

3GPP TSG-SA WG4 Meeting #128	S4-240883
Korea, Jeju, 20 – 24 May 2024
Source:	Fraunhofer Heinrich Hertz Institute (HHI), Nokia Corporation
Title:	[FS_AI4Media] NNC results for compression of model data for automatic speech recognition without data-driven tools
Agenda item:	9.6
Document for:	Agreement

1 Introduction
An objective of the study item on “Artificial Intelligence (AI) and Machine Learning (ML) for Media” (SP-230538) is to establish a framework for the evaluation of different AI/ML scenarios. One of the agreed scenarios is the “Transmission of compressed AI/ML model data for automatic speech recognition”. In this document, we present coding results obtained with an encoder producing bitstreams conforming to the NNC standard [1].
More specifically, clause 2 of this document comprises the coding results, which have already been presented (in document S4aV240013) and discussed at the last online-meeting. They are now provided in this document with minor revisions to incorporate them to the evaluation permanent document.
Clause 3 of this document describes of the software framework used to generate the results, which is currently available at https://vcgit.hhi.fraunhofer.de/tech/ai4media and attached to this document. The software framework is based on the existing scripts for model compression (which are already available in the 5G-MAG repository) and adds the following new features:
1) Compression with NNC
2) Running the compression pipeline with multiple configurations
3) Plotting the RD-curves from the results
Accordingly, clause 3 of this document extends the description of the existing framework in clause 2.1.2 of the evaluation permanent document by a description of the new features.
We propose to:
1) Add the coding results in clause 2 of this document to clause 10.1 of the evaluation permanent document.
2) Add the modified framework description in clause 3 of this document to clause 2.1.2 of the evaluation permanent document.
3) Add the modified scripts to the 5G-MAG AI-ML repository.
4) Incorporate the updated clauses 2.1.2 and 10.1 of the evaluation permanent document also to the TR 26.847 (Evaluation of AIML in 5G).
2 Modifications for clause 10.1 of the evaluation permanent document
Add the following sub-clause:
10.1.15 Coding results for NNC without data-dependent tools
To quantify possible data rate reductions with NNC [1], the weight tensors of the WAV2VEC2_ASR_BASE_960H model and the HUBERT_ASR_LARGE model (as described in clause 10.1.4) have been encoded with the software framework described in clause 2.1.2. This means, NNCodec [2], which is an open implementation of the NNC standard, has been used.

The models have been encoded without enabling enhanced or data-dependent encoding tools and also without employing encoder-only pre-processing techniques to the model. Consequently, results are representative for a straightforward use-case, which does not require test or training data for additional encoder-side re-training or additional inference steps for encoder-decisions. Table 10.1.15-1 provides details on the enabled NNCodec tools.

	NNCodec parameter
	Value
	Description

	use_dq
	True
	Dependent scalar quantization

	codebook_mode
	False
	Integer codebook for transmission

	param_opt
	True
	Parameter optimization for DeepCabac

	cabac_unary_length_minus1
	10
	Length of unary binarization part

	opt_qp
	True
	QP optimization based on tensor statistics

	ioq
	False
	Inference-optimized quantization

	bnf
	False
	Batch-norm folding

	lsa
	False
	Training-based local scaling adaptation

	fine_tune
	False
	Training-based tuning of non-weight tensors

Table 10.1.15-1: Enabled NNC tools as described in [2], other parameters are set to NNCodec’s default values.

To achieve different trade-offs between compressed model size and model performance, the models have been encoded with different quantization step sizes. More specifically, NNCodec’s quantization parameter (QPs) has been varied in the range from −15 and −45.

Figure 10.1.15-1 shows the results: The performance of the compressed model is reported as word error rate (wer). The size of the compressed model (cSize) is reported in percent of the original uncompressed model size (sizeAnc). In summary, the results show that NNC reduces the model size to about 10% to 15% with negligible model performance losses in a setup without any data-driven tools, or optimization techniques that modify the models before encoding. Higher reductions can might be possible when enabling more sophisticated encoding tools, as e.g. also data-dependent tools or additional encoder-only model optimization techniques.

[image:]

Figure 10.1.15-1: Compressed model size and model performance achieved for different QPs.
For reference, the anchor performance werAnc is shown as red line.

