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1	Introduction
In this paper we discuss the remaining open issues in terms of evaluation of 3 RRM measurement prediction cases and the corresponding sub-use cases.
2	Discussion
2.1	Sub-use cases
In RAN2#125bis the following cases were identified for generating cell level measurement results
	Agreements
1	For cell level measurement prediction model, at least consider the following cases:
Case 1: To predict beam level results, then generate cell level results based on the predicted beam results; 
Case 2: To directly predict cell level results based on cell level results.
Case 3: To directly predict cell level results based on beam level results 



As input data to the ML and as target values, beam- and cell-level measurements must be simulated. Depending on the use case and the ML model design, they may be raw measurements, L1-filtered or L3-filtered beam measurements. L1- and L3-filtered beam measurements may be derived from simulated raw beam measurements. Cell-level measurements may be separately simulated, or the cell-level measurement derived from simulated beam measurements.
Observation 1: Depending on the sub-use-case and the ML implementation, either raw, L1-filtered or L3-filtered beam measurements may be simulated, or cell-level measurements may be simulated directly.
For temporal domain prediction aspects, the following approaches described in TR 38.843 for Rel. 18 beam management are reused. 
· Case A: beam level measurement prediction based on number of measurements/RSs and prediction time, where T2 is the time duration for beam prediction, Mt is the number of time instances for measurement as AI/ML inputs with a periodicity of Tper and Pt is the number of time instance(s) for prediction with a periodicity of Tper in T2.
· Case B: beam level measurement prediction based on a periodicity T of the required reference signals for measurements to achieve a certain beam prediction accuracy. For non-AI baseline, every T=X ms reference signals for measurements are needed. For AI, every T=Y ms, reference signals for measurements are needed.
Observation 2: In intra- and inter-cell temporal domain prediction, reusing the Case A and Case B from Rel.18 beam management to calculate the measurement reduction gain can reduce the evaluation modelling effort. 
Proposal 1: RAN2 to reuse Case A and Case B from Rel.18 beam management for temporal domain prediction evaluation. However, the modelling should include inter-cell measurement scenarios when both serving and neighbouring beam/cell measurements are considered.
2.2	Simulation assumptions and methodology
2.2.1	UE trajectory model (including wrap around and bounce back)
Following Rel.18 SI on beam management for temporal beam prediction, the following three options from TR 38.843 are considered as a starting point for UE trajectory model. RAN2 #125bis suggests to down select the following options for evaluation.
· Option 1: Linear trajectory model with random direction change
· Option 2: Linear trajectory model with random and smooth direction change
· Option 3: Random direction straight-line trajectories (as shown below in Figure 2.2-1)


Figure 2.2-1: UE trajectory model (Option 3) in TR 38.843
In our understanding, from mobility and handover point of view, Option 1 and Option 2 will not deliver a considerable difference in terms of resulting SLS performance no matter how UE turn angles are updating. So, whether to use direction smooth update is not a necessary step. Option 3 is the simplest modelling for UE trajectory model and it is widely adopted for Rel.18 SI on AI/ML beam management use case. However, when Option 3 is integrated with 7-site scenario, the straight-line movement would only result in oversimplified prediction case studies.
Observation 3: The above aspects have not been covered by the post-meeting e-mail discussion organized by Oppo [1], and still warrant further discussion because the down selection of these options shall also consider the more advanced mobility models.
In our views, the down selection of above different UE trajectory models should also consider whether more advanced mobility patterns are applied, such as wrap around and bouncing back models. In SLS, wrap-around method refers to that UEs exiting the simulation area on one side re-enter on the opposite side, maintaining continuous flow and density. This models an endless, cyclic environment, avoiding edge effects and simulating a larger area. In addition, the bounce-cycle method makes UEs “bounce” back into the simulation area upon reaching a boundary, changing their trajectory to stay within the simulation limits. Both techniques aim to provide realistic UE movement patterns and distribution without introducing bias from boundary effects; However, by introducing disruptive, unpredictable changes to UE trajectories, these models can make it more difficult to predict measurements or events accurately.
