
3GPP TSG-SA5 Meeting #155 	S5-242811
Jeju, South Korea, 27 - 31 May 2024
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	28.526
	CR
	0028
	rev
	-
	Current version:
	18.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Rel-18 CR 28526 Fix references to invalid procedures

	
	

	Source to WG:
	Huawei, NTT DOCOMO

	Source to TSG:
	S5

	
	

	Work item code:
	TEI18
	
	Date:
	[bookmark: _GoBack]2024-05-17

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	TS 28.526 refers to an early version of ETSI NFV which does not match the final implementation.

	
	

	Summary of change:
	Change references to ETSI NFV specifications to point to final version of NFV Release 3.
Fix incorrect operation names and parameter names.
Fix references to incorrect clauses in ETSI NFV specifications.

	
	

	Consequences if not approved:
	TS 28.526 contains invalid or incorrect information.

	
	

	Clauses affected:
	2, 4.2.2.1, 4.2.2.3, 4.2.3.1, 4.2.3.2, 4.2.4.1, 4.2.4.2, 4.2.5, 4.2.6, 4.2.7, 4.3.1, 4.3.4, 4.3.6, 4.3.7, 4.3.10, 4.4.1, 4.4.5.3, 4.5.1, 4.5.2, 4.5.3, 4.5.4, 4.5.5, 4.5.6, 4.5.8, 4.6.1, 4.6.2, 4.6.4

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	As endorsed in S5-241039, TS 28.526 should refer to NFV Release 3.

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc155794517][bookmark: _Toc130464631]
	1st change

[bookmark: _Toc532316843]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 28.500: "Management concept, architecture and requirements for mobile networks that include virtualized network functions".
[3]	3GPP TS 28.525: "Life Cycle Management (LCM) for mobile networks that include virtualized network functions; Requirements".
[4]	ETSI GS NFV-IFA008 V2.1.1V3.7.1 (2016-102022-11) "Network Function Virtualization (NFV) Release 3; Management and Orchestration; Ve-Vnfm Reference Point - Interface and Information Model Specification".
[5]	ETSI GS NFV-IFA013 V3.1.2V3.7.1 (2018-082022-11) "Network Function Virtualization (NFV) Release 3; Management and Orchestration; Os-Ma-nfvo Reference Point - Interface and Information Model Specification".
[6]	3GPP TS 32.508: "Telecommunication management; Procedure flows for multi-vendor plug-and-play eNode B connection to the network".
[7]	3GPP TS 32.532: "Telecommunication management; Software management (SwM); Integration Reference Point (IRP); Information Service (IS)".
[8]	ETSI GS NFV-IFA011 V2.1.1 (2016-10) "Network Function Virtualization (NFV); Management and Orchestration; VNF Packaging Specification".
[bookmark: _Toc19796755][bookmark: _Toc27046889][bookmark: _Toc35858107][bookmark: _Toc97827685][bookmark: _Toc468110402]
	2nd change

[bookmark: _Toc532316852][bookmark: _Toc532316862]4.2.2.1	VNF instantiation by EM request
Figure 4.2.2.1-1 depicts a procedure of VNF instantiation by EM request. It is assumed that EM has subscribed to receive the VNF lifecycle change notification from VNFM. As a result of this procedure, the new VNF instance is not associated to any NS (see NOTE in clause 7.2.3.4 in [4]).
1. EM sends CreateVnfRequestCreateVnfIdentifierRequest to VNFM with vnfDescriptorIdvnfdId, vnfInstanceName, and vnfInstanceDescription to create the VNF identifier (see clause 7.2.2 [4]).
2.	VNFM sends CreateVnfResponseCreateVnfIdentifierResponse to EM with vnfInstanceId to indicate the creation of a new instance of a VNF information element (see clause 7.2.2.3 [4]).
3.	EM sends InstantiateVnfRequest to VNFM with input parameters, listed in clause 7.2.3.2 [4] to instantiate a VNF (see clause 7.2.3 [4]).
4.	VNFM sends InstantiateVnfResponse with lifecycleOperationOccurrenceId to EM (see clause 7.2.3.3 [4]).
5.	VNFM send a Notify (see clause 7.5.37.2.15 [4]), carrying VnfLifecycleChangeNotification VnfLcmOperationOccurrenceNotification information element to EM with attributes vnfInstanceId, statusnotificationSstatus = “start”, operation = “instantiation”, lifeycleOperationOccurrenceId, affectedVnfc, affectedVlaffectedVirtualLink, and affectedVirtualStorage to indicate the start of VNF instantiation (see clause 9.5.19.5.2 [4]).
6.	VNFM send a Notify (see clause 7.5.37.2.15 [4]), carrying VnfLifecycleChangeNotification VnfLcmOperationOccurrenceNotification information element to EM with attributes vnfInstanceId, statusnotificationStatus = “result”, operation = “instantiation”, lifeycleOperationOccurrenceId, affectedVnfc, affectedVlaffectedVirtualLink, and affectedVirtualStorage to indicate the result of VNF instantiation, when the VNF instantiation operation is completed (see clause 9.5.19.5.2 [4]).
EM
VNFM
1. CreateVnfIdentifierRequest
2. CreateVnfIdentifierResponse
6. Notify
3. InstantiateVnfRequest
4. InstantiateVnfResponse
5. Notify