3 Modifications for clause 2.1.2 of the evaluation permanent document
Add the revisions given by the changemarks.
2.1.2 	Scripts for the evaluation of compressed AI/ML model transmission
t the Video SWG post 123 online meeting, a first scenario for the evaluation framework for AI/ML was proposed in S4aV230020, which included This clause describes the software python code framework implementing an initial evaluation pipeline for the evaluation of compressed AI/ML model transmission this scenario (i.e., evaluation of the anchor/tested model and compression with a dummy-method). This clause presents a revised version of this software. Key feature of tThe framework comprises python scripts implementing threehe main functionalities:
1. A codec pipeline for encoding, decoding, and evaluation of AI/ML models with different parameters to obtain their performances and sizes before and after encoding (pipeline/run.py). The pipeline can be extended with new scenarios and compression methods in a modular way.
2. An NNC evaluation script to evaluate the compression of the ASR scenario (as defined in clause 10.1) with NNC. The script invokes the codec pipeline multiple times with different QPs and stores results in csv-files (evaluations/evalNncAsr.py).
3. A graph plotter creating pdfs from the csv-files obtained by the NNC evaluation script (evaluations/plotGraphs.py).

Furthermore, the framework includes bash-scripts to a) create a docker image comprising the python scripts and required dependencies and to b) run docker containers from the docker image.
software is that it allows to add new scenarios and compression methods in a modular way. For this purpose, it defines an interface that new scenarios and compression methods need to implement. In future, the scripts will also be included to a Docker image.
2.1.2.1.1	Main evaluation processSoftware repository and installation
The software is available in the following git-repository:
· https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/tree/main/scripts/asr/compression

The scripts can be used with or without a docker. Without docker, the framework can be installed as follows:
1. Install a python 3.10 environment.
2. Install packages listed in requirements.txt
pip install -r requirements.txtrunContainer.sh host_directory [other parameters...]

3. Install NNCodec as follows:
git clone --branch v0.3.1 https://github.com/fraunhoferhhi/nncodec.git
cd nncodec
pip install .runContainer.sh host_directory [other parameters...]

To run the scripts with docker, the framework comprises a Dockerfile to build an image with Ubuntu 22.04, python 3.10, packages in the requirements.txt, Nvidia GPU support, and NNCodec.
The image can be built as follows:
cd docker
./buildContainer.shrunContainer.sh host_directory [other parameters...]

Containers have been tested with CUDA version 12.0 and docker engine version 24.0.5.
2.1.2.2	Codec pipeline
Figure 2.1.2.12-1 shows the process executed by the evaluation processcodec pipeline schematically inas simplified pseudo-code. First, the process instantiates a scenario object and a coder object. Then, the process obtains the anchor model from the scenario object. It derives the size of the anchor model and uses the scenario object to derive the anchor model’s performance. Subsequently, the coder object encodes the anchor model to a bitstream and decodes the bitstream to obtain the reconstructed model. Finally, the process derives the size of the bitstream, uses the scenario object to derive the reconstructed model’s performance and writes the results to a file as comma separated values (csv).

 scenario = scenario_factory.get(cfg)
 coder = coder_factory.get(cfg, scenario)

 anc_model = scenario.get_model()

 results["anc_size"] = get_size(anc_model)
 results["anc_perf"] = scenario.get_performance(anc_model)

 bit_stream = coder.encode(anc_model)
 rec_model = coder.decode(bit_stream)

 results["rec_size"] = get_size(bit_stream)
 results["rec_perf"] = scenario.get_performance(rec_model)

 write_to_csv(results)

Figure 2.1.2.12-1: The main evaluation process (simplified pseudo-code)

2.1.2.2.1	Configuration
The process codec pipeline can be configured as shown in Table 2.1.2.2-1. Marks C, S, and R in the last column indicate that the parameters are directly forwarded to the coder object, the scenario object, and the result csv-file, respectively.

	Parameter name
	Description
	Forward

	coder_name
	Name of the compression method
	C,R

	scenario_name
	Name of the scenario
	S,R

	data_set_name
	Name of the dataset
	S,R

	model_name
	Name of the model (valid values depend on the scenario)
	S,R

	enc_cfg_file_name
	Name of a config-file for the compression method
	C

	unique_tag
	Unique tag added to output file-names
	C,R

	out_dir
	Directory to store the csv-file, the bitstream,s and other output data to
	C

	data_dir
	Directory to model data and datasets
	S

	batch_size
	Evaluation batch size (currently ignored)
	S

	workers
	Number of workers for the data loader
	S

	disable_progress_bar
	Disable progress bar
	C, S

	eval_compression
	Compress and evaluate reconstructed model
	R

	eval_anchor
	Evaluate anchor model
	R

	download_only
	Only download models and datasets
	

Table 2.1.2.2.1-1: Configuration parameters
The available scenarios, model and compression methods that are currently available are shown in Table 2.1.2.2.1-2.

