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Introduction
The TR for the Rel-18 study item on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface [1] contains broad analysis of AI/ML-based CSI compression with a two-sided model and CSI prediction with a UE-sided model. However, there is no consensus on the recommendation for normative work for both sub-use cases. 
The new work item on Artificial Intelligence (AI) / Machine Learning (ML) for NR air interface has been approved in [2]. The objectives of this work item include additional study on CSI feedback enhancement AI/ML sub-use cases: CSI compression with a two-sided model and CSI prediction with a UE-sided model. The additional study is mainly targeting to investigate AI/ML models complexity/performance improving the corresponding gains w.r.t. existing non-AI/ML-based solutions and other aspects requiring further study/conclusion captured in the TR [1]. 
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 


In this contribution, we provide considerations and analyses on aspects related to AI/ML-based CSI prediction with UE-sided model including CSI prediction framework and baseline non-AI/ML CSI prediction algorithms. 
Discussion
Non-AI/ML CSI prediction
At the RAN1#116 meeting it was agreed to evaluate AI/ML-based CSI prediction performance and compare it with non-AI/ML based CSI prediction, where Rel-18 Enhanced Type II codebook for predicted PMI is used for CSI compression for both cases. Conventional approach for signal prediction assumes construction of a statistical signal model and estimation of model parameters. For autoregressive model, the signal in time instance t is represented as a linear combination of signal in p previous time instances t – i∙∆t with gaussian noise n:  

The autoregression model can be extended to represent a multi-dimensional channel matrix, or it can be applied separately per matrix element. To further reduce UE complexity, channel prediction can be applied for channel matrix in angular-delay domain with reduced dimensionality which is equivalent to pre-processing corresponding to spatial domain and frequency domain PMI compression for Enhanced Type II codebook for predicted PMI. Using unified design for prediction pre-processing and PMI codebook helps to further reduce the total UE complexity for CSI computations. 
If autoregression algorithm is applied for CSI prediction with 2 Rx antennas at the UE, 32 CSI-RS ports, 4 CSI-RS instances and system with 52 PRBs, the total complexity for the AR prediction algorithm can be of the order of 1.5 MFLOPs assuming full-dimensional channel prediction. If prediction algorithm is applied on channel in reduced dimension with 2·L = 8 spatial domain (SD) basis vectors and M = 7 frequency domain (FD) basis vectors, the complexity for PMI prediction is reduced to 0.05 MFLOPs. In the above analysis complexity for pre-processing is not considered given that the same processing is done for PMI search. Also, the performances of CSI prediction schemes operated on full or reduced dimensions are very close since CSI available at the gNB side has reduced dimensionality due to CSI compression applied for CSI feedback. 
Considering the above analysis, complexity of non-AI/ML prediction varies over a large range when considering approaches to reduce complexity such as dimensionality reduction. In order to align RAN1 assumptions on non-AI/ML CSI prediction, we propose to consider CSI prediction based on autoregressive model as basic assumption for benchmark 2, details including pre-processing, model order and number of time instances for filter estimation shall be disclosed by companies. Further, complexity of non-AI/ML CSI prediction algorithm shall be provided. 
Observation 1: 
· Complexity of non-AI/ML CSI prediction based on autoregressive statistical model varies from 1.5 MFLOPs to 0.05 MFLOPs depending on the applied pre-processing algorithm (with or without dimensionality reduction).
· Dimensionality reduction for CSI prediction has minor impact on the CSI feedback performance since CSI available at the gNB side has reduced dimensionality due to CSI compression.
Proposal 1: 
· RAN1 to consider CSI prediction based on autoregressive model as basic assumption for benchmark 2.
AI/ML CSI prediction
Performance evaluations
The preliminary results presented in Table 1 show the AI/ML CSI prediction performance in comparison to the defined benchmarks. As agreed, the basis for this evaluation are the Rel-18 evaluation assumptions for UMa scenario. We used the following configuration: 5 ms CSI-RS periodicity and 5 ms CSI report periodicity, 2 Rx ports, 32 CSI-RS ports, 10 MHz BW with 15 kHz SCS (52 RBs) with a UE speed of 30 km/h. For both AI/ML and non-AI/ML based CSI prediction (Benchmark #2), the past 4 CSI-RS transmission instances are considered for the prediction of the next one. For benchmark #2, we included the methods published by Burg for AR filter weights computation with AR model order p = 3. 
AI/ML model with LSTM backbone and with 1.5k trainable parameters applied on each element of channel matrix in angular-delay domain was used for the evaluations. The general architecture with the preprocessing is shown in Figure 1. For pre-processing in the same fashion as for non-AI/ML CSI prediction the channel estimation matrix is converted in the beam/delay domain before using the ML algorithm below. Based on our experimentation, we have observed that the performance is very sensitive to the sequence normalization which also needs to be causal as the magnitude of the next sample is unknown in a practical system. For the training of the AI/ML model the NMSE of the predicted channel matrix was used. It is also important to note that in the case of CSI estimation error the channel estimate with estimation error was used as the ground truth value for the training as there is also no channel estimate without error available in a practical system.