Figure 4.2.2.1-1: VNF instantiation procedure

	3rd change

[bookmark: _Toc532316854]4.2.2.3	Provide IP address of the managing EM in VNF instantiation
Figure 4.2.2.3-1 depicts a procedure of providing the IP address of the managing EM to the VNF in instantiation. As a result of this procedure, the new VNF instance is not associated to any NS (see NOTE in clause 7.2.3.4 in [4]). The figure uses UML notation to show multiple options available.
[bookmark: _Hlk162943371]1.	EM sends CreateVnfIdentifierRequest with parameters vnfdId, and optionally vnfInstanceName vnfInstanceName and vnfInstanceDescription to VNFM (see clause 7.2.2 [4]).
2.	VNFM creates a new VnfInfo object
3.	VNFM sends CreateVnfIdentifierResponse with the new VNF identifier to EM (see clause 7.2.2 [4]).
If the Multi-vendor Plug and Play connection to the network method is not used and managing EM IP address is provided as VNF configuration data, the steps 4.1.1 through 4.1.4 are executed.
4.1.1.	EM sends ModifyVnfConfigurationRequestModifyVnfInfoRequest with parameters vnfInstanceId, vnfConfigurationData, extVirtualLinknewValues and vnfcConfigurationData to VNFM (see clause 7.6.27.2.12 [4]). The managing EM IP address value used in parameter vnfConfigurationData.
4.1.2.	VNFM sets the vnfConfigurationDatanewValues in the vnfInfo object.
4.1.3.	VNFM sends ModifyVnfConfigurationResponseModifyVnfInfoResponse to EM (see clause 7.6.27.2.12 [4]).
4.1.4.	EM sends InstantiateVnfRequest with parameters vnfInstanceId, flavourId, instantiationLevelId, extVirtualLink, extManagedVirtualLink, localizationLanguage, vnfConfigurableProperty and additionalParam to VNFM (see clause 7.2.3 [4]).
Note: The extVirtualLink may be known to the EM (e.g. provided by another entity).
If the Multi-vendor Plug and Play connection to the network method is not used and managing EM IP address is provided as additional parameter for instantiation, the steps 4.2.1 through 4.2.3 are executed.
4.2.1.	EM sends InstantiateVnfRequest with parameters vnfInstanceId, flavourId, instantiationLevelId, extVirtualLink, extManagedVirtualLink, localizationLanguage, vnfConfigurableProperty and additionalParam to VNFM (see clause 7.2.3 [4]). The managing EM IP address value used in parameter additionalParamvnfConfigurableProperty.
4.2.2.	VNFM maps the managing EM IP address value received in parameter additionalParamvnfConfigurableProperty of InstantiateVnfRequest to vnfConfigurationData (see Note 1).
NOTE 1: the specific mechanism for this mapping (e.g. vendor specific LCM script or specific VNFM) is out of scope of 3GPP
4.2.3.	VNFM sets the vnfConfigurationDatavnfConfigurableProperty in the vnfInfo object.
If the Multi-vendor Plug and Play connection to the network method is used to provide the managing EM IP address to VNF, step 4.3.1 is executed.
4.3.1.	EM sends InstantiateVnfRequest with parameters vnfInstanceId, flavourId, instantiationLevelId, extVirtualLink, extManagedVirtualLink, localizationLanguage and additionalParam to VNFM (see clause 7.2.3 [4]).
5.	VNFM initiates the VNF instantiation process.
6.	VNFM sends InstantiateVnfResponse with the new lifecycleOperationOccurrenceId to EM (see clause 7.2.3 [4]).
7.	VNFM sends SetInitialConfigurationRequestSetConfigurationRequest with parameters vnfInstanceId, vnfConfigurationData and vnfcConfigurationData to VNF (see clause 6.2.2 [4]).
8.	VNF sends SetInitialConfigurationResponseSetConfigurationResponse with parameters vnfConfigurationData and vnfcConfigurationData to VNFM (see clause 6.2.2 [4]).
9. If Multi-vendor Plug and Play connection to the network method is used to provide the managing EM IP address to VNF, VNF performs the EM discovery (see "Establishing connection to Element Manager" procedure in clause 5.5 of TS 32.508 [6]).
10.	VNF connects to the managing EM.
11.	"Normal" NE management by the EM over Type-1 interface (e.g. s/w update, configuration) begins.

[image:]EM
VNFM
1. CreateVnfIdentifierRequest
3. CreateVnfIdentifierResponse
VnfInfo
VNF
2. Create
Alt
[MVPNP not used]
4.2.1. InstantiateVnfRequest (additionalParam=EM_IP_Addr)
 4.2.2 Map additionalParam value to vnfConfigurationData
Ref
4.2.3 SetConfData
[MVPNP is used]
4.3.1. InstantiateVnfRequest
5. Instantiate
6. InstantiateVnfResponse
7. SetInitialConfigurationRequest
8. SetInitialConfigurationResponse
Opt
[MVPNP used]
 9. MVPNP EM discovery
Ref
10. Connect
11. “Normal” NE management by the EM over Type-1 interface (e.g. s/w update, configuration)
Ref
Alt
[EM IP Address provided as vnfConfigurationData]
[EM IP Address provided as vnfConfigurableProperty]
4.1.4. InstantiateVnfRequest
4.1.1. ModifyVnfInfoRequest
4.1.3. ModifyVnfInfoResponse
4.1.2 SetConfData

Figure 4.2.2.3-1: Provide IP address of the managing EM in VNF instantiation procedure

	4th change

[bookmark: _Toc532316857]4.2.3.1	Scale VNF instance initiated by EM
Figure 4.2.3.1-1 depicts a procedure of scaling VNF instance (see clause 7.2.84 [4]).
1. EM sends ScaleVnfRequest with parameters vnfInstanceId, type, aspectId, and numberOfSteps to scale the VNF instance (see clause 7.2.84 [4]).
2. VNFM sends ScaleVnfResponsewith the identifier of the VNF lifecycle operation occurrence lifecycleOperationOccurrenceId to EM (see clause 7.2.84 [4]).
3.	VNFM send a Notify (see clause 7.5.37.2.15 [4]), carrying VnfLifecycleChangeNotificationVnfLcmOperationOccurrenceNotification information element, to EM with attributes vnfInstanceId, statusnotificationStatus = “start”, operation to indicate the start of VNF scaling (see clause 9.5.19.5.2 [4]).
4.	VNFM send a Notify (see clause 7.5.37.2.15 [4]), carrying VnfLifecycleChangeNotificationVnfLcmOperationOccurrenceNotification information element, to EM with attributes vnfInstanceId, statusnotificationStatus = “result”, operation to indicate the result of VNF scaling, when the VNF scaling operation is completed (see clause 9.5.19.5.2 [4]).

