[bookmark: _Hlk164941134]3GPP TSG-RAN WG2 Meeting #126	R2-2405470
Fukuoka, Japan, 20 May – 24 May 2024	

Agenda item:	7.0.5
Source:	Nokia
Title:	ASN.1 Review Overhaul
WID/SID:	
Document for:	Discussion
1	Introduction
At the end of each release, an ASN.1 review procedure [1] is conducted on the 36/38.331 and 37.355 specifications to ensure consistency at the end of the release. The number of agreements are generally more numerous than that between minor releases generated at each 3GPP plenary meeting, and merging those all to create a coherent and correct specification requires substantial effort. Due to the number of companies and delegates participating in the ASN.1 review process, the current procedure implements a sort of “manual version control” procedure using a mix of downloading and uploading the current and modified version of the specification review file, and manually created lock files to indicate that the document is under revision.
The main difficulties about the existing procedures are described in the next section, but it is clear that as the specification has grown, certain tools have outgrown their relevance and feasibility of use. Therefore, a new procedure is proposed by first describing the current way, then describing a potential future, and finally describing the changes to facilitate that future vision, which would involve some growing pain to learn new tools.
The specification of the discussion is limited to the end of release review procedure, targeting the end of Release 19 review. It is not the intention to change the format of the specification, or to change the CR implementation procedure. Intermediate and derivative files and file formats only serve to enable review and discussion of the review.
2	ASN.1 Review
2.1	Current ASN.1 Review Procedures
The following steps are taken to review and integrate corrections into a frozen release. The process is known as the RIL procedure, wherein RIL refers to Review Issue List. However, RIL refers to a single issue, colloquially. These steps are summarized from [1], which describes the end-to-end procedure, and [2], which describes the Microsoft Word macros used to maintain a consistent process.
1. A clean copy of the specification is provided for review.
2. Reviewers check the 3GPP FTP server and determine whether the review file is checked out by comparing the latest lock file version, e.g., “v179 IS LOCKED for editing.txt” to the latest specification review version, e.g., “38331 Rel18 ASN1 review v179.docx”.
a. If the lock file version, e.g., “v179” is equal to the latest specification review file version, e.g., “v179”, then the reviewer must wait until the current reviewer is finished and uploads a specification review file with a new version number.
b. Otherwise, the reviewer uploads a lock file with the same version as the current specification review file, edits the specification review file, and then uploads the specification review file with the current version number + 1, e.g., if the current review version is “v179”, then the new specification review file should have version “v180”.
3. The reviewer, using provided Microsoft Word VBA macros, enters draft mode, and creates new RILs using the add comment macro.
4. The reviewer fills out the comment template provided by the macro, including the description of the change and the proposed change, which could be a copy of the text to change with the proposed changes inline.
5. Once all RILs are ready, the reviewer uploads the specification review file using the procedure in step 2b.
6. Discussions can be had during the RIL process over email, and again during the meeting.
7. It is decided whether to agree or to reject the proposals, and once approved during a 3GPP meeting, the agreed RILs are integrated into the specification review draft.
8. Once the work item drafts are approved, they are integrated into the full specification draft.
The ASN.1 protocol specification is embedded inside of 36/38.331 for RRC and in 37.355 for LPP. Because the ASN.1 is embedded in a Microsoft Word “docx” file, typical version control and collaboration tools cannot be used to review, comment on, and syntax check the ASN.1. Instead, the ASN.1 needs to be first extracted manually, for example through the use of a script. Additionally, section descriptions and field description tables are mixed throughout the ASN.1 specification sections of their respective documents.
In the current RIL procedure, which is appreciated as a massive improvement over a completely manual procedure, the following issues for improvement have been identified:
· Only one reviewer can add RILs and make comments at any given time.
· A manual “LOCK” file needs to be created and filled in to prevent version conflicts.
· Despite using “draft” mode and macros to facilitate the addition and reading of comments, Microsoft Word is often slow and can crash, resulting in the loss of work.
· It is difficult to view comments and the relevant text at the same time because the comments can be quite long.
· Modifications to ASN.1 text are done inside the comments, so it is impossible to evaluate the changes inline.
· Merging agreed ASN.1 changes is a manual, time consuming process.
· ASN.1 syntax checking is a manual step that can only occur after the final review.
Observation 1: Only one reviewer can add RILs and make comments at any given time.
Observation 2: Version control is currently implemented in a manual manner, requiring the uploading of “lock” files and using email to notify others when a new version of the review file has been uploaded.
Observation 3: Microsoft word becomes slow and can crash, despite the use of draft mode.
Observation 4: Viewing comments and the relevant text at the same time can be difficult in Word.
Observation 5: ASN.1 and procedural text are modified in comments instead of inline, making it difficult to understand the impacts of a change.
Observation 6: Merging agreed ASN.1 and procedural text changes is a manual process.
Observation 7: ASN.1 syntax checking is a manual step that can only occur after the final review.
2.2	Proposed ASN.1 Review Procedures
To facilitate easier collaboration, it is proposed to use a modern version control system, such as Git, which is described in Section 3. A version control system allows for many delegates to work on a repository of files, e.g., 36.331, 37.355, and 38.331, simultaneously.
The basic procedure follows.
1. A repository or branch containing the baseline ASN.1 specification, e.g., 38.331, is created.
2. The developer clones (makes a copy of) the repository to work on locally.
3. The developer makes modifications inline to the text and pushes the changes to the repository, including a comment of what changes were made and information that is currently provided in the RIL comment template.
4. If ASN.1 was modified as part of the change, an automatic ASN.1 syntax check is run so that the author can immediately fix any errors so that discussion isn’t had regarding syntax errors.
5. Discussion, through the use of comments, is had to determine whether to agree or reject a proposal.
6. If agreed, the change(s) are merged into a WI branch, containing the agreed proposals. This branch could be used as a basis for the Rapporteur CR to be agreed.
7. After review, the WI branches are optionally merged into the main branch, This branch now contains the full specification with all agreed RILs for easy viewing and review of all the RILs from each WI together.
[image:]The following figure describes the end-to-end steps of creating RILs to merging agreed RILs into the final specification.