[bookmark: _Ref166190980]Figure 1. ML architecture used for CSI prediction. 

Based on our calculation, for the benchmark #2 (without pre-processing) we estimate around 1.5 MFLOPs of complexity per prediction with an observation window of 4 CSI-RS occasions for each prediction. For the ML based prediction, 63.26 MFLOPs are required using the same system configuration. Note that both benchmark #2 and the ML based prediction use the same pre-processing which is not accounted for in the complexity comparison. Further, it can be observed that, for the channel represented in the beam/delay domain, a large portion of the entries does not contribute significantly to the overall result and thus it might be possible to prune the beam/delays that have small likelihood of impacting the overall result. 
In addition to the basic simulation configuration from previous meeting we adopted channel estimation error modelling as described in the following conclusion made during RAN1 #116-bis:
	Conclusion
Consider error modelling in TR36.897 Table A.1-2 as a baseline if channel estimation error is modeled.
· Other modelling is not precluded, and companies should report how to model channel estimation error if other modelling is considered. 


In our understanding this is the most critical extension of simulation assumption that was made during the last meeting. For the value of parameter delta, we tested the values of 6 dB and 9 dB. Note that delta can be defined as the SINR gain due to filtering relative to LS based channel estimation, which would have the same SINR as the system if CSI-RS collides with PDSCH transmission from another cells. Also, if CSI-RS collides with CSI-RS from other cells, delta includes inter-cell interference suppression gain due to low signal correlation. The CDF of the SINR observed in the system is shown in Figure 2. 
[image: ]
[bookmark: _Ref166191805]Figure 2. CDF of the geometric SINR in dB used for channel estimation error generation. 
The results in Table 1 and Table 2 show the SGCS of the dominant eigenvector without compression as well as the NMSE of the channel matrix in dB. Note that these are only the results for the data in the test set. For the cases with channel estimation error, the ML-based CSI prediction is more robust compared to non-AI/ML based prediction (benchmark #2).

[bookmark: _Ref166091001]Table 1. Preliminary evaluation of intermediate metric SGCS for cases with and without channel estimation error.
	Prediction Method
	SGCS for Layer 1 
(ideal CE)
	SGCS for Layer 1 
(channel estimation error delta = 9 dB)
	SGCS for Layer 1 
(channel estimation error delta = 6 dB)

	benchmark #1
	0.689
	0.665
	0.608

	benchmark #2
	0.876 (+27.1 %)
	0.790 (+18.8 %)
	0.718 (+18.1 %)

	ML prediction
	0.903 (+31.1 %)
	0.819 (+23.2 %)
	0.795 (+30.8 %)


[bookmark: _Ref166191970]
Table 2: Preliminary evaluation of intermediate metric NMSE of the channel matrix in dB for cases with and without channel estimation error.
	Prediction Method
	NMSE in dB
(ideal CE)
	NMSE in dB
(channel estimation error delta = 9 dB)
	NMSE in dB
(channel estimation error delta = 6 dB)