Figure 4.2.3.1-1: Scale VNF instance procedure
[bookmark: _Toc532316858]4.2.3.2.	Scale VNF instance to a level initiated by EM
Figure 4.2.3.2-1 depicts a procedure of scaling VNF instance to a level (see clause 7.2.95 [4]).
1. EM sends ScaleVnfToLevelRequest with parameters vnfInstanceId, and (instantiationLevelId or scaleInfo) to scale the VNF instance to a level defined by instantiationLevelId or scaleInfo (see clause 7.2.95 [4]).
2. VNFM sends ScaleVnfToLevelResponse with the identifier of the VNF lifecycle operation occurrence lifecycleOperationOccurrenceId to EM (see clause 7.2.95 [4]).
3.	VNFM send a Notify (see clause 7.5.37.2.15 [4]), carrying VnfLifecycleChangeNotificationVnfLcmOperationOccurrenceNotification information element, to EM with attributes vnfInstanceId, statusnotificationStatus = “start”, operation to indicate the start of VNF scaling (see clause 9.5.19.5.2 [4]).
4.	VNFM send a Notify (see clause 7.5.37.2.15 [4]), carrying VnfLifecycleChangeNotificationVnfLcmOperationOccurrenceNotification information element, to EM with attributes vnfInstanceId, statusnotificationStatus = “result”, operation to indicate the result of VNF scaling, when the VNF scaling operation is completed (see clause 9.5.19.5.2 [4]).

Figure 4.2.3.2-1: Scale VNF instance to a level procedure

	5th change

[bookmark: _Toc532316861]4.2.4.1	VNF termination by EM request
Figure 4.2.4.1-1 depicts a procedure of VNF termination by EM request, when this VNF instance is not needed. The VNF instance has been instantiated (see NOTE in clause 7.2.3.4 in [84]) by the EM. It is assumed that EM has subscribed to receive the VNF lifecycle change notification from VNFM. The VNF instance identifier will be deleted after the VNF termination.
1. EM sends TerminateVnfRequest to VNFM with vnfInstanceId to terminate the VNF instance (see clause 7.2.7 [4]).
2.	VNFM sends TerminateVnfResponse with lifecycleOperationOccurrenceId to EM (see clause 7.2.7.3 [4]).
3.	VNFM sends a Notify (see clause 7.5.37.2.15 [4]), carrying VnfLifecycleChangeNotificationVnfLcmOperationOccurrenceNotification to EM with attributes vnfInstanceId, statusnotificationStatus = “start”, operation = “termination” to indicate the start of VNF termination (see clause 9.5.19.5.2 [4]).
4.	VNFM sends a Notify (see clause 7.5.37.2.15 [4]), carrying VnfLifecycleChangeNotificationVnfLcmOperationOccurrenceNotification to EM with attributes vnfInstanceId, affectedVnfc, affectedVirtualLink, affectedVirtualStorage, statusnotificationStatus = “result”, operation = “termination” to indicate the result of VNF termination, when the VNF termination operation is completed (see clause 9.5.19.5.2 [4]).
5. EM sends DeleteVnfIdentifierRequest to VNFM with vnfInstanceId to delete the VNF instance identifier (see clause 7.2.8 [4]).
6.	VNFM sends a Notify (see clause 7.5.37.2.15 [4]), carrying VnfIdentifierDeletionNotification information element to EM with attributes vnfInstanceId (see clause 9.5.8 [4]).

Figure 4.2.4.1-1: VNF termination procedure
4.2.4.2	VNF termination by removing VNF instance from NS
Figure 4.2.4.2-1 depicts the procedure of VNF termination by removing VNF instance from NS through Os-Ma-Nfvo reference point (see clause 7.3.5 of ETSI GS NFV-IFA013 [5])
1.	NM sends to NFVO an UpdateNsRequest with parameter nsInstanceId, updateType = “RemoveVnf”, RremoveVnfInstanceId and updateTime to remove the VNF instance(s) from NS (see clause 7.2.2.27.3.5.2 of ETSI GS NFV-IFA013 [5]). The RremoveVnfInstanceId identifies the VNF instance to be removed from the NS.
2.	NFVO remove the target VNF instance and sends to NM an UpdateNsResponse with parameter vnfInstanceId and lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.5.3 of ETSI GS NFV-IFA013 [5]).
3.	NFVO sends to NM a Notify (see clause 7.4.37.3.12 of ETSI GS NFV-IFA013 [5]) carrying an NsLifecycleChangeNotificationNsLcmOperationOccurrenceNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = “UpdateNs” and notificationTypenotificationStatus = “start” to indicate the start of the NS updating that is being performed through removing specific VNF instance(s) (see clause 8.3.2.2 of ETSI GS NFV-IFA013[5]).
4.	If the NFVO decides to terminate the NS instance, it sends to NM a Notify (see clause 7.4.37.3.12 of ETSI GS NFV-IFA013 [5]) carrying an NsLifecycleChangeNotificationNsLcmOperationaOccurrenceNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = “UpdateNs” and notificationTypenotificationStatus = “result” to indicate the end result of the NS updating performed through removing specific VNF(s) removal, and affectedVnf providing information about the removed VNF instance(s), including vnfInstanceId, vnfdId, vnfProfileId, vnfName and changeType = “terminatedterminate” (see clause 8.3.2.2 and 8.3.2.3 of ETSI GS NFV-IFA013 [5]).
NM
NFVO
3. Notify
1. UpdateNsRequest
2. UpdateNsResponse
4. Notify

Figure 4.2.4.2-1	Procedures of VNF termination by removing VNF from NS instance

	6th change

[bookmark: _Toc532316863][bookmark: _Toc532316870]4.2.5	Notifications about VNF lifecycle changes
Figure 4.2.5-1 depicts the procedure of notification on VNF instance lifecycle change notifications through the Ve-Vnfm-em reference point (see clause 7.3.37.2.15 [4]).
1. VNFM sends to EM a Notify according to clause 7.3.37.2.15 in [4]. This operation sends to EM the notifications supported on the VNF lifecycle change notification interface.
EM
VNFM
1. Notify