Figure 2.2-1
The following figure describes the merging of approved RILs into the WI branches and then into the release branch. The agreed RILs, F001 and P002 were agreed, and merged into the UAV WI, while P003 was rejected.
[image:]
Figure 2.2-2
Observation 8: Git could facilitate the following aspects of the current ASN.1 review process: submission of RILs, merging of agreed RILs into clean WI versions, and merging of agreed WIs into the full specification.
To support discussion, several tools, internal and external to Git, could be used. Within Git, additional changes could be made on top of committed RILs, while preserving the original commit. This allows the flexibility of being able to view further changes inline, but also to reject or agree the further changes. Outside of Git, tools such as Gitlab, a tool which provides an online interface to Git, or Jira, an issue tracking tool, which can be linked to Git commits, could be used to host the discussion on RILs.
Observation 9: Discussion could be had directly by committing further changes on top of already submitted RILs.
Observation 10: Discussion could be had using external tools such as Gitlab or Jira, which can link discussion directly to commits.
Additionally, simple tools, sometimes scripts, could be used to simplify the process of creating RILs. For example, a commit template could be used, which could be called git-commit-ril, to provide the delegate a template similar to the one used in the current RIL process to describe the proposed change. It is also possible to pre-allocate the RIL ID, e.g., Y001, eliminating another manual step in the current procedure.
2.3	Requirements to Support Version Control
To support the use of version control, a new file format is needed, at least for the ASN.1 review process, due to the large amount of formatting included in the Microsoft Word “docx” files. The formatting makes the document nearly impossible to read in a normal text editor. Therefore, a quasi-human readable format is required such that field description tables are legible, and these can be intermixed with the plaintext ASN.1.
Observation 11: The Microsoft Word “docx” format does not easily support typical version control software.
One proposal is to use markdown (file extension *.md) [3], the language used to write Wikipedia articles. Markdown is written in plaintext and can be edited and viewed in any text editor. The lack of complex structures makes it a good candidate for version control since the changes to be tracked are focused on the content of the text instead of all the formatting.
An example of one format of a markdown table is shown below. Because whitespace is not important for formatting simple tables in markdown, which is the type of table demonstrated below, the whitespace has been removed for clarity. Additionally, the markdown generation can be customized such that the most efficient amount of spacing is used for easier reading.
UEInformationRequest-IEs field descriptions
coarseLocationRequest` `This field is used to request UE to report coarse location information.
connEstFailReportReq` `This field is used to indicate whether the UE shall report information about the connection failure.
Figure 2.3-1
The markdown can subsequently be converted to HTML and then to PDF using free, open-source applications or Python libraries. The use of Python libraries makes it possible to perform specific formatting rules on the text. An example of markdown converted to PDF is shown below.
	UEInformationRequest-IEs field descriptions

	coarseLocationRequest
This field is used to request UE to report coarse location information.

	connEstFailReportReq
This field is used to indicate whether the UE shall report information about the connection failure.

Figure 2.3-2
Observation 12: Text formats such as Markdown can be used to maintain human-readable plaintext that can be used to generate formatted, easily readable documents.
3	What is Git?
Git, which is a version control system, facilitates collaboration by allowing users to operate on local copies of a shared repository of files. Here, the files are the specification. Users make changes to one or more files in their local version of the repository, and when ready, commit their changes locally, while providing a comment about the changes made. Then, the changes can be uploaded to the online repository to be shared. All changes are marked with a unique code, or hash, for easy identification in the future.
The best explanation for what Git is comes from the developers of Git, which can be found here https://git-scm.com/about. Additionally, the tutorial videos found here https://git-scm.com/videos describe version control in general as well as Git specifics. 	
3.1 	Terminology and Commands
The following terms and procedures are among the most basic that will be required for the new process. Links to the official git documentation have been provided. Additionally, a free e-book entitled “Pro Git” is available for offline viewing [4].
Table 3.1-1
	Term
	Definition
	Notes
	Example

	Repository
	A directory storing files that can be used for version control.
	In this case, we work with Git repositories, which supports at least the commands listed in the following rows.
	A repository could contain files like:
38331.md, 37355.md, etc.