	Type
	Name
	Description

	Scenario
	asr
	Automatic speech recognition.
Available models: wav2vec_asr_base_960h and hubert_asr_large

	Coder
	dummy
	Dummy methods. Writes parameters as unmodified 32-bit floating point values.
Copies the anchor model to the reconstructed model.

	Coder
	nnc
	NNCodec

Table 2.1.2.2.1-2: Implemented scenarios and compression methods
The pipeline can, for example be started with:
python ./run --scenario_name="asr" --model_name="hubert_asr_large"
 --coder_name="dummy"`runContainer.sh host_directory [other parameters...]

2.1.2.2.2	Encoder configuration files
Encoder configuration files for NNC are provided in evaluations/cfg and can be specified using the parameter enc_cfg_file_name. They can for example be used as follows:
python ./run --scenario_name="asr" --model_name="wav2vec_asr_base_960h"
 --coder_name="nnc" --enc_cfg_file_name="../evaluations/cfg/QP_-22.json"runContainer.sh host_directory [other parameters...]

A description of the parameters can be found at https://github.com/fraunhoferhhi/nncodec/wiki/Usage. The parameters bitstream_path, model_name, and dataset_path are programmatically set by the codec pipeline. Since the framework currently only supports non-data driven tools, the parameters ioq, lsa, and fine_tune must always be equal to 0.
2.1.2.2.3	Result csv- file
Table 2.1.2.2.3-1 shows the results that are written to the result csv-file. Additionally, the configuration parameters marked with R in Table 2.1.2.2.1-1 are added.
	Name
	Description
	Unit

	anc_size
	Size of the anchor model
	byte

	rec_size
	Size of the bitstream
	byte

	compress_ratio
	rec_size / anc_size
	-

	metric_name
	Name of the metric
	-

	anc_perf
	Performance of anchor model
	Unit of metric_name

	rec_perf
	Performance of reconstructed model
	Unit of metric_name

	anc_eval_time
	Evaluation time for anchor model
	seconds

	rec_eval_time
	Evaluation time for reconstructed model
	seconds

	enc_time
	Encoding time
	seconds

	dec_time
	Decoding time
	seconds

[bookmark: _Ref135006258]Table 2.1.2.2.3-1: Results written to the csv-file

2.1.2.2.4	Running the codec pipeline with docker
The codec pipeline can be run within a docker container by calling docker/runPipeline.sh from within the docker directory, as follows
cd docker
runPipeline.sh host_directory [other_parameters...]runContainer.sh host_directory [other parameters...]

with the following parameters:
· host_directory is a directory on the host system to which models/datasets are downloaded and to which results will be written.
· other_parameters are the other codec pipeline parameters, as specified above.
The script operates as follows:
1. It mounts host_directory to the container.
2. It sets the parameters out_dir and data_dir to host_directory\out and host_directory\data, respectively.
3. It forwards other parameters to the invocation of pipeline/run.py within the container.
Example:
runPipeline.sh ~/myAiMlData --scenario_name="asr" --model_name="hubert_asr_large"
 --coder_name="dummy" runContainer.sh host_directory [other parameters...]

Configuration files for NNC, which are stored in evaluations/cfg, are also available within the docker image in directory framework/evaluations/cfg. The container can be run with a specific cfg-file, e.g. as follows:
runPipeline.sh ~/myAiMlData --scenario_name="asr" --model_name="hubert_asr_large"
 --coder_name="nnc" --eval_anchor=0 --unique_tag="test_hubert -22"
 --enc_cfg_file_name="/framework/evaluations/cfg/QP_-22.json"runContainer.sh host_directory [other parameters...]