Figure 4.2.5-1: Notifications about VNF lifecycle changes
The following notifications can be notified/sent by this operation:
-	VnfLifecycleChangeNotificationVnfLcmOperationOccurrenceNotification. See clause 9.5.2 [4] with the list of attributes in the Table 9.5.2.3-1 [4].
-	VnfInfoAttributeValueChangeNotification. See clause 9.5.6 [4] with the list of attributes in the Table 9.5.6.3-1 [4].
-	VnfIdentifierCreationNotification. See clause 9.5.7 [4] with the list of attributes in the Table 9.5.7.3-1 [4].
-	VnfIdentifierDeletionNotification. See clause 9.5.8 [4] with the list of attributes in the Table 9.5.8.3-1 [4].
[bookmark: _Toc532316864]4.2.6	Autoscaling enabling/disabling
[bookmark: _Toc532316865]4.2.6.1	Autoscaling enabling/disabling initiated through Ve-Vnfm-em
Figure 4.2.6.1-1 depicts the procedure of enabling/disabling the autoscaling of a VNF instance through the Ve-Vnfm-em reference point.
1. EM sends to VNFM a ModifyVnfConfigurationRequest (see clause 7.6.2 [4]) with input parameter vnfInstanceId, vnfConfigurationData.autoScalable = TRUE/FALSE (see clause 7.1.12 [8]) for enabling/disabling the autoscaling.EM sends to VNFM a ModifyVnfInfoRequest (see clause 7.2.12 [4]) with input parameter vnfInstanceId, and newValues referring to vnfConfigurableProperty.isAutoscaleEnabled = TRUE/FALSE (see clause 7.1.12 [8]) for enabling/disabling the autoscaling and clause 9.4.2.2 [4] for the VnfInfo containing the vnfConfigurableProperty).
2.	VNFM sends to EM a ModifyVnfConfigurationResponse(see clause 7.6.2 [4]).VNFM sends to EM a ModifyVnfInfoResponse (see clause 7.2.12 [4]).
3.	VNFM send a Notify (see clause 7.6.4 [4]), carrying VnfConfigAttributeValueChangeNotification information element, to EM with attributes vnfInstanceId, changedConfig to inform about the changed VNF configuration. (see clause 9.2.7 [4]).VNFM send a Notify (see clause 7.2.15 [4]), carrying VnfLcmOperationOccurrenceNotification to EM with attributes vnfInstanceId, notificationStatus = “start”, operation = “modify VNF info” to indicate to to indicate the start of modify VNF information (see clause 9.5.2 [4]).
4.	VNFM sends a Notify (see clause 7.2.15 [4]), carrying VnfLcmOperationOccurrenceNotification to EM with attributes vnfInstanceId, changedInfo, notificationStatus = “result”, operation = “modify VNF info” to indicate the result and completion of modify VNF information operation (see clause 9.5.2 [4]).

 EM
VNFM
1. ModifyVnfInfoRequest
2. ModifyVnfInfoResponse
4. Notify
3. Notify

Figure 4.2.6.1-1: Autoscaling enabling/disabling initiated through Ve-Vnfm-em
[bookmark: _Toc532316866]4.2.6.2	Autoscaling enabling/disabling through Os-Ma-nfvo
For enabling/disabling the autoscaling initiated through Os-Ma-nfvo, the procedure in clause 4.4.5.3 of the present document about “Modifying VNF instance configuration through Os-Ma-nfvo” applies. The vnfConfigurationDatanewValues contained in the modifyVnfConfigDatamodifyVnfInfoData parameter that is carried in the UpdateNsRequest of step 1 of the referred procedure provides the information for enabling/disabling the autoscaling of the corresponding VNF instance (refer to the autoScalable attribute of VnfConfigurableProperties in clause 7.1.12 in [8]).
[bookmark: _Toc532316867]4.2.7	Subscribing to VNF lifecycle change notifications through Ve-Vnfm-em
Figure 4.2.7-1 depicts the procedure of subscribing to VNF lifecycle changemanagement notifications through the Ve-Vnfm-em reference point (see clause 7.3.27.2.14 [4]).
1. EM sends to VNFM a SubscribeRequest with input parameter filter for selecting the notifications, which can be on the VNF instance(s) of interest or other attributes of the notification (see clause 7.3.2.27.2.14.2 [4]).
2.	VNFM sends to EM a SubscribeResponse with parameter subscriptionId providing the identifier of the subscription realized (see clause 7.3.2.37.2.14.3 [4]).
EM
VNFM
1. SubscribeRequest
2. SubscribeResponse

Figure 4.2.7-1: Subscribing to VNF lifecycle change notifications through Ve-Vnfm-em

	7th change

4.3.1	VNF package on-boarding
Figure 4.4-1 depicts a procedure of VNF package on-boarding,
1. 	NM sends OnboardUploadVnfPackageRequest to NFVO with input parameters listed in clause 7.7.2.2 [5] to on-board a VNF package (see clause 7.7.2 [5]).
2.	NFVO sends OnboardUploadVnfPackageResponse to NM with with vnfPackageId to indicate a VNF package has been on-boarded (see clause 7.7.2.3 [5]).

Figure 4.4-1: VNF package on-boarding procedureNM
NFVO
1. UploadVnfPackageRequest
2. UploadVnfPackageResponse

[bookmark: _Toc532316873]
	8th change

4.3.4	VNF Package deleting
Figure 4.3.4-1 depicts the procedure of VNF Package deleting.
1. NM sends DeleteVnfPackageRequest to NFVO with onboardedVnfPkgInfoId to delete a VNF Package (see clause 7.7.5 [5]).
2.	NFVO sends DeleteVnfPackageResponse to NM to indicate the result of the operation (see clause 7.7.5.4 [5]).
[image: figure_4]
Figure 4.3.4-1: VNF Package deleting procedure
[bookmark: _Toc532316875]
	9th change

4.3.6	VNF Package querying
Figure 4.3.6-1 depicts a procedure to query from the NFVO for information it has stored about one or more VNF Packages.
1. NM sends QueryOnboardedVnfPkgInfoRequest to NFVO with filter and attributeSelector used to filter the VNF Packages on which the query applies, based on the attributes of OnboardedVnfPkgInfoVnfPkgInfo and select the information attributes of OnboardedVnfPkgInfoVnfPkgInfo that are requested to be returned (see clause 7.7.6 [5]).
2.	NFVO sends QueryOnboardedVnfPkgInfoResponse to NM with parameter queryResult providing the information that is selected according to parameters filter and attributeSelector (see clause 7.7.6.4 [5]).
[image: figure_4]
Figure 4.3.6-1: VNF Package querying procedureNM
NFVO
1. QueryVnfPkgInfoRequest
2. QueryVnfPkgInfoResponse