	Clone
	Download a copy of the remote repository.
	
	git clone https://git.etsi.org/asnr18.git
https://git-scm.com/docs/git-clone

	Pull
	Update the local repository with changes to the remote repository.
	This command can be specific to a branch in case there isn’t any need to update branches irrelevant to your work.
	git pull origin UAV
Note: origin simply means the remote repository.
https://git-scm.com/docs/git-pull

	Push
	Update the remote repository with changes to the local repository.
	This command can be specific to a branch in case there isn’t any need to update branches irrelevant to your work.
	git push origin UAV
Note: origin simply means the remote repository.
https://git-scm.com/docs/git-push

	Checkout
	Switch to a different branch.
	This command can also create a branch if the -b flag is used prior to the branch name.
	git checkout UAV
git checkout -b P001
https://git-scm.com/docs/git-checkout

	Branch
	Create a branch
	This command does not automatically switch to the newly created branch.
	git branch P001
https://git-scm.com/docs/git-branch

	Add
	Add a file to a staged commit
	This command includes a file in the list of “staged” files to be committed. Only files added here will be saved to the repository when committed.
	git commit -m “comment”
Note: a comment is necessary and is provided inline with -m. If not provided, usually a text editor will launch.
https://git-scm.com/docs/git-add

	Commit
	Commit changes to the local repository
	This command will save changes to the repository as a delta to the previous version and create a hash which can be used to uniquely identify the commit.
	git commit -m
https://git-scm.com/docs/git-commit

	Merge
	Merge one branch into another
	This command will merge all the changes made in one branch to another branch by replaying every change, in order, from one branch to the other.
	git merge <branch name>
https://git-scm.com/docs/git-merge

3.2	Tools
3.2.1	Command Line
On the command line, Git can be run in the Windows Command Prompt or through Git BASH, a dedicated shell for Git. The commands listed in the Terminology section, 3.1, above can be entered and used directly on the command line.
3.2.2	GUI (Desktop)
Git graphical user interface (GUI) tools can be useful for visualizing the repository, including the status of your work, e.g., which branch you are working on, and from where it was derived. The tools can easily show each commit made to the repository, including the comment made and the content of the change. An example screenshot of a tool called Git GUI with an example RIL is shown below. Note the comment text containing the RIL template, the red line, which is what was deleted, and the green line, which shows the change, or addition to the text.
[image:]
Figure 3.2.2-1
Additionally, the commit ID, called the SHA1 ID, uniquely identifies each commit, containing the comment and the change.
[image:]
Figure 3.2.2-2
Finally, it can be useful to view the repository structure to check the history of branch creation.
[image:]
Figure 3.2.2-3
Additional tools can be found at https://git-scm.com/downloads/guis.
Observation 13: GUI tools such as Git GUI provide a graphical view of Git repositories, which are easier to read than the textual view provided by command line tools.
3.2.3	GUI (Web)
Lastly the following tools offer graphical views through a web interface: Gitlab and Bitbucket. These tools also provide a backend for managing the repositories, and one such tool could be used in conjunction with command line and the GUI based tools.
4	Other Tools
Pandoc – This tool was used in our examples to create a formatted Markdown representation of the spec from docx [5].
Custom Pandoc Filter – A custom filter was created to aid with proper formatting of Markdown, particularly in identifying the ASN.1 text.
Custom Git Helper Scripts – These helper scripts abstract some of the tedious Git operations.
	List RIL branches for a WI
	List RIL branches for a WI, including the commit messages
Document Generation Scripts
	ASN.1 syntax generator – colour codes the ASN.1 text to make it match the official spec
	Procedural text indenter – makes the procedural text more readable in the auto-generated spec
	Create RIL report for a WI – generates a table of all the RILs
	Create full specification including all committed changes, with or without diff (addition and subtraction) markings.
4.1	Pandoc
This section will briefly show how the frozen specification docx was converted to MD with Pandoc. Note that the full formatting is difficult to preserve, and that objects like call flows must be converted to images in order to appear in documents generated from markdown file(s).
It was necessary to include one type of preprocessing such that simple tables would be generated from the docx file. The preprocessor simply changes the type of line breaks in the table so that every cell in the table will technically be a single line, which is what is supported by markdown simple tables. Line breaks are present in the final HTML and PDF outputs, however.
To create the md version of the specification from the docx version, the following command can be used. Note that for this example, the table preprocessing script is not used, for simplicity.
> pandoc -f docx -t markdown+pipe_tables -o 38331_i00.md 38331-i00.docx
Observation 14: Tools like Pandoc can be used to convert a docx specification file to a markdown file.
5	Examples
The base Release 18 v18.0.0 38.331 specification was converted to a Markdown (md) file and committed to a clean Git repository to be used as an example for the ASN.1 review procedure. The converted file was added and committed to the example git repository with the following commands.
	> git add 38331-i00.md
	> git commit -m ‘Initial commit of frozen 5G Release 18 ASN1 specification 38.331’
As a general note for all of these examples:
· Everything presented as outputs in the examples can be automated, even though some aspects of the examples were manually adjusted in the interest of time and likely changes to the final result.
· There may be a few formatting issues, but these will also be resolved after thorough discussion.
5.1	Release 18 UAV WI Review
In this example, two RILs from the UAV WI are considered: E081 and C008, because they were agreed and affect the same area in the procedural text. The following procedure was taken to execute this example. Note that prior to creating a new branch, it is important to first checkout the base branch, which could be “master” or “main” if no changes have been officially agreed and merged into the WI branch, or the WI branch, which in this example could be named “uav”.
5.1.1	Creation of RIL E081
The RIL creation procedure will be shown as git commands starting with >, followed by the same operation in Git GUI. Note that for the Git GUI example, the E081 RIL was not used, but rather a new demo branch was created.
1. > git checkout master		[Checkout the master branch, which is the starting point.]
GUI-1a. Under the “Branch” menu, click “Checkout”.