2.1.2.2.45	Scenario module interfaceExtending the codec pipeline
[bookmark: _GoBack]The software framework allows to add new scenarios in a modular way. New scenarios must be provided as package containing a python class having the interface shown in Figure 2.1.2. 42.5-1. The parameters marked with S in Table 2.1.2.2.12.1.2.2-1 are forwarded to the init function of the Scenario class within the opts variable.
class Scenario():
 def __init__(self, opts):
 self.metric_name = "MetricOfScenario"
 # Input:
 # - opts: an object with members defining the scenario configuration
 # Should:
 # - define self.metric_name as string denoting the performance metric of

 # the scenario, which will be forwarded to the result csv-file
 # - init object from opts

 def get_model(self, pre_trained):
 # Input:
 # - pre_trained a boolean indicating whether to provide the pre-trained model
 # Should download model data and datasets, when not already done
 # Output:
 # - If pre_trained is true, model should be a pre-trained model,
 # Otherwise, model should be an un-initialized model
 return model

 def download_data_and_models(self):
 # Should download model data and datasets, when not already done

 def get_perf(self, model, partition, enforce_higher_is_better=False):
 # Inputs:
 # - model: the model to get the performance for
 # - partition: the partition of the dataset used for evaluation:
 # - "test" The test partition for final performance measurement should be used
 # - "valid" The validation partition for data-driven methods should be used
 # - enforce_higher_is_better: if true perf should be increasing with increasing
 # model performance
 # Outputs:
 # - perf: the performance
 # - infer_time: the inference plus measurement time
 return perf, infer_time

Figure 2.1.2.42.5-1: Interface required to be implement for new scenarios

2.1.2.5	Compression module interface
The software framework allows to add new compression methods in a modular way. New compression methods must be provided as package containing a python class having the interface shown in Figure 2.1.2.2.5-1. The parameters marked with C in Table 2.1.2.2.2-1 are forwarded to the init function of the Coder class within the opts variable.
class Coder():
 def __init__(self, opts):
 self.__opts = opts
 # Inputs:
 # - opts: an object with members defining the coder configuration:
 # - opts.file_names["bit"]: the bitstream filename
 # - opts.file_names["dec"]: the decoded model filename
 # - opts.scenario: the scenario object
 # Should init the coder object from the opts object

 def encode(self, model):
 # Inputs:
 # - model: the model to encode
 # Should:
 # - Encode the state_dict() of model to the file given in
 # self.__opts.file_names["bit"]

 def decode(self, rec_model):
 # Inputs:
 # - rec_model: the model to write the reconstructed parameters to
 # Should:
 # - decode the bitstream file given in self.__opts.file_names["bit"]
 # - store the decoded parameters in the state_dict of rec_model

Figure 2.1.2.2.5-12: Interface required to be implemented for new compression methods
Encoder-only optimization methods might use:
· the encode function to write optimized model parameters in a raw-byte format to the bitstream
· the decode function to read them back to rec_model.
2.1.2.6	

	Type
	Name
	Description

	Scenario
	asr
	Automatic speech recognition.
Available models:

	Coder
	dummy
	Dummy methods. Writes parameters as unmodified 32-bit floating point values.
Copies the anchor model to the

[bookmark: nnc-evaluation-script]2.1.2.3 NNC evaluation script
The NNC evaluation script (evaluations/evalNncAsr.py) calls the codec pipeline multiple times while varying NNC’s quantization parameter (QP).
2.1.2.3.1 Command line options
The command line parameters of the NNC evaluation script are shown in Table 2.1.2.3.1-1.
	Parameter name
	Description

	data_directory
	Directory to store downloaded model data and results

	model_name
	Name of the model to evaluate

	qp_start
	Start of the QP range

	qp_end
	End of the QP range

	qp_step
	Step size of QP increments

Table 2.1.2.3.1-1: Configuration parameters for the NNC evaluation script
The parameter model_name can be hubert_asr_large or wav2vec_asr_base_960h. The data_directory must have enough space, as also reconstructed models are stored
[bookmark: running-with-docker-1]2.1.2.3.2 Running the NNC evaluation script with docker
Docker containers with the NNC evaluation script can be run by calling docker/runEvalNncAsr.sh from within the docker directory, as follows:
cd docker
runEvalNncAsr.sh host_directoryrunContainer.sh host_directory [other parameters...]