Proposal 2: Option 1 can prioritized without wrap around and bouncing back models and Option 3 can be prioritized if wrap around and bouncing back models are applied.
2.2.2	Inter-frequency scenario 
From RAN2 #125bis, it is further agreed to study inter-frequency scenario in terms of which scenarios can be studied without requiring new channel model and resolving any simulation assumptions for FR1-to-FR1. Furthermore, band n77/n78 is considered with 4GHz as the central frequency for FR scenario. 
Observation 4: The configuration of additional frequency layer should have sufficient difference w.r.t the baseline frequency layer, i.e., 4GHz center frequency, in order to avoid the situation that handovers are only happening within one frequency layer. 
Proposal 3: RAN2 to consider another frequency layer within FR1 range where the distance between two center frequencies is sufficient. 
Proposal 4: Companies can select preferred frequency bands and numerologies in FR1 for inter-frequency mobility simulations. 
During the last meeting, some companies proposed using a heterogeneous network layout with macro and pico cells configured at different carrier frequencies to evaluate the frequency domain RRM measurement prediction performance. However, we believe that this approach would complicate system-level modelling, as achieving a common understanding and agreement on the network layout across different companies could be rather challenging, e.g., how to build the pico cells within the 7-site macro scenario. Therefore, we propose the following simpler deployment modelling scenario for inter-frequency mobility evaluation.
Observation 5: To model the heterogeneous network layout that operates at different carrier frequencies would increase the simulation effort. It may also require more discussions to have a common understanding of the modelling methodologies.
Proposal 5: RAN2 to consider co-located 7-site scenario by duplicating the site coordinates while operating at different carrier frequency band (as shown in Figure 2.2-2).
[image: ]
Figure 2.2-2: Inter-frequency scenario for co-located 7-site deployment
When considering inter-frequency mobility scenarios, it is also crucial to address several open parameters. For instance, RRM measurements need to occur within the defined measurement gap duration. This necessitates proper documentation of the measurement gap configuration, including at least Measurement Gap Repetition Period (MGRP) and Measurement Gap Length (MGL). Additionally, specific inter-frequency measurement-related events must be appropriately configured, along with their corresponding thresholds, hysteresis, and Time-To-Trigger (TTT) settings. These details are essential for ensuring accurate and reliable performance in diverse network conditions. Nevertheless, once again, calibration of applied simulation parameters should not be required as agreed from RAN2 #125bis.
Proposal 6: Companies should document inter-frequency mobility related parameters including at least the following:
· Measurement gap configuration (e.g., MGRP, MGL, etc)
· Inter-frequency measurement event (at least A3 event; A4 and A5 events can also be considered at later stage)

2.2.3	Grid of beams (GoBs)
As discussed in the objective of Release 19 SID on AI/ML enabled mobility, inter-cell beam-level measurement prediction for L3 mobility is identified as one of the sub use cases. Thus, generating and processing the beam-level L1 measurements related data set is required. The Table 6.3.1-1: Baseline System Level Simulation assumptions for AI/ML in beam management evaluations in TR38.843, which may be taken as a baseline for the simulation scenario configuration, proposes the number of gNB downlink Tx beams to be either 32 or 64 while other values, e.g., 256 are not precluded. This beam configuration may present significant overhead in simulation and pre-processing in multi-cell scenarios. In such scenarios, a reduced number of beams in gNB side can help decrease the complexity of the simulation and data processing.
Observation 6: For use cases such as measurement events prediction and HO failure/RLF prediction, prioritizing L3 cell level measurements is more appropriate for AI/ML models than L1 beam level measurements. 
Observation 7: Reduced number of downlink Tx beams can help decrease the complexity of the simulation and data processing in multi-cell scenarios (One example propagation scenario with fewer Tx beams is shown in Figure 2.2-3).