[bookmark: _Toc532316876]4.3.7	Fetch VNF Package
Figure 4.3.7-1 depicts a procedure to fetch from the NFVO a whole VNF Package based on the VNFD identifier that has been assigned by the VNF Provider.
NOTE 1: In cases where NM already knows the value of onboardedVnfPkgInfoIdVnfPkgInfoId for the VNF Package it wishes to fetch, it may skip the steps 1 and 2 below (execution of procedure begins at step 3).
1. NM sends QueryOnboardedVnfPkgInfoRequest to NFVO with filter parameter set to VNFD identifier that has been assigned by the VNF Provider and attributeSelector set to OnboardedVnfPkgIdVnfPkgInfoId (see clause 7.7.6 [5]).
2.	NFVO sends QueryOnboardedVnfPkgInfoResponse to NM with parameter queryResult providing the OnboardedVnfPkgIdVnfPkgInfoId identifier allocated by NFVO to the corresponding VNF package (see clause 7.7.6.4 [5]).
3. NM sends FetchOnboardedVnfPackageRequest to NFVO with onboardedVnfPkgInfoId parameter identifying the VNF Package to fetch (see clause 7.7.10 [5]).
4.	NFVO sends FetchOnboardedVnfPackageResponse to NM with the vnfPackage requested (see clause 7.7.10.4 [5]).
[image: figure_4]
Figure 4.3.7-1: Fetch VNF Package procedureNM
NFVO
1. QueryVnfPkgInfoRequest
2. QueryVnfPkgInfoResponse
3. FetchVnfPackageRequest
4. FetchVnfPackageResponse

	10th change

[bookmark: _Toc532316879]4.3.10	Fetch on-boarded VNF Package artifacts
Figure 4.3.10-1 depicts a procedure to fetch from the NFVO selected artifacts contained in an on-boarded VNF package.
1. NM sends FetchOnboardedVnfPackageArtifactsRequest to NFVO with onboardedVnfPkgInfoId parameter identifying specific on-boarded VNF Package and artifactAccessInformationSelector parameter listing individual package artifacts to fetch (see clause 7.7.11 [5]).
2.	NFVO sends FetchOnboardedVnfPackageArtifactsResponse to NM with the list of vnfPackageArtifact (e.g. files) requested (see clause 7.7.11.4 [5]).
[image: figure_4]
Figure 4.3.10-1: Fetch on-boarded VNF Package artifacts procedureNM
NFVO
1. FetchPackageArtifactsRequest
2. FetchVnfPackageArtifactsResponse

	11th change

[bookmark: _Toc532316881]4.4.1	NS Instance instantiation
Figure 4.4.1-1 depicts the procedure of an NS instantiation initiated through the Os-Ma-nfvo reference point (see clause 7.3.3 [5]). The procedure includes the steps of creating first the corresponding NS instance identifier.
1.	NM sends to NFVO a CreateNsIdentifierRequest with parameters nsdId, nsName, and nsDescription to create an NS instance identifier (nsInstanceId) and an associated instance of an NsInfo information element (see clause 7.3.2.2 [5]).
2.	NFVO sends to NM a CreateNsIdentifierResponse with parameter nsInstanceId identifying the instance of the NS that has been created (see clause 7.3.2.3 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.4.37.3.12 [5]) carrying NsIdentifierCreationNotification information element with attribute nsInstanceId to indicate the NS instance idenfier creation (see clause 8.3.2.9 [5]).
4.	NM sends to NFVO an InstantiateNsRequest with parameters nsInstanceId and flavourId. Additional parameters can be provided including sapData, pnfInfoaddPnfData, locationConstraints, additionalParamsForNs, additionalParamForVnf, startTime, nsInstantiationLevelId, and additionalAffinityOrAntiAffinityRule. In addition, if the NS instantiation includes reusing existing VNF instances and/or NS instances, parameters vnfInstanceData and nestedNsInstanceIdData are provided, respectively. See clause 7.3.3.2 [5].
5.	NFVO sends to NM an InstantiateNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.3.3 [5]).
6.	NFVO sends to NM a Notify (see clause 7.4.37.3.12 [5]) carrying an NsLifecycleChangeNotificationNsLcmOperationOccurrenceNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "NsInstantiation", and notificationTypenotificationStatus = "start" to indicate the start of the NS instantiation (see clause 8.3.2.2 [5]).
7.	NFVO sends to NM a Notify (see clause 7.4.37.3.12 [5]) carrying an NsLifecycleChangeNotificationNsLcmOperationOccurrenceNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "NsInstantiation", and notificationTypenotificationStatus = "result" to indicate the end result of the NS instantiation. According to the results of the NS instantiation, additional information is provided in the notification with parameters affectedVnf, affectedPnf, affectedVl, affectedVnffg, affectedNs and affectedSap (see clause 8.3.2.2 [5]).
NM
NFVO
3. Notify
5. InstantiateNsResponse
6. Notify
7. Notify
1. CreateNsIdentifierRequest
2. CreateNsIdentifierResponse
4. InstantiateNsRequest

Figure 4.4.1-1: NS instantiation

	12th change

[bookmark: _Toc532316889][bookmark: _Toc532316902]4.4.5.3	Modifying VNF instance configuration through Os-Ma-nfvo
Figure 4.4.5.3-1 depicts the procedure of modifying VNF instance configuration through the Os-Ma-nfvo reference point (see clause 7.3.5 [5]).
1. NM sends to NFVO an UpdateNsRequest with parameters nsInstanceId, updateType = “ModifyVnfConfigModifyVnfInformation”, modifyVnfConfigDatamodifyVnfInfoData, and updateTime to modify the VNF instance configuration (see clause 7.3.5.2 [5]). The modifyVnfConfigDatamodifyVnfInfoData contains the parameters that are needed for VNF instance configuration modification, namely vnfInstanceId, list of vnfConfigurationData and list of extVirtualLinknewValues (see clause 8.3.4.188.3.4.17 [5]).
2.	NFVO sends to NM an UpdateNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.5.3 [5]).
3.	NFVO sends to NM a Notify (see clause 7.4.37.3.12 [5]) carrying an NsLifecycleChangeNotificationNsLcmOperationOccurrenceNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", and notificationTypenotificationStatus = "start" to indicate the start of the NS update that includes the VNF instance configuration modification (see clause 8.3.2.2 [5]).
4.	NFVO sends to NM a Notify (see clause 7.4.37.3.12 [5]) carrying an NsLifecycleChangeNotificationNsLcmOperationOccurrenceNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", notificationTypenotificationStatus = "result" to indicate the end result of the NS update that includes the VNF instance configuration modification, and affectedVnf providing information about the modified VNF instance whose configuration has been modified, including vnfInstanceId, vnfdId, vnfProfileId, vnfName and changeType = "configuration modifiedmodify information" (see clauses 8.3.2.2 and 8.3.2.3 [5]).