The parameter host_directory specifies a directory on the host system to which models and datasets are downloaded and to which results are written.
The parameters passed to the NNC evaluation script in the container are currently hardcoded at the end of docker/runEvalNncAsr.sh. The codec pipeline is started with models wav2vec_asr_base_960h and hubert_asr_large and QPs in the range of −15 to −45, inclusive, for both models.
More specifically, for each of the two models, the docker/runEvalNnrAsr.sh script operates as follows:
1. It mounts host_directory to the container.
2. It calls evaluations/evalNncAsr.py within the container with data_directory=host_directory, model_name equal to the respective model, and qp_start=-45, qp_end=-15, and qp_step=1
When calling the codec pipeline, the pipelines’ parameters out_dir and data_dir are set to host_directory\out and host_directory\data, respectively.
Encoding the two models with all QPs on a single machine requires a significant amount of time. For testing purposes, it is recommended to reduce the QP range.
[bookmark: graph-plotter]2.1.2.4	Graph plotter
The graph plotter (evaluations/plotGraphs.py) creates pdfs from the csv-files generated by the NNC evaluation script.
[bookmark: command-line-options-1]2.1.2.4.1 Command line options
The graph plotter supports the parameters shown in Table 2.1.2.4.1-1.
	Parameter name
	Description

	data_directory
	Directory with csv-files; the PDF containing the plots will be written here

	prefix
	Prefix of the csv-files to be used for plotting

Table 2.1.2.4.1-1: Configuration parameters for the Graph Plotter

The graph plotter considers the csv-files starting with prefix from data_directory. The created pdfs are also stored in data_directory.
[bookmark: running-with-docker-2]2.1.2.4.2 Running the graph plotter with docker
Docker containers with the graph plotter can be run by calling docker/runPlotGraphs.sh from within the docker directory, as follows:
cd docker
runPlotGraphs.sh host_directory

The parameters that are passed to the graph plotter in the container are currently hardcoded at the bottom of docker/runPlotGraphs.sh, so that results from calling docker/runEvalNncAsr.sh are plotted.
In particular, this means that the following is expected:
· csv-files are located in host_directory/out
· csv-file for the hubert_asr_large model start with asr_nnc_hubert_asr_large__
· csv-file for the wav2vec_asr_base_960h model start with asr_nnc_wav2vec_asr_base_960h__
The docker/runPlotGraphs.sh script operates as follows:
1. It mounts the host_directory from the host to /container_directory in the container.
2. It runs evaluations/plotGraphs.py in the container with data_directory=host_directory/out.
This creates two pdfs in host_directory/out. Examples for the outputs are given in evaluations/examples/. Because of floating point arithmetic, the results might not be exactly reproducible on different machines/environments.
Table

2.1.2.7	Software repository
The software is currently available in the git-repository at https://vcgit.hhi.fraunhofer.de/tech/ai4media.

2.1.2.8	Docker image for the compression pipeline
The related Dockerfile and bash scripts to build a docker image and run docker containers are available at https://vcgit.hhi.fraunhofer.de/tech/ai4media.
A Dockerfile to build a docker image comprising Ubuntu 22.04, python 3.10, required python packages, as well as Nvidia GPU support, is given in the docker directory of the repository. The image can be built by calling buildContainer.sh from within the docker directory.

Containers can be run based on this image by calling runContainer.sh from within the docker directory, as follows

runContainer.sh host_directory [other parameters...]

with the following parameters:

host_directory is a directory on the host system in which downloaded models/datasets and results will be stored. More specifically, runContainer.sh will mount host_directory to the container and set the parameters out_dir and data_dir, as specified in the software description, to host_directory\out and host_directory\data, respectively.
other parameters are additional parameters, as specified in the software description, that will be forwarded to the evaluation scripts.

Example:

[bookmark: historyclause]runContainer.sh ~/myAiMlData --scenario_name="asr" --model_name="hubert_asr_large" \
 --coder_name="dummy"

4 References
[1] [bookmark: _Ref126845156]ISO/IEC JTC 1/SC 29, “Compression of neural networks for multimedia content description and analysis (ISO/IEC 15938-17:2022)”, August 2022.
[2] [bookmark: _Ref126845197]Fraunhofer Neural Network Encoder/Decoder (NNCodec) [Computer software]. https://github.com/fraunhoferhhi/nncodec v0.3.1.

image1.png
15

— 10

wer

wer |7

WAV2VEC2_ASR_BASE_960H

Compressed size (cSize) [%]

| | | J
5 10 15 20 25
Compressed size (cSize) (%]
HUBERT_ASR_LARGE
| | | J
5 10 15 20 25