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Figure 2.2-3: Coverage map of 7-site scenario with fewer downlink Tx beams at each gNB
Proposal 7: As a starting point, RAN2 to consider fewer downlink Tx beams at each base station, while increasing the number of cells within the scenario compared to the scenario used in TR 36.843. Higher values (e.g., 32 or 64 downlink TX beams) are not precluded.
2.2.4	Other open parameters for L3 mobility
Several important parameters remain unaddressed in the reference scenarios and require clear documentation. It is important to address and document the L3 mobility-related settings, alongside the corresponding performance outcomes, for clarity and comprehensive understanding. 
Observation 8: Given the extensive range of open parameters within the mobility domain, achieving a unified parameter setting for generating simulation results across companies is challenging.
To have a comprehensive SLS modelling by including all the PHY, MAC and RRM functionality seems to be also very challenging and complicated. However, some features are seen as very critical for not only mobility performance but also QoS KPIs, such as traffic modelling, TDD frame configuration, MIMO configuration, HARQ retransmission, packet scheduling, link adaptation, power control, random access procedure. So proper modelling and documentation of these RRM functionalities are required.
Proposal 8: Companies can select their own SLS modelling approaches. Documentation containing at least a detailed table of the parameters is expected.
2.2.5	Performance metrics
As agreed in RAN#102, the objective of SID include evaluating the benefits of applying AI/ML for mobility KPIs, Ping-pong HO, HOF/RLF, Time of stay, Handover interruption, prediction accuracy, and measurement reduction, etc. Under the context of SLS evaluation, as shown in Figure 2.2-4, the training and inference phases may prioritize different KPIs, reflecting the distinct objectives and requirements of each phase. 
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Figure 2.2-4: SLS workflow for AI/ML enabled mobility
In different phases of the evaluation, different metrics are evaluated: 
· During the ML training phase, the choice of machine learning metrics depends on whether the model is intended for classification or regression tasks, leading to the use of different evaluation metrics tailored to each approach.
· During the inference phase, the mobility metrics optimized with AI/ML depends on the objectives specified for each identified use case. For instance, predicting HO failure/RLF may focus on improving handover success rate or mitigating the impact of failures.
In the end, improvements and trade-offs in the mobility metrics should be evaluated. These gains depend on the ML metrics and on the decision logic and the actions made based on the ML predictions. The required ML accuracy and robustness depend on how the ML predictions are used.
Observation 9: The ML performance metrics provide a starting point. To evaluate the specific objectives and trade-offs of each scenario, the impact in mobility metrics should be evaluated. 
Observation 10: The required ML accuracy and robustness depend on how the ML predictions are used.
While the selection of KPIs should be tailored to each use case and the applied ML approach, we still recommend considering a set of common KPIs for evaluating ML models (for training) and mobility performance (for inference). Therefore, we propose the following:
Proposal 9: RAN2 should consider at least a selection of the following common mobility related KPIs as discussed in TR 36.839 as a starting point for the metrics evaluated in each use case:
· HO performance: total number of HOs, unnecessary HOs, Ping-Pong HOs, etc.
· Failure performance: total number of HO failure, RLF, percentage of failure (RLF+HOF)/(HO+ RLF+HOF) in %, etc.
· HO timing performance: HO interruption time, Time of staying outage (ToO), time of staying (in a cell, in a beam, in a UE panel), etc.
· Measurement performance: measurement reduction, measurement accuracy (absolute and relative), CDF of measurement difference, etc.
· QoS related KPIs such as downlink/uplink throughput, latency 
Proposal 10: In addition to measurement accuracy related metrics, RAN2 should consider the at least following common AI/ML related KPIs for evaluation:
· Regression: Prediction accuracy, prediction error, mean square error (MSE), root mean square error (RMSE), etc.
· Classification: Prediction accuracy, confusion matrix, F1 score, precision and recall, etc.

3	Conclusion
In summary, this contribution discusses the aspects that are relevant to the evaluation objective identified in the Rel 19 SI on AIML Mobility.
This document has made the following observations:
Observation 1: Depending on the sub-use-case and the ML implementation, either raw, L1-filtered or L3-filtered beam measurements may be simulated, or cell-level measurements may be simulated directly.