Figure 4.4.5.3-1: Modifying VNF instance configuration through Os-Ma-nfvo

	13th change

4.5.1	NSD on-boarding
Figure 4.5.1-1 depicts a procedure for on-boarding an NSD in the NFVO. Associated descriptors (VLD and VNFFGD), that are part of the NSD, are on-boarded at the same time. All descriptors needed by the NSD: VNFD, PNFD and NSD for nested NSs shall be on-boarded before being able to successfully on-board the NSD.
1. NM sends OnboardUploadNsdRequest to NFVO with nsd parameter representing the NSD to be on-boarded and list of userDefinedData key-value pairs providing user defined data for the NSD nsdInfoId parameter representing the NSD information object associated with the NSD to be on-boarded (see clause 7.2.2 [5]).
2.	NFVO sends OnboardUploadNsdResponse to NM with the nsdInfoId identifier of the on-boarded instance of the NSD (see clause 7.2.2.4 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.2.13 [5]) carrying NsdOnBoardingNotification information element with attributes nsdInfoId and nsdId to indicate on-boarding of NSD (see clause 8.2.6 [5]).
[image: figure_4]
Figure 4.5.1-1: NSD on-boarding procedureNM
NFVO
1. UploadNsdRequest
2. UploadNsdResponse
3. Notify

[bookmark: _Toc532316905]
	14th change

[bookmark: _Toc532316903]4.5.2	NSD enabling
Figure 4.5.2-1 depicts a procedure for enabling a previously disabled NSD instance, allowing again its use for instantiation of new network service with this descriptor. The "In use/Not in use" sub-state does not change as a result of the operation.
1. NM sends EnableNsdRequestUpdateNsdInfoRequest to NFVO with nsdInfoId parameter representing the identifier of on-boarded NSD to be enabled and operationalState = ENABLED (see clause 7.2.37.2.5 [5]).
2.	NFVO sends EnableNsdResponseUpdateNsdInfoResponse to NM to indicate the result of the operation (see clause 7.2.3.47.2.5.4 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.2.13 [5]) carrying NsdChangeNotification information element with attributes nsdInfoId, changeTypensdId, and operationalState and deletionPending to indicate a change of status of NSD (see clause 8.2.7 [5]).
[image: figure_4]NM
NFVO
1. UpdateNsdInfoRequest
2. UpdateNsdInfoResponse
3. Notify

Figure 4.5.2-1: NSD enabling procedure
[bookmark: _Toc532316904]4.5.3	NSD disabling
Figure 4.5.3-1 depicts a procedure for disabling a previously enabled NSD instance, preventing any further use for instantiation of new network service with this descriptor. The "In use/Not in use" sub-state does not change because of the operation.
1. NM sends DisableNsdRequestUpdateNsdInfoRequest to NFVO with nsdInfoId parameter representing the identifier of on-boarded NSD to be disabled and operationalState = DISABLED (see clause 7.2.47.2.5 [5]).
2.	NFVO sends DisableNsdResponseUpdateNsdInfoResponse to NM to indicate the result of the operation (see clause 7.2.4.47.2.5.4 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.2.13 [5]) carrying NsdChangeNotification information element with attributes nsdInfoId, changeTypensdId, and operationalState and deletionPending to indicate a change of status of NSD (see clause 8.2.7 [5]).
[image: figure_4]NM
NFVO
1. UpdateNsdInfoRequest
2. UpdateNsdInfoResponse
3. Notify

Figure 4.5.3-1: NSD disabling procedure

	15th change

4.5.4	NSD querying
Figure 4.5.4-1 depicts the procedure of querying NSD information through the Os-Ma-nfvo reference point (see clause 7.2.7 [5]).
1. NM sends to NFVO a QueryNsdInfoRequest with parameters filter and attributeSelector used to filter the NSDs on which the query applies and the attributes that will be returned for the instances of NSD(s) matching the filter (see clause 7.2.7.2 [5]).
2.	NFVO sends to NM a QueryNsdInfoResponse with parameter queryResult providing the information that is selected according to parameters filter and attributeSelector (see clause 7.2.7.3 [5]). The result of the operation indicates if it has been successful or not with a standard success/error result.
NM
NFVO
1. QueryNsdRequest
2. QueryNsdResponse

Figure 4.5.4-1: Query NSD information through Os-Ma-nfvo NM
NFVO
1. QueryNsdInfoRequest
2. QueryNsdInfoResponse