	Benchmark #1
	0.425
	0.560
	0.795

	Benchmark #2
	-8.75
	-8.16
	-6.55

	ML prediction
	-9.97
	-7.71
	-6.68



Observation 2: 
· AI/ML-based CSI prediction is more robust to channel estimation errors compared to non-AI/ML based CSI prediction (benchmark #2).
Performance monitoring
The CSI prediction performance depends on many factors including wireless channel properties, UE speed, properties of reference signals (CSI-RS) and AI-ML model used for CSI prediction at the UE. In general, all the above factors cannot be known at the gNB side. Thus, acceptable prediction performance cannot be guaranteed for all the cases which may lead to degradation of system performance if channel prediction is enabled. To avoid the performance loss, model performance monitoring is required for CSI prediction using one-sided AI model at the UE side. In our view model performance monitoring is one of the main aspects for specification support of the AI/ML CSI prediction sub-use case. Further, performance monitoring specified for AI/ML-based CSI prediction can be also applied to CSI prediction using conventional algorithms.
The following types are considered for the model performance monitoring for AI/ML-based CSI prediction in [1]. 
· Type 1: UE calculates the performance metric(s), UE reports performance monitoring output that facilitates functionality fallback decision at the network.
· Type 2: UE reports predicted CSI and/or the corresponding ground-truth, NW calculates the performance metrics, NW makes decision(s) of functionality fallback operation.
· Type 3: UE calculates the performance metric(s), UE reports performance metric(s) to the NW, NW makes decision(s) of functionality fallback operation.
If NW calculates the performance metrics, performance metrics accuracy mainly depends on two factors: 
1) quantization error for CSI with CSI prediction using UE-sided AI/ML model; 2) quantization error for the corresponding ground-truth CSI reported by the UE. Performance metrics calculated at the UE side is not impacted by the above factors. Thus, if type 2 model performance monitoring is considered, additional study is required for accuracy of performance metrics calculated at the NW side. Hence, we propose to prioritize model performance monitoring type 1 and type 3 for CSI prediction using UE-sided AI/ML model. 
Observation 3: 
· For CSI prediction using UE-sided AI/ML model, performance monitoring with calculation of performance metrics at the NW side (type 2) has lower performance metrics accuracy comparing to performance monitoring with calculation of performance metrics at the UE side.
· If type 2 model performance monitoring is considered, additional study is required for accuracy of performance metrics calculated at the NW side and for ground-truth CSI reporting overhead.
Proposal 2: 
· For CSI prediction using UE-sided AI/ML model, model performance monitoring with performance metrics calculated at the UE side (type 1 and type 3) is prioritized for discussion.
To calculate the performance metrics for model performance monitoring, predicted CSI can be directly compared with the measured CSI at the UE. Thus, AI-ML model can be applied to predict CSI for a time instance in which CSI-RS measurements are available. Such performance monitoring approach is illustrated in Figure 3.



[bookmark: _Ref166001978][bookmark: _Ref166090919]Figure 3. Model performance monitoring for CSI prediction.

In the above figure, performance metric F is calculated based on measured channel H(n) and predicted channel Hp(n), where P corresponds to the CSI-RS periodicity. Channel matrices can be directly used for performance metrics calculation using a function F = F(H(n), Hp(n)), or, performance metrics can be calculated by using precoding matrices (PMIs) F = F(W(n), Wp(n)), where W(n) and Wp(n) correspond to PMI for channel H(n) and Hp(n) respectively. Given that compressed precoding matrixes are only available at the gNB via CSI feedback, our preference is to consider performance metrics based on PMI. Intermediate KPI (GCS, SGCS or NMSE) can be assumed for function F( ) to calculate the performance metrics. Or performance metrics can be calculated as difference in SINR (or, CQI difference) for hypothetical PDSCH transmission for precoding with predicted PMI Wp(n) and PMI W(n) based on measured CSI-RS. 
[bookmark: _Hlk163038272]Further, considering that performance metrics alone may not give enough information about efficiency of CSI prediction, a benchmark may be required to compare CSI prediction performance with performance measure for CSI without CSI prediction. Thus, if performance monitoring metrics with performance is similar to the benchmark, there is no need to waste UE computational resources to do prediction. Benchmark performance metrics may correspond to performance of sample-and-hold operation calculated as FB = F(H(n), H(n-P)) or 
FB = F(W(n), W(n-P)). 
Proposal 3: 
· Consider the following options for performance metrics F calculation for performance monitoring:
· F = F(W(n), Wp(n)), where W(n) – precoding matrix for channel measured in slot n, Wp(n) – precoding matrix for channel predicted for slot n based on previous CSI measurements.
· Benchmark performance metrics can be additionally used for model performance monitoring.
· Benchmark performance metrics may correspond to performance of sample-and-hold operation calculated as FB = F(W(n), W(n-P)), where P is CSI-RS periodicity in slots.
· Performance metrics F(V1, V2) may correspond to intermediate metrics (GCS, SGCS or NMSE) or difference in SINR (or, CQI difference) for hypothetical PDSCH transmission for precoding with matrix V1 and matrix V2. 
For Type 3 performance monitoring, UE directly reports the performance metrics, while for Type 1 performance metrics are further processed at the UE. Based on the UE processing of performance metrics, UE reports at least one bit which indicates the output of performance monitoring procedure at the UE. The processing may include direct comparison of performance metrics F to a threshold T, where threshold may be configured by the gNB. Or comparison of performance metrics F to benchmark FB can be performed. We propose to consider at least the above options for calculation of performance monitoring output for Type 3 performance monitoring.


