.X.2.2
Avatar authentication procedure

[image: image1.emf]VAL Client

(SIM-C)

SIM-S

0. Establish secure tunnel

1. OIDC Authentication Request (User ID, Avatar ID, Avatar Object, Service ID)

6a. OIDC Authentication response (authorization code)

7. OIDC Token request (authorization code)

8. OIDC Token response (ID-Token_A, access-token)

A-DACM

3a. Representation Verification Request (User ID, Avatar ID, Service ID)

4. Based on stored avatar profile, check

- the association between avatar and user

- services accessible by the avatar

5. Representation Check Response (result)

6b. OIDC Authentication response (failure cause)

2. Verify the authenticity

of Avatar Object

3b. OIDC Authentication response (failure cause)

9. Verify the ID-Token_A

 Figure 6.x.2.2-1: Avatar Authentication Procedure for Metaverse VAL Client
0.
VAL UE establishes a secure tunnel with the SIM-S.
1.
When the log-in user on the UE intends to access a metaverse service via the corresponding metaverse VAL client in the UE by using the downloaded avatar to represent him/her, the VAL client in the UE sends an OpenID Connect Authentication Request to the SIM-S. The request contains the VAL client ID, User ID, Avatar ID and optionally the corresponding Avatar Object, and the ID/name of the metaverse service to be requested. The avatar object is digitally signed by the A-DACM function.

2.
The SIM-S verifies the authenticity of the received avatar object using the certification of the A-DACM function if avatar object is included in the request message.

3a.
If the verification is successful, the SIM-S sends a Representation Check Request to the A-DACM function. The request contains at least the User ID, Avatar ID and service ID/name.

3b.
If the verification fails, the SIM-S regards the received avatar as unauthentic and returns a response to the VAL client in the UE, indicating verification failure of avatar object.

4.
Based on the received User ID and Avatar ID, the A-DACM function determines whether the avatar is allowed to be used by the user by checking against the avatar profile. The A-DACM function also determines whether the avatar is allowed to access the service indicated by the service ID/name.
5.
The A-DACM function returns the Representation Check Response with the check results and optionally additional information e.g. the ID of the VAL Server providing the requested service, an indication on whether the avatar can be shared by multiple metaverse services.

6a.
If the check results are positive, the SIM-S sends an OpenID Connect Authentication Response to the VAL client in the UE containing an authorization code and the additional information obtained from the A-DACM function if any.

6a.
If any of the check results is negative, the SIM-S sends an OpenID Connect Authentication Response to the VAL client in the UE, indicating the mismatch between the avatar and user or between the avatar and service.

7.
Upon receiving the authorization code, the VAL client in the UE sends an OpenID Connect Token Request to the SIM-S passing the code. The request also includes the VAL client ID or UE ID (e.g. GPSI) and VAL server ID.
8.
The SIM-S sends an OpenID Connect Token Response to the VAL client containing an ID-Token_A and an access token.

The ID-Token_A contains at least the following claims:

-
Issuer: the SIM-S

-
Subject: Avatar ID || User ID (i.e. concatenation of user ID and avatar ID)

-
Audience: the VAL client ID or the UE ID
NOTE:
If the avatar can be shared by multiple metaverse services, the audience contains the UE ID. The ID-Token_A is then stored in a common secure environment in the UE that can be shared to multiple VAL clients. The next activated VAL client will then check whether the locally stored ID-Token_A can be used without sending OpenID Connect Authentication Request to the SIM-S as in step #1.
-
Expiration Time: the expiration time after which the token must not be accepted for processing

-
Optional additional claims if necessary, e.g. avatar object (e.g. image, media), etc.

9.
The ID-Token_A is consumed by the metaverse VAL client or VAL UE, which processes the following steps:

-
verify the integrity of the token using the certificate of the SIM-S

-
check whether the avatar ID and user ID as the value of subject claim match the identities of the requesting user and the avatar representing the user

-
check whether the audience claim matches the identity of the VAL client itself or VAL UE
-
check whether the token is not expired

-
optionally check the additional claims if any, e.g. whether the avatar object in the claim matches the avatar object selected by the user

By checking the claims in the obtained ID-Token_A, the metaverse VAL client is able to determine that the avatar object used by the user is authentic and allowed to be used by the requesting user.
The access token returned by the SIM-S is used by the VAL client for service access with the avatar object as described in clause 6.x.2.3.
6.X.2.3
Avatar authorization procedure

[image: image2.png]VAL UE

VAL
Server

0. Establish a secure channel

1. HTTP message (Token)

3. HTTP message (OK)

2. Token
verification

Figure 6.x.2.3-1: Avatar Authorization Procedure for Metaverse Service Access
0.
A secure HTTP tunnel between VAL client and VAL server is established.

1.
The VAL client sends an HTTP message to the VAL server containing the Avatar ID and Object, the service ID/name and the access token. The access token contains at least the following claims:

-
Issuer: the SIM-S

-
Subject: Avatar ID || User ID (i.e. concatenation of avatar ID and user ID)

-
Audience: the VAL Server ID of the metaverse service requested by the user

NOTE:
the VAL Server ID can be sent to the SIM-S by the VAL client at step #7 in clause 6.x.2.2 or by the A-DACM function at step #5 in clause 6.x.2.2.
-
Scope:
 service ID/name
-
Expiration Time: the expiration time after which the token must not be accepted for processing

-
Additional claims if necessary, e.g. avatar object (e.g. image, media), etc.

2.
The VAL server authorizes the avatar for accessing the requested services only if the access token is valid.

The access token is consumed by the metaverse VAL server, which processes the following steps:

-
verify the integrity of the token using the certificate of the SIM-S

-
check whether the avatar ID and user ID as the value of subject claim match the identities of the requesting user and the avatar representing the user

-
check whether the audience claim matches the identity of the VAL server itself

-
check whether the scope claim matches the identity of the requested service

-
check whether the token is not expired

-
check the additional claims if any, e.g. whether the avatar object in the claim matches the avatar object sent by the VAL client
After successful verification of the access token, the VAL server is able to determine that the avatar object sent by the VAL client is authentic and allowed to be used by the requesting user (i.e. implicit avatar authentication) and is allowed to access the requestd metaverse (avatar authorization).
3.
The VAL server responds the request with OK or failure. The VAL server may also provide service related information to the VAL client.

6.Y.3
Evaluation

TBD.
*************** End of the Change ****************
VAL Client (SIM-C)
SIM-S
0. Establish secure tunnel
1. OIDC Authentication Request (User ID, Avatar ID, Avatar Object, Service ID)
6a. OIDC Authentication response (authorization code)
7. OIDC Token request (authorization code)
8. OIDC Token response (ID-Token_A, access-token)
A-DACM
3a. Representation Verification Request (User ID, Avatar ID, Service ID)
4. Based on stored avatar profile, check
- the association between avatar and user
- services accessible by the avatar
5. Representation Check Response (result)
6b. OIDC Authentication response (failure cause)
2. Verify the authenticity of Avatar Object
3b. OIDC Authentication response (failure cause)
9. Verify the ID-Token_A