Figure 5.1.1-1
GUI-1b. Select “master” and click “Checkout”.
[image:]
Figure 5.1.1-2
2. > git checkout -b uav_E081		[Create a new branch for the RIL.]
GUI-2a. Under the “Branch” menu, click “Create…”.

Figure 5.1.1-3
GUI-2b. Enter the branch name, e.g., uav_N003. The starting branch could be chosen here in lieu of doing so in step 1, however, that step is required when using the command line git commands. Then click “Create”. Because the box entitled “Checkout After Creation” is checked, the branch will be checked out automatically after creation.
[image:]
Figure 5.1.1-4

3. Make corrections to 38331-i00.md in text editor of choice.
4. > git status 			[Check which files have been changed.]

$ git status
On branch uav_N003
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: 38331-i00.md
GUI-4. Under the “Commit” menu, click “Rescan”, or press F5 to refresh the repository status.
[image:]
Figure 5.1.1-5
5. > git diff 38331-i00.md		[Check the changes by line.]

$ git diff 38331-i00.md
diff --git a/38331-i00.md b/38331-i00.md
index 788c16e..2025ad2 100644
--- a/38331-i00.md
+++ b/38331-i00.md
@@ -8,7 +8,7 @@ Technical Specification Group Radio Access Network;

 NR;

-Radio Resource Control (RRC) protocol specification
+Further Enhanced Radio Resource Control (feRRC) protocol specification

 (Release 18)

GUI-5a. For a line diff, which shows entire lines as modified, added or subtracted) click on the file under unstaged changes.
[image:]
Figure 5.1.1-6

OR
		> git diff –word-diff 38331-i00.md (word-diff)		[Check the changes inline.]
diff --git a/38331-i00.md b/38331-i00.md
index 788c16e..2025ad2 100644
--- a/38331-i00.md
+++ b/38331-i00.md
@@ -8,7 +8,7 @@ Technical Specification Group Radio Access Network;

NR;

{+Further Enhanced+} Radio Resource Control [-(RRC)-]{+(feRRC)+} protocol specification

(Release 18)

GUI-5b. To view a word-diff in the branch display, an additional argument needs to be added in options. Under the “Edit” menu, click “Options…”.
[image:]
Figure 5.1.1-7
In Additional Diff Parameters, add “--word-diff” and click “Save” in the lower right of the window.
[image:]
Figure 5.1.1-8
Now the changes are shown inline.
[image:]
Figure 5.1.1-9

6. > git add 38331-i00.md 			[Add the changed file to be committed or make further changes.]
	GUI-6a. Under the “Commit” menu, click “Stage To Commit”.
[image:]
Figure 5.1.1-10
7. > git status						[Check if the file has been staged.]

$ git status
On branch uav_N003
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: 38331-i00.md

GUI-7a. Verify the staged changes in the GUI.
[image:]
Figure 5.1.1-11
8. > git commit -t git_ril_template	[Write a comment about the changes made.]
GUI-8. Under “Tools”, click “Commit RIL”. This “tool” is just an alias to the same command use on the command line in the example above.
[image:]
Figure 5.1.1-12
In the case of the command line and the GUI method, a text editor will appear to modify the RIL template. Modify git RIL template with the appropriate details, and save and close the file.
[image:]
Figure 5.1.1-13
The status of the commit will be shown in the window.
[image:]
Figure 5.1.1-14
At this stage, since the changes have been committed, it is possible to check the effect of the changes. In this example, we will show the change on the command line, but it is also possible to view changes in tools such as Git GUI.
The git diff command takes as one argument the branch to which to compare, which in this case is “master”, and the “--word-diff” option is used to display changes inline. Note that the removed text is marked in red, and the added text is marked in green. Note that in the example below, the diff was performed on E081.
$ git diff master --word-diff
diff --git a/38331-i00.md b/38331-i00.md
index 788c16e..e60bc58 100644
--- a/38331-i00.md
+++ b/38331-i00.md
@@ -14114,13 +14114,13 @@ If AS security has been activated successfully, the UE shall:

4\> if the *eventH1* or *eventH2* is configured in the corresponding *reportConfig*:

5\> for all the events [-of-]{+with+} the same [-type-]{+*eventId*+} for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry condition applicable for the event has been satisfied:

6\> consider only the event with the smallest value between the altitude of the UE and the corresponding altitude threshold to be applicable;

4\> else if the *eventA3H1* or *eventA3H2* or *eventA4H1* or *eventA4H2* or *eventA5H1* or *eventA5H2* is configured in the corresponding *reportConfig*:

5\> for all the events [-of-]{+with+} the same [-type-]{+*eventId*+} associated with the same *measObjectNR* for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry conditions applicable for the event has been satisfied:

6\> consider only the event with the smallest value between the altitude of the UE and the corresponding altitude threshold to be applicable;
Figure 5.1.1-15
5.1.2	Creation of RIL C008
The same steps as described in the “Creation of RIL E081” can be used here for the command line or GUI.
> git checkout master
> git checkout -b uav_C008
	Make corrections to 38331-i00.md in text editor of choice.
	> git add 38331-i00.md
	> git commit -t git_ril_template
	Modify git RIL template with the appropriate details.
$ git diff master –word-diff
diff –git a/38331-i00.md b/38331-i00.md
index 788c16e..8be3111 100644
--- a/38331-i00.md
+++ b/38331-i00.md
@@ -14116,13 +14116,13 @@ If AS security has been activated successfully, the UE shall:

5\> for all the events of the same type for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry condition applicable for the event has been satisfied:

6\> consider only the event [-with-]{+for which+} the [-smallest value-]{+difference+} between the {+corresponding altitude threshold and the+} altitude of the UE [-and-]{+is+} the [-corresponding altitude threshold-]{+smallest+} to be applicable;

4\> else if the *eventA3H1* or *eventA3H2* or *eventA4H1* or *eventA4H2* or *eventA5H1* or *eventA5H2* is configured in the corresponding *reportConfig*:

5\> for all the events of the same type associated with the same *measObjectNR* for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry conditions applicable for the event has been satisfied:

6\> consider only the event [-with-]{+for which+} the [-smallest value-]{+difference+} between the {+corresponding altitude threshold and the+} altitude of the UE [-and-]{+is+} the [-corresponding altitude threshold-]{+smallest+} to be applicable;
Figure 5.1.2-1
While it is, of course, useful to observe the changes on a per-RIL basis, it is also useful to check if all of the agreeable RILs, in the opinion of the reviewing delegate, work when implemented together. To view these RILs together, a new local branch, which could be temporary, can be created. The two RILs, which are located in branches “uav_E081” and “uav_C008” will be merged into the new branch so that the full difference can be viewed.
5.1.3	Aggregating RILs
To view the aggregate effect of more than one RIL, RILs need to be merged into a branch together. The merging process is a serial process whereby, starting with a base branch, e.g., the master branch or RIL WI branch, branches are applied as changes to the base branch and then to the base branch plus all other previously merged RIL WI branches.
1. > git checkout master
2. > git checkout -b local_uav_C008_E081		[Create new branch to hold the merged branches.]
The preceding steps can be accomplished using the first two steps of the beginning of this section to create E081.
3. > git merge C008				[Merge C008 into the new branch, based on master].
GUI-3a. Under the “Merge” menu, click “Local Merge…”.
[image:]
Figure 5.1.3-1
GUI-3b. Click the branch to merge, e.g., “uav_C008”, and click “Merge”.
[image:]
Figure 5.1.3-2
GUI-3c. The status of the merge will show in the window.
[image:]
Figure 5.1.3-3
4. > git merge E081				[Merge E081 into the new branch, based on master and C008.]
GUI-4. Repeat step 3 for E081.
5.1.4	Viewing Repository Structure
5. > git log --graph				[Check the merge history.]
The first option with git log shows the current branch, e.g., local_uav_C008_E081, including commit messages.
$ git log --graph local_uav_C008_E081
* commit 70ee68c24a9582d78c9eeb977137536554a01892 (HEAD -> local_uav_C008_E081)
|\ Merge: 0811fb4 6da16c6
| | Author: Jerediah Fevold <jerediah.fevold@nokia.com>
| | Date: Thu Apr 25 12:54:18 2024 -0500
| |
| | Merge branch 'uav_E081' into local_uav_C008_E081
| |
| * commit 6da16c698dad1081f1f2f3ca03219127dd9ac38c (uav_E081)
| | Author: Jerediah Fevold <jerediah.fevold@nokia.com>
| | Date: Fri Mar 8 12:58:43 2024 -0600
| |
| | [RIL]: E081
| | [Delegate]: <Ericsson (Name)>
| | [Class]: 1
| | [Status]: PropAgree
| | [TDoc]: None
| | [Proposed Conclusion]:
| |
| | [Description]: Event type is not defined.
| | [Proposed Change]:
| |
* | commit 0811fb4bbe89e702219ee49f105baee9f0a8866e
|\ \ Merge: 7257ba8 d806681
| | | Author: Jerediah Fevold <jerediah.fevold@nokia.com>
| | | Date: Thu Apr 25 12:36:51 2024 -0500
| | |
| | | Merge branch 'uav_C008' into local_uav_C008_E081
| | |
| * | commit d806681e7af08a5005c6a3af2d63e1d606be47ce (uav_C008)
| |/ Author: Jerediah Fevold <jerediah.fevold@nokia.com>
| | Date: Fri Mar 8 13:03:13 2024 -0600
| |
| | [RIL]: C008
| | [Delegate]: <CATT (Name)>
| | [Class]: 1
| | [Status]: PropAgree
| | [TDoc]: None
| | [Proposed Conclusion]:
| |
| | [Description]: current description of "smallest value between the altitude of the UE and the corresponding altitude threshold" is confusing.
| | [Proposed Change]:
| |
* | commit 7257ba8daf141a18ac74ac9e5111370b0386eb3b (master)
| | Author: Jerediah Fevold <jerediah.fevold@nokia.com>
| | Date: Thu Apr 25 11:56:50 2024 -0500
Figure 5.1.4-1
A simplified view can be obtained by adding --format=”%d” to show only the branch names. Here we can see, starting from the top, that uav_E081 and uav_C008 were individually merged in, and that both derived from master.
> git log --graph --format=”%d”
$ git log --graph --format="%d"
* (HEAD -> local_uav_C008_E081)
|\
| * (uav_E081)
* |
|\ \
| * | (uav_C008)
| |/
* | (master)
Figure 5.1.4-2
The same visualization can be achieved in Git GUI.
GUI-5a. Under the “Repository” menu, click “Visualize <branch>’s History”.
[image:]
Figure 5.1.4-3
GUI-5b. In the display that pops up, the same history can be seen.
[image:]
Figure 5.1.4-4
6. > git commit -m ‘’ 			[Optionally, the merges can be committed.]
GUI-6. This step is automatically handled through the merge command and produces simple commit messages stating which branch was merged into which, e.g., “Merge branch ‘uav_E081’ into local_uav_C008_E081’”.
Note that for a temporary branch, the comments are only for you, so the use of the RIL template is unnecessary.
5.1.5	Comparing Multiple RILs to Original
7. > git diff master --word-diff	[View diff considering all the merged branches]
Once all the desired branches have been merged, git diff can be used once again to view the changes.
$ git diff master --word-diff
diff --git a/38331-i00.md b/38331-i00.md
index 788c16e..9ccbf70 100644
--- a/38331-i00.md
+++ b/38331-i00.md
@@ -14114,15 +14114,15 @@ If AS security has been activated successfully, the UE shall:

4\> if the *eventH1* or *eventH2* is configured in the corresponding *reportConfig*:

5\> for all the events [-of-]{+with+} the same [-type-]{+*eventId*+} for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry condition applicable for the event has been satisfied:

6\> consider only the event [-with-]{+for which+} the [-smallest value-]{+difference+} between the {+corresponding altitude threshold and the+} altitude of the UE [-and-]{+is+} the [-corresponding altitude threshold-]{+smallest+} to be applicable;

4\> else if the *eventA3H1* or *eventA3H2* or *eventA4H1* or *eventA4H2* or *eventA5H1* or *eventA5H2* is configured in the corresponding *reportConfig*:

5\> for all the events [-of-]{+with+} the same [-type-]{+*eventId*+} associated with the same *measObjectNR* for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry conditions applicable for the event has been satisfied:

6\> consider only the event [-with-]{+for which+} the [-smallest value-]{+difference+} between the {+corresponding altitude threshold and the+} altitude of the UE [-and-]{+is+} the [-corresponding altitude threshold-]{+smallest+} to be applicable;
Figure 5.1.5-1
To view the full set of changes without the revision marks, simply view the file in a text editor. Alternatively, it is possible to view the differences line by line instead of inline by word by omitting the “--word-diff” option.
$ git diff master
diff --git a/38331-i00.md b/38331-i00.md
index 788c16e..9ccbf70 100644
--- a/38331-i00.md
+++ b/38331-i00.md
@@ -14114,15 +14114,15 @@ If AS security has been activated successfully, the UE shall:

 4\> if the *eventH1* or *eventH2* is configured in the corresponding *reportConfig*:

-5\> for all the events of the same type for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry condition applicable for the event has been satisfied:
+5\> for all the events with the same *eventId* for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry condition applicable for the event has been satisfied:

-6\> consider only the event with the smallest value between the altitude of the UE and the corresponding altitude threshold to be applicable;
+6\> consider only the event for which the difference between the corresponding altitude threshold and the altitude of the UE is the smallest to be applicable;

 4\> else if the *eventA3H1* or *eventA3H2* or *eventA4H1* or *eventA4H2* or *eventA5H1* or *eventA5H2* is configured in the corresponding *reportConfig*:

-5\> for all the events of the same type associated with the same *measObjectNR* for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry conditions applicable for the event has been satisfied:
+5\> for all the events with the same *eventId* associated with the same *measObjectNR* for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry conditions applicable for the event has been satisfied:

-6\> consider only the event with the smallest value between the altitude of the UE and the corresponding altitude threshold to be applicable;
+6\> consider only the event for which the difference between the corresponding altitude threshold and the altitude of the UE is the smallest to be applicable;
Figure 5.1.5-2
GUI-7. In Git GUI, the branch visualization will need to be used (see step 6 to open the visualizer).
[image:]
Figure 5.1.5-3
The visualizer can also be used to view the changes made per branch that preceded the final branch including all the desired merged branches.
Observation 15: Git provides command line and GUI options for easily viewing the differences between two branches, e.g., the baseline frozen specification and a RIL branch, and the differences between multiple branches and the baseline frozen specification through a simple RIL branch selection and merging procedure.
5.1.6	Human Readable Outputs
Lastly, we can compare the draft CR to the autogenerated version(s) of the merged RILs.
Comparison to the Eventual Draft CR
To associate this procedure with the current approach, an excerpt from the running CR with change marks is provided. Note that in order not to conflict with the present document, a screenshot from the CR is provided. As in the current procedure, that is the one used for the Release 18 ASN.1 review, this iteration of the ASN.1 procedure for Release 19 will still require the manual inclusion of the agreed proposals in the specification.
[image:]
Figure 5.1.6-1
And using simple tools that could be used as part of the process to check the changes in a human-readable form, the following outputs can be generated: a version showing all the revision marks, and a clean one.
5.1.6.1	Output with Change Marks
The following example shows the specification text including revision marks.
[image:]
Figure 5.1.6.1-1
5.1.6.2	Output without Change Marks
The following example shows the specification text without revision marks.
[image:]
Figure 5.1.6.1-2
Observation 16: The last step, which is including all the approve RILs in CRs to the specification review, and the specification version after the ASN.1 review, will remain a manual process for the Release 19 ASN.1 review.
5.2	RIL Report
Another option, which would avoid having to use a terminal application to view RILs would be to automatically generate reports by WI or even for the entire specification that could be viewed in a web browser. The following is an example of what this could look like. Note that the format is the same as in the examples of the previous section, but the changes can be viewed more easily in a web browser. The example below shows a RIL report.
	uav_C008