[bookmark: _Toc532316906]4.5.5	NSD deletion
Figure 4.5.5-1 depicts a procedure for deletion of one or more NSD(s). It is possible to delete only a single version of an NSD or all versions. An NSD can only be deleted when there is no instantiated NS using it. An NSD in the deletion pending state can no longer be enabled, disabled or updated. It is not possible to instantiate NS(s) using an NSD in the deletion pending state.
1. NM sends DeleteNsdRequest to NFVO with list of nsdInfoId parameter representing the identifier(s) of on-boarded NSD to be deleted and an optional applyOnAllVersions parameter indicating if the delete operation is to be applied on all versions of this NSD. By default, if applyOnAllVersions parameter is not present, the request applies only on the current NSD version. (see clause 7.2.6 [5]).
2.	NFVO sends DeleteNsdResponse to NM with list of deletedNsdInfoId parameter representing the identifier(s) of deleted NSD(s) to indicate the result of the operation (see clause 7.2.6.4 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.2.13 [5]) carrying NsdChangeNotificationNsdDeletionNotification information element with attributes nsdInfoId, and changeTypensdId, operationalState and deletionPending to indicate a change of status the deletion of NSD (see clause 8.2.78.2.8 [5]).
[image: figure_4]
Figure 4.5.5-1: NSD deletion procedure
[bookmark: _Toc532316907]4.5.6	NSD updating
Figure 4.5.6-1 depicts a procedure for updating an already on-boarded NSD, creating a new version of the NSD. The procedure can also be used to update the userDefinedData of an existing NsdInfo information element without creating a new version of the NSD.
The update of an NSD is performed by uploading the new version of the NSD as described in clause 4.5.1. The previous versions of the NSDs are not modified. It is possible to add (remove) constituent descriptors (i.e. VNFDs, PNFDs, nested NSDs, VLDs, VNFFGDs and Service Access Point Descriptors (SAPDs)) to (from) ana new NSD versionvia the Update NSD operation. This is done by changing the various descriptor references in the new NSD. For example, to add VNFDs to an NSD, the NM adds corresponding VNFD identifiers to the list of vnfdIds in the new NSD. To remove VNFDs, the NM simply does not include the vnfdIds (of the VNFDs to be removed) in the new NSD.
1. NM sends UpdateNsdInfoRequest to NFVO with nsdInfoId parameter representing the identifier of on-boarded NSD to be updated, an optional (only present if the NSD itself is updated) nsd parameter representing the new NSD to be created and list of userDefinedData key-value pairs optional parameter representing the user defined data to be updated (for existing keys, the value is replaced). At least one of the two parameters (nsd or userDefinedData) needs to be present. If nsd is not present, the operation is used only to update existing or add additional user defined data using the userDefinedData parameter (see clause 7.2.5 [5]).
2.	NFVO sends UpdateNsdInfoResponse to NM with nsdInfoId parameter representing the identifier of the updated NSD to indicate the result of the operation (see clause 7.2.5.4 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.2.13 [5]) carrying NsdChangeNotification information element with attributes nsdInfoId, changeTypensdId, and operationalState and deletionPending to indicate a change of status user defined data of NSD (see clause 8.2.7 [5]).
[image: figure_4]
Figure 4.5.6-1: NSD updating procedureNM
NFVO
1. UpdateNsdInfoRequest
2. UpdateNsdInfoResponse
3. Notify

	16th change

[bookmark: _Toc532316909]4.5.8	Notify operation for NSD management changes
The Figure 4.5.8-1 depicts a procedure of delivery of notifications related to NSD management changes.
1. 	NFVO sends Notify message to the NM according to the clause 7.2.13 in [5]. This operation delivers to the NM the notifications related to NSD Management changes. In order to receive notifications, the NM shall perform an explicit Subscribe operation beforehand.

Figure 4.5.8-1: Procedure for the Notify operation for NSD management changes

The following notifications can be sent by this operation:
-	NsdOnBoardingNotification. See clause 8.2.6 in [5].
The notification contains the following parameters:
- 	nsdInfoId: Identifier of the on-boarded instance of the NSD
-	nsdId: Identifies the NSD being on-boarded.
-	NsdChangeNotification. See clause 8.2.7 in [5].
The notification contains the following parameters:
-	nsdInfoId:	Identifier of the on-boarded instance of the NSD.
-	changeType:	It categorizes the type of change. Possible values can be "change of operational state of an on-boarded NSD", "NSD in deletion pending", and "deletion of an NSD".
-	operationalState:	New operational state of the NSD. Only present when changeType is "change of operational state".
-	deletionPending:	Indicates if the deletion of the NSD instance has been requested but the NSD still being used by instantiated NSs. Only present when changeType is "NSD in deletion pending".
-	NsdDeletionNotification. See clause 8.2.8 in [5].
-	PnfdOnBoardingNotification. See clause 8.2.9 in [5].
-	PnfdDeletionNotification. See clause 8.2.10 in [5].

	17th change

[bookmark: _Toc532316911]4.6.1	PNFD on-boarding
Figure 4.6.1-1 depicts a procedure for on-boarding a PNFD in the NFVO, making it available to be used by NSDs.
1. NM sends OnboardUploadPnfdRequest to NFVO with pnfd parameter representing the PNFD to be on-boarded and pnfdInfoId parameter representing the PNFD information object associated with the PNFD to be on-boarded and pnfdArchive parameter identifying an archive file containing the PNFDlist of userDefinedData key-value pairs providing user defined data for the PNFD (see clause 7.2.8 [5]).
2.	NFVO sends OnboardUploadPnfdResponse to NM with the pnfdInfoId identifier of the on-boarded instance of the PNFD (see clause 7.2.8.4 [5]).
[image: figure_4]
Figure 4.6.1-1: PNFD on-boarding procedureNM
NFVO
1. UploadPnfdRequest
2. UploadPnfdResponse

[bookmark: _Toc532316912]4.6.2	PNFD updating
Figure 4.6.2-1 depicts a procedure for updating a PNFD, creating a new version of already on-boarded PNFD. The procedure can also be used to update the userDefinedData of a PNFD of an existing PnfInfo information element without creating a new version of the PNFD.
The update of a PNFD is performed by uploading the new version of the PNFD as described in clause 4.6.1. The previous versions of the PNFD are not modified.
1. NM sends UpdatePnfdInfoRequest to NFVO with pnfdInfoId parameter representing the identifier of on-boarded PNFD to be updated, an optional (only present if the PNFD itself is updated) pnfd parameter representing the new PNFD to be created and list of userDefinedData key-value pairs optional parameter representing the user defined data to be updated (for existing keys, the value is replaced). At least one of the two parameters (pnfd or userDefinedData) needs to be present. If pnfd is not present, the operation is used only to update existing or add additional user defined data using the userDefinedData parameter (see clause 7.2.9 [5]).
2.	NFVO sends UpdatePnfdInfoResponse to NM with pnfdInfoId parameter representing the identifier of the updated PNFD to indicate the result of the operation (see clause 7.2.9.4 [5]).
[image: figure_4]
Figure 4.6.2-1: PNFD updating procedureNM
NFVO
1. UpdatePnfdInfoRequest
2. UpdatePnfdInfoResponse

