Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG-RAN WG1 Meeting #111	R4-2408492
Fukuoka, Japan, May 20th – 24th 2024

Agenda Item:	10.11.4
Source:	Ericsson
Title:	On CSI compression
Document for:	Discussion

1	Introduction
In order to progress the discussion on CSI compression, this contribution considers the following aspects:
- The definition of a reference model
- The process for selecting a test decoder for option 3
- The need for a test decoder that captures the latent space and training space that real decoders/encoders need to use
- Reflections on option 4 and the need to capture the latent space in the specification.
[bookmark: _Ref178064866]2	Discussion
2.1	Definition of reference model
During RAN4#110bis, the meaning of the term “test model” was clarified, whereas “reference model” was not. 
In our understanding, the term reference model refers to a model that is agreed by RAN4 but is not directly used for testing. It is not mandatory or necessary to implement a reference model in a real product, although implementation of a reference model is a possibility in case a vendor does not want to develop a model of their own. The purpose of a reference model could depend on the context:
· For option 3, a reference model (e.g., a reference encoder) could be standardized and used for verification of implementation of a standardized test model (e.g. test decoder) or an actual proprietary model (e.g. decoder).
· For option 4, a reference model (e.g. a reference encoder) could be standardized as a means of capturing the latent space. A test decoder can be developed based on the reference encoder and a suitable training dataset.
· For both 2-sided and 1-sided AI functionality, it may be necessary to agree on a reference model in order that the specified performance requirement at an agreed complexity and implementation benchmark can be derived. In this case, the reference model may not need to be standardized it could be documented in a TR (or even no documented at all).

Whether the term “reference model” should be applied in all three cases should be discussed further.
[bookmark: _Toc166491822]A reference model is a model agreed in RAN4, but not necessarily used for testing and not mandatory in any implementation.
· [bookmark: _Toc166491823]For option 3, a reference model (e.g., a reference encoder) could be standardized and used for verification of implementation of a standardized test model (e.g. test decoder) or an actual proprietary model (e.g. decoder).
· [bookmark: _Toc166491824]For option 4, a reference model (e.g. a reference encoder) could be standardized as a means of capturing the latent space. A test decoder can be developed based on the reference encoder and a suitable training dataset.
· [bookmark: _Toc166491825]For both 2-sided and 1-sided AI functionality, it may be necessary to agree on a reference model in order that the specified performance requirement at an agreed complexity and implementation benchmark can be derived. In this case, the reference model may not need to be standardized it could be documented in a TR (or even no documented at all).


2.2	Option 3 process for agreeing on a test model

For option 3, a process for agreeing on a test model was discussed during RAN4#110bis. The process involves the following steps:

1. Identify an agreeable model architecture and the representation and size of the latent space.
2. Identify and agree training parameters if necessary.
3. Companies develop 2 sided models.
4. Compare the performance of the two-sided models.
5. Agree model architecture.
6. Agree on test decoder (and associated reference encoder).

Each of the steps needs careful examination and discussion.

Relation between the test decoder and operating scenario
During RAN4#110bis and in RAN1, the suggestion has arisen that the test decoder could be deliberately designed and limited for a small number of test scenarios, whereas a “real” decoder would be designed for a wider range of scenarios than the testing.
It is certainly true that the test decoder will not in any way mandate that it is used for actual products, which can design any encoder/decoder they see fit and that can pass the tests. However, the test decoder and the range of test conditions will have an impact on what is possible for real encoder/decoder design:
· In order to pass the test, any encoder/decoder will need to have an aligned latent space representation with the test decoder (and reference encoder)
· In order to pass the test, any encoder/decoder will need to be able to recognize and operate with the test dataset (i.e., test channels). This may impact the dataset with which the real decoder can be trained.

For the above reasons, we do not believe that a test decoder and reference encoder can be developed only for a limited test scenario with no impact on the possibilities for a real encoder or decoder. In order to enable flexibility for the real encoder or decoder, the test scenario needs to represent in some way the expected range of conditions in real operation, and the test decoder needs to be expected to work well in real scenarios.
Thus, we assume in the following that when deciding on test decoder, the relevance to real scenarios should be taken into account. This implies that in deciding the test decoder, some of the experience gained in RAN1 may be of relevance.
[bookmark: _Toc166491826]The test decoder needs to have a latent space and be trained with a dataset wide enough to cover real expected scenarios. Otherwise, it may not be possible to create real encoder/decoders that both pass the test and provide useful performance in real operation.

Identify an agreeable model architecture
Since a model will be agreed to be standardized and it is expected that the model will be implemented at least in test equipment, it is important to agree on a model architecture that is acceptable in terms of implementation feasibility. Although it will only be mandatory to implement the test decoder in test equipment, it may be the case that network vendors also wish to simply implement the test decoder. Even when network equipment vendors develop their own decoder, since UE encoders must operate with the test decoder and pass test conditions, the size and complexity of the test decoder will strongly impact the complexity needed for real encoders and decoders, since they will need to operate with the same latent space and meet the test conditions.
As discussed above, the test encoder needs to be sufficient that it matches the span of conditions expected during real operation. Thus, selecting an agreeable model architecture for the test decoder is of high importance. Also, it will be necessary to make assumptions on a reference encoder complexity and architecture for option 3.
Potentially, learnings from RAN1 may assist in identifying a useful architecture. Quite possibly, several architecture potentials may need to be investigated in order to determine which architecture can give a good trade-off between performance and complexity.
An example model architecture is provided here for further discussion:
[bookmark: _Toc166491827]The table of model architecture is provided in section 2.2 as input to the discussion.

	Category
	Parameter
	Description/Examples

	Model architecture parameters (convolutional)
	Model type
	Transformer or CNN depending on design target

	
	Convolutional Model depth
	e.g. 10 layers

	
	Convolutional: Quantization bits per latent variable
	e.g., 4

	
	Layer type
	Fully connected, convolutional, activation layer, etc.

	
	Layer size
	Neuron count and configuration

	Model architecture parameters (transformer)
	Transformer: Dropout rate
	0.02

	
	Transformer: Embedding dimension
	e.g., 256

	
	Transformer: Number of attenuation heads
	e.g., 16

	
	Transformer: Size of key, query and values
	e.g., 16

	
	Transformer: Number of encoder blocks
	e.g., 3

	
	Transformer: Latent variables in encoder
	e.g., 10

	
	Transformer: Quantization bits per latent variable
	4

	
	Quantization method for the encoder output
	Scalar

	Other parameters
	Encoder-decoder interface
	Consider 63, 110 or 230

	
	Fixed point representation
	Int8, int16, floating point etc.

	
	Format of input to encoder/output of decoder
	Consider pre-processing of Eigenvector using Enhanced Type 2 codebook




Identify and agree training parameters as necessary
Strictly speaking, for option 3, if a model structure is agreed, and if a test condition is agreed that is wide enough that the expected operating conditions are suitable covered then it is not necessary to discuss and agree the training. As long as a model with the agreed structure can pass a robust testing framework then the model is eligible to be selected.
However, and aligning on details of the training data and process may assist in aligning models.
Also, in case the evaluation criteria for the model selection are not wide enough to cover well the range of conditions in which the model should operate then agreements would be needed for the training. This is because, if there would be a narrow set of evaluation criteria for selecting the model, differently trained models might be able to pass the (narrow set of) testing criteria easily but have quite different performance in real deployments. Since the test decoder