	[RIL]: C008
[Delegate]: <CATT (Name)>
[Class]: 1
[Status]: PropAgree
[TDoc]: None
[Proposed Conclusion]:

[Description]: current description of "smallest value between the altitude of the UE and the corresponding altitude threshold" is confusing.
[Proposed Change]:

	diff --git a/38331-i00.md b/38331-i00.md
index 788c16e..8be3111 100644
--- a/38331-i00.md
+++ b/38331-i00.md
@@ -14116,13 +14116,13 @@ If AS security has been activated successfully, the UE shall:

5\> for all the events of the same type for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry condition applicable for the event has been satisfied:

6\> consider only the event [-with-]{+for which+} the [-smallest value-]{+difference+} between the {+corresponding altitude threshold and the+} altitude of the UE [-and-]{+is+} the [-corresponding altitude threshold-]{+smallest+} to be applicable;

4\> else if the *eventA3H1* or *eventA3H2* or *eventA4H1* or *eventA4H2* or *eventA5H1* or *eventA5H2* is configured in the corresponding *reportConfig*:

5\> for all the events of the same type associated with the same *measObjectNR* for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry conditions applicable for the event has been satisfied:

6\> consider only the event [-with-]{+for which+} the [-smallest value-]{+difference+} between the {+corresponding altitude threshold and the+} altitude of the UE [-and-]{+is+} the [-corresponding altitude threshold-]{+smallest+} to be applicable;

3\> else if the corresponding *measObject* concerns E-UTRA:

	uav_E081

	[RIL]: E081
[Delegate]: <Ericsson (Name)>
[Class]: 1
[Status]: PropAgree
[TDoc]: None
[Proposed Conclusion]:

[Description]: Event type is not defined.
[Proposed Change]:

	diff --git a/38331-i00.md b/38331-i00.md
index 788c16e..e60bc58 100644
--- a/38331-i00.md
+++ b/38331-i00.md
@@ -14114,13 +14114,13 @@ If AS security has been activated successfully, the UE shall:

4\> if the *eventH1* or *eventH2* is configured in the corresponding *reportConfig*:

5\> for all the events [-of-]{+with+} the same [-type-]{+*eventId*+} for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry condition applicable for the event has been satisfied:

6\> consider only the event with the smallest value between the altitude of the UE and the corresponding altitude threshold to be applicable;

4\> else if the *eventA3H1* or *eventA3H2* or *eventA4H1* or *eventA4H2* or *eventA5H1* or *eventA5H2* is configured in the corresponding *reportConfig*:

5\> for all the events [-of-]{+with+} the same [-type-]{+*eventId*+} associated with the same *measObjectNR* for which *simulMultiTriggerSingleMeasReport* is set to *true* and the entry conditions applicable for the event has been satisfied:

6\> consider only the event with the smallest value between the altitude of the UE and the corresponding altitude threshold to be applicable;

Figure 5.2-1
Observation 17: RILs could be collected as reports to be viewed in a web browser.
Because of the use of HTML to generate the reports, the reports could be dynamically adjusted by the reviewer. For example, if the reviewer only wants to ignore the original, or subtracted, text, marked in red, a simple button could be added to remove that text. An excerpt from an example report is shown below. Note that the red text has been removed, leaving a legible version for review.
	uav_C008

	...

	...

6\> consider only the event {+for which+} the {+difference+} between the {+corresponding altitude threshold and the+} altitude of the UE {+is+} the {+smallest+} to be applicable;