	18th change

[bookmark: _Toc532316914]4.6.4	PNFD querying
Figure 4.6.4-1 depicts a procedure to query the NFVO concerning details of one or more PNFDs.
1. NM sends QueryPnfdInfoRequest to NFVO with filter and attributeSelector used to filter the PNFD(s) on which the query applies, based on the attributes of PnfdInfo and select the information attributes of PnfdInfo that are requested to be returned (see clause 7.2.11 [5]).
2.	NFVO sends QueryPnfdInfoResponse to NM with parameter queryResult providing the information of the on‑boarded PNFD matching the input filter that is selected according to attributeSelector (see clause 7.2.11.4 [5]).
[image: figure_4]
Figure 4.6.4-1: PNFD querying procedureNM
NFVO
1. QueryPnfdInfoRequest
2. QueryPnfdInfoResponse

	End of changes

3GPP
image1.emf
EM

1. CreateVnfRequest

2. CreateVnfResponse

VNFM

3. InstantiateVnfRequest

6. Notify

5. Notify

4. InstantiateVnfResponse

image2.png
Em VNEM

1. CreateVnfidentiferRequest()

"] 2 cens

S=== v

|3, CreatevnfiertiterResponse()
Lo

|
ait]| TMVPNP ot used]

alt] T (EM 1P Address provided as viConfigurationData |

|
|
I
|
{4411 Mo ConftnReestrContraiondaa=EV 1P A

7
|

421 niniteRequestaddionaParan-EM_IP_pcr)

) 422 MapacionalParam v o iContiuraondata

425 SetconData
T

5. Instaniiate
o

6. InstaniateVaResponse()
=

7. SethithiConfguationRequest()

8 SethitalConfigurationResponse()
=

7

opt J [MVPNP Used]
|

o1 o, MVPNP EM discovery

10. Connect

1 1
70T |11 “Nomal"NE management by he EM ove Type- nteface (e s updte, confiuraton)

image3.emf
EM VNFM

1. ScaleVnfRequest

4. Notify

3. Notify

2. ScaleVnfResponse

EM
VNFM
1. ScaleVnfRequest
4. Notify
3. Notify
2. ScaleVnfResponse

image4.emf
EM VNFM

1. ScaleVnfToLevelRequest

4. Notify

3. Notify

2.

ScaleVnfToLevelResponse

EM
VNFM
1. ScaleVnfToLevelRequest
4. Notify
3. Notify
2. ScaleVnfToLevelResponse

image5.emf
EM

1. TerminateVnfRequest

2. TerminateVnfResponse

VNFM

4. Notify

3. Notify

5. DeteleVnfIdentifierRequest

6. Notify

EM
1. TerminateVnfRequest
2. TerminateVnfResponse
VNFM
4. Notify
3. Notify
5. DeteleVnfIdentifierRequest
6. Notify

image6.emf
EM VNFM

1. ModifyVnfConfigurationRequest

2. ModifyVnfConfigurationResponse

3. Notify

oleObject4.bin
�

�

EM

VNFM

image7.emf
NFVO NM

1. OnboardVnfPackageRequest

2. OnboardVnfPackageResponse

NFVO
NM
1. OnboardVnfPackageRequest
2. OnboardVnfPackageResponse

image8.png
NM NFVO

| 1. DeleteVnfPackageRequest !
1. DeleteVnfPackageRequest |

| 2 DeleteVnfPackageResponse |
< 2 DefeteVinfPackageResponse |

image9.png
NM

NFVO

| 1. QueryOnboardedVifPkglnfoRequest _ |
1. QueryCnboardedVifPkginfoRequest |

| 2. QueryOnboardedVnfPkglnfoResponse |
<2 QueryOnboardedVnfPhginfoResponss |

image10.png
NM NFVO

| 1. QueryOnboardedVifPkglnfoRequest _ !
1. QueryCnboardedVinfPkginfoRequest |

| 2. QueryOnboardedVnfPkginfoResponse !
<2 QueryOnboardedVnPkginfoResponse |

1 3. FetchOnboardedVnfPackageRequest _!
1.3 FetchOnboardedViPackageRequest_{

|_ 4. FatchOnboardedVnfPackageRespanse |
i 4 FetchOnboardedVnfPackageResponse |

image11.png
NM NFVO

| 1. FetchOnboardedVnfPackageArtifactsRequest __ |

_ 2. FetchOnboardsdVnfPackagsArifactsResponss |

image12.emf

NM

NFVO

1. UpdateNsRequest

2 . UpdateNsResponse

3 . Notify

4. Notify

Microsoft_Word_97_-_2003_Document.doc

[image: image1]

NM

NFVO

1. UpdateNsRequest

2. UpdateNsResponse

3. Notify

4. Notify

image13.png
NM NFVO

| 1. OnboardNsdRequest !
1 OnboardNsdRequest |

|_ 2. OnboardNsdResponse |
<2 OnboardNisdResponse |

| 3. Natify i
ety

image14.png
NM NFVO

| 1. EnableNsdRequest !
1. EnablelNsdRequest |

|_ 2. EnableNsdResponse |
<2 EnableNsdResponse |

| 3. Natify i
ety L

image15.png
NM NFVO

| 1. DisableNsdRequest _!
1. DisableNsdRequest |

|_ 2. DisableNsdResponse |
1< 2 DisableNscResponse |

| 3. Natify i
ety

image16.png
NM NFVO

| 1. DeleteNsdRequest __|
1. DeleteNsdRequest |

|_ 2 DeleteNsdResponse |
<2 DefeteNsdResponse |

| 3. Natify i
ety

image17.png
NM NFVO

| 1. UpdateNsdRequest __|
1 UpdatelsdRequest |

|_ 2. UpdateNsdResponse |
<2 UpdatelsdResponse |

| 3. Natify i
ety

image18.emf
NFVO NM

1. Notify

oleObject6.bin

image19.png
NM

NFVO

| 1. OnboardPnfdRequest _!
1. OnboardPnfdRequest |

|_ 2. OnboardPrfdResponse |
1< 2 OnboardPnfdResponse |

image20.png
NM

NFVO

| 1. UpdatePnfdRequest _ |
1 UpdatePrfdRequest |

|_ 2. UpdatePnfdResponse |
<2 pdatePnfResponse |

image21.png
NM

NFVO

| 1. QueryPrfdRequest !
1 QueryPnfdRequest)

| 2. QueryPrfdResponse |
<2 QueryPnidResponse |