Observation 2: In intra- and inter-cell temporal domain prediction, reusing the Case A and Case B from Rel.18 beam management to calculate the measurement reduction gain can reduce the evaluation modelling effort. 
Observation 3: The above aspects have not been covered by the post-meeting e-mail discussion organized by Oppo [1], and still warrant further discussion because the down selection of these options shall also consider the more advanced mobility models.
Observation 4: The configuration of additional frequency layer should have sufficient difference w.r.t the baseline frequency layer, i.e., 4GHz center frequency, in order to avoid the situation that handovers are only happening within one frequency layer. 
Observation 5: To model the heterogeneous network layout that operates at different carrier frequencies would increase the simulation effort. It may also require more discussions to have a common understanding of the modelling methodologies.
Observation 6: For use cases such as measurement events prediction and HO failure/RLF prediction, prioritizing L3 cell level measurements is more appropriate for AI/ML models than L1 beam level measurements. 
Observation 7: Reduced number of downlink Tx beams can help decrease the complexity of the simulation and data processing in multi-cell scenarios (One example propagation scenario with fewer Tx beams is shown in Figure 2.2-3).
Observation 8: Given the extensive range of open parameters within the mobility domain, achieving a unified parameter setting for generating simulation results across companies is challenging.
Observation 9: The ML performance metrics provide a starting point. To evaluate the specific objectives and trade-offs of each scenario, the impact in mobility metrics should be evaluated. 
Observation 10: The required ML accuracy and robustness depend on how the ML predictions are used.
And proposed the following:
Proposal 1: RAN2 to reuse Case A and Case B from Rel.18 beam management for temporal domain prediction evaluation. However, the modelling should include inter-cell measurement scenarios when both serving and neighbouring beam/cell measurements are considered.
Proposal 2: Option 1 can prioritized without wrap around and bouncing back models and Option 3 can be prioritized if wrap around and bouncing back models are applied.
Proposal 3: RAN2 to consider another frequency layer within FR1 range where the distance between two center frequencies is sufficient. 
Proposal 4: Companies can select preferred frequency bands and numerologies in FR1 for inter-frequency mobility simulations. 
Proposal 5: RAN2 to consider co-located 7-site scenario by duplicating the site coordinates while operating at different carrier frequency band (as shown in Figure 2.2-2).
Proposal 6: Companies should document inter-frequency mobility related parameters including at least the following:
· Measurement gap configuration (e.g., MGRP, MGL, etc)
· Inter-frequency measurement event (at least A3 event; A4 and A5 events can also be considered at later stage)
Proposal 7: As a starting point, RAN2 to consider fewer downlink Tx beams at each base station, while increasing the number of cells within the scenario compared to the scenario used in TR 36.843. Higher values (e.g., 32 or 64 downlink TX beams) are not precluded.
Proposal 8: Companies can select their own SLS modelling approaches. Documentation containing at least a detailed table of the parameters is expected.
Proposal 9: RAN2 should consider at least a selection of the following common mobility related KPIs as discussed in TR 36.839 as a starting point for the metrics evaluated in each use case:
· HO performance: total number of HOs, unnecessary HOs, Ping-Pong HOs, etc.
· Failure performance: total number of HO failure, RLF, percentage of failure (RLF+HOF)/(HO+ RLF+HOF) in %, etc.
· HO timing performance: HO interruption time, Time of staying outage (ToO), time of staying (in a cell, in a beam, in a UE panel), etc.
· Measurement performance: measurement reduction, measurement accuracy (absolute and relative), CDF of measurement difference, etc.
· QoS related KPIs such as downlink/uplink throughput, latency 
Proposal 10: In addition to measurement accuracy related metrics, RAN2 should consider the at least following common AI/ML related KPIs for evaluation:
· Regression: Prediction accuracy, prediction error, mean square error (MSE), root mean square error (RMSE), etc.
· Classification: Prediction accuracy, confusion matrix, F1 score, precision and recall, etc.
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