Figure 5.2-2
Observation 18: RIL reports could be dynamically adjustable, e.g., showing additions, additions and subtractions, both, or simply the final reasult to better serve the needs of the reviewer.
5.3	Applying Further Changes to a RIL
Changes may need to be made to a RIL following the initial commit for several reasons. The following updates can help to prevent discussion on simpler topics:
· Correction of a typo
· ASN.1 syntax correction – this could be a response to an automatic syntax check.
Updates could also be made in response to discussion about a RIL. For example, after discussion, a wording change might be agreed upon. In that case, the RIL author or even the WI rapporteur could make an additional change and commit it atop the original RIL. That way, additional RIL creation is avoided and the discussion around a single topic can be maintained in a central place, making it easier to understand the motivations in the end.
As long as the most recent version of the RIL branch is checked out, then all of the previous procedures apply directly to viewing the changes implemented by the RIL.
Observation 19: Corrections, either made autonomously by the contributor, or made after discussion, can be applied directly to the existing RIL branch. The latest version of a RIL branch would be considered the final one.
5.4	Generating a Human Readable Version for Review
At various stages of the review, and especially at the end, it is important to review the complete set of changes. Two approaches will be explored here. The first approach is to use something similar to the RIL report presented in Section 5.2. The entire specification, possibly filtered per WI, with all of the inline changes could be reviewed at once. The other approach would be to generate a clean specification without change marks.
Here we will explore the second approach since the first approach described is essentially a different application of the approach described in Section 5.2.
Using pandoc, the same application that produced the markdown version of the specification, the markdown version of the specification can be used as input to generate different file formats, namely HTML and PDF. With some light formatting, the output can be made to look like the docx versions of the specification, including indenting of procedural conditional statements, ASN.1 syntax highlighting and the addition of the grey background, and formatting of field description and conditional presence tables.
Observation 20: Using pandoc, the same application that produced the markdown version of the specification, the markdown version of the specification can be used as input to generate different file formats, namely HTML and PDF, producing a similar format to that of the Microsoft Word versions of the specification.
Continuing with the example of the two RILs and having merged the RILs at least into a local branch, following the procedures of Section 4.1 or Section 4.3, the resulting markdown file with the RILs applied can be converted. Note that the branch containing the merged version, including the selected RILs, will need to be checked out prior to running the following command.
	> pandoc -f markdown+pipe_tables -t html -o 38331-i00_c008_e081.html --standalone –css=style.css 38331-i00.md
5.5	RILs with Comments
It is useful to understand from which branch a change came from when analysing the effect of merging multiple branches into a base version, e.g., the frozen release version or the running work item version. To this end, the following is proposed as a starting point. In the example below, the Git commit comment is accessed by hovering the mouse cursor over the change.
[image:]
Figure 5.5-1
Observation 21: It is possible, through the creation of a parsing script, to show the inline changes made by a RIL as well as the RIL comment.
6	Next Steps
There are many components and logistics involved in the ASN.1 review process, which include the following steps:
1. Creation of a frozen release to work from
2. Manual check out of the most recent version of the frozen release, including creating a LOCK file.
3. Addition of RILs
4. Manual upload of the most recent version of the frozen release, with an incremented version number
5. Reviewing of RILs in word using the custom comments view.
6. Interpreting the RIL comments and creating CRs to capture the agreed ones.
7. Review of the multi-RIL CRs
After step 7, there is a manual step of merging the CRs into the frozen specification, which is not solved by the approach of this TDoc. However, since it is a manual step in either case, progress can still be made on the overall collaborative review procedure. Additionally, as this is a first draft to the approach, we expect that experts from all the 3GPP companies will have further suggestions for improvement. Therefore, we have only one proposal.
Proposal 1: Discuss and consider a new ASN.1 and procedural text review procedure using Git version control.
7	Conclusion
This document has made the following observations:
Observation 1: Only one reviewer can add RILs and make comments at any given time.
Observation 2: Version control is currently implemented in a manual manner, requiring the uploading of “lock” files and using email to notify others when a new version of the review file has been uploaded.
Observation 3: Microsoft word becomes slow and can crash, despite the use of draft mode.
Observation 4: Viewing comments and the relevant text at the same time can be difficult in Word.
Observation 5: ASN.1 and procedural text are modified in comments instead of inline, making it difficult to understand the impacts of a change.
Observation 6: Merging agreed ASN.1 and procedural text changes is a manual process.
Observation 7: ASN.1 syntax checking is a manual step that occurs after the final review.
Observation 8: Git could facilitate the following aspects of the current ASN.1 review process: submission of RILs, merging of agreed RILs into clean WI versions, and merging of agreed WIs into the full specification.
Observation 9: Discussion could be had directly by committing further changes on top of already submitted RILs.
Observation 10: Discussion could be had using external tools such as Gitlab or Jira, which can link discussion directly to commits.
Observation 11: The Microsoft Word “docx” format does not easily support typical version control software.
Observation 12: Text formats such as Markdown can be used to maintain human-readable plaintext that can be used to generate formatted, easily readable documents.
Observation 13: GUI tools such as Git GUI provide a graphical view of Git repositories, which are easier to read than the textual view provided by command line tools.
Observation 14: Tools like Pandoc can be used to convert a docx specification file to a markdown file.
Observation 15: Git provides command line and GUI options for easily viewing the differences between two branches, e.g., the baseline frozen specification and a RIL branch, and the differences between multiple branches and the baseline frozen specification through a simple RIL branch selection and merging procedure.
Observation 16: The last step, which is including all the approve RILs in CRs to the specification review, and the specification version after the ASN.1 review, will remain a manual process for the Release 19 ASN.1 review.
Observation 17: RILs could be collected as reports to be viewed in a web browser.
Observation 18: RIL reports could be dynamically adjustable, e.g., showing additions, additions and subtractions, both, or simply the final reasult to better serve the needs of the reviewer.
Observation 19: Corrections, either made autonomously by the contributor, or made after discussion, can be applied directly to the existing RIL branch. The latest version of a RIL branch would be considered the final one.
Observation 20: Using pandoc, the same application that produced the markdown version of the specification, the markdown version of the specification can be used as input to generate different file formats, namely HTML and PDF, producing a similar format to that of the Microsoft Word versions of the specification.
Observation 21: It is possible, through the creation of a parsing script, to show the inline changes made by a RIL as well as the RIL comment.
And the following proposal was made:
Proposal 1: Discuss and consider a new ASN.1 and procedural text review procedure using Git version control.
7	References
[1] “Guidelines for REl-18 36.331 and 38.331 ASN.1 Review”, February 2024, https://www.3gpp.org/ftp/Email_Discussions/RAN2/%5BMisc%5D/ASN1%20review/Rel-18%202024-03/ASN1%20review%20guidelines%20Rel-18%20r3.docx
[2] “RIL-Macro and instructions”, Ericsson, June 2018, https://www.3gpp.org/ftp/Email_Discussions/RAN2/%5BMisc%5D/ASN1%20review/RIL-Macro%20and%20instructions.docx
[3] “CommonMark – A strongly defined, highly compatible specification of Markdown” https://commonmark.org/
[4] “Pro Git”, https://github.com/progit/progit2/releases/download/2.1.421/progit.pdf
[5] “Pandoc a universal document converter”, Pandoc, April 2024, https://pandoc.org/

image1.jpeg

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