Proposal 4: 
· Consider the following options for calculation of performance monitoring output at the UE for Type 1 performance monitoring:
· Option 1: UE compares performance metrics F to threshold T, where threshold T can be configured by the gNB.
· Option 2: UE compares performance metrics F to benchmark FB.
Based on the above discussion on model performance monitoring, there are many issues which require RAN1 analysis including performance monitoring type selection, performance metrics and benchmark definition, performance monitoring output calculation at the UE, etc. Ideally, performance evaluations are required to provide meaningful analysis. However, the evaluation methodology is currently lacking for comparison of different options for CSI prediction model performance monitoring.
Observation 4: 
· There is no agreed evaluation methodology in RAN1 to analyze different options of model performance monitoring for CSI prediction.
Specification impact
For the CSI prediction problem, another major area is the configuration of the observation window and the prediction window. Depending on model implementation and if the model is transferred from the NW to the UE, it may also be required to configure model selection at the UE based on different prediction and/or observation window lengths. For Rel-18 Enhanced Type II codebook for predicted PMI, in case of periodic and semi-persistent CSI-RS, size and initial timing of observation window is not configured for the UE. For the case of aperiodic CSI-RS, it corresponds to transmission of multiple CSI-RS instances (CSI-RS burst) triggered by a DCI. Prediction window is configured to a UE for the Rel-18 PMI codebook as it is important to align this assumption between UE and gNB so that precoding matrix is applied at the right time. Slot offset, time interval duration and number of time intervals (N4) are configured to the UE for prediction window, where precoding matrix is reported per each time interval. For AI/ML based CSI prediction, RAN1 may consider changes for observation window and prediction window configurations, including introduction of observation window configuration for CSI with periodic and semi-persistent CSI-RS, changes to CSI-RS burst configuration for CSI with aperiodic CSI-RS, and changes of configuration for prediction window (e.g., value range for slot offset, time interval duration and number of time intervals).
Proposal 5: 
· RAN1 to consider at least the following changes for observation window and prediction window configurations for AI/ML-based CSI prediction:
· Support of observation window configuration for CSI with periodic and semi-persistent CSI-RS.
· Changes to CSI-RS burst configuration for CSI with aperiodic CSI-RS.
· Changes to configuration for prediction window (e.g., value range for slot offset, time interval duration and number of time intervals).
Conclusion
In this contribution, we have provided our views on AI/ML CSI prediction sub-use case. The following observations and proposals were made. 
Observation 1: 
· Complexity of non-AI/ML CSI prediction based on autoregressive statistical model varies from 1.5 MFLOPs to 0.05 MFLOPs depending on the applied pre-processing algorithm (with or without dimensionality reduction).
· Dimensionality reduction for CSI prediction has minor impact on the CSI feedback performance since CSI available at the gNB side has reduced dimensionality due to CSI compression.
Proposal 1: 
· RAN1 to consider CSI prediction based on autoregressive model as basic assumption for benchmark 2.
Observation 2: 
· AI/ML-based CSI prediction is more robust to channel estimation errors compared to non-AI/ML based CSI prediction (benchmark #2).
Observation 3: 
· For CSI prediction using UE-sided AI/ML model, performance monitoring with calculation of performance metrics at the NW side (type 2) has lower performance metrics accuracy comparing to performance monitoring with calculation of performance metrics at the UE side.
· If type 2 model performance monitoring is considered, additional study is required for accuracy of performance metrics calculated at the NW side and for ground-truth CSI reporting overhead.
Proposal 2: 
· For CSI prediction using UE-sided AI/ML model, model performance monitoring with performance metrics calculated at the UE side (type 1 and type 3) is prioritized for discussion.
Proposal 3: 
· Consider the following options for performance metrics F calculation for performance monitoring:
· F = F(W(n), Wp(n)), where W(n) – precoding matrix for channel measured in slot n, Wp(n) – precoding matrix for channel predicted for slot n based on previous CSI measurements.
· Benchmark performance metrics can be additionally used for model performance monitoring.
· Benchmark performance metrics may correspond to performance of sample-and-hold operation calculated as FB = F(W(n), W(n-P)), where P is CSI-RS periodicity in slots.
· Performance metrics F(V1, V2) may correspond to intermediate metrics (GCS, SGCS or NMSE) or difference in SINR (or, CQI difference) for hypothetical PDSCH transmission for precoding with matrix V1 and matrix V2. 
Proposal 4: 
· Consider the following options for calculation of performance monitoring output at the UE for Type 1 performance monitoring:
· Option 1: UE compares performance metrics F to threshold T, where threshold T can be configured by the gNB.
· Option 2: UE compares performance metrics F to benchmark FB.
Observation 4: 
· There is no agreed evaluation methodology in RAN1 to analyze different options of model performance monitoring for CSI prediction.
Proposal 5: 
· RAN1 to consider at least the following changes for observation window and prediction window configurations for AI/ML-based CSI prediction:
· Support of observation window configuration for CSI with periodic and semi-persistent CSI-RS.
· Changes to CSI-RS burst configuration for CSI with aperiodic CSI-RS.
· Changes to configuration for prediction window (e.g., value range for slot offset, time interval duration and number of time intervals).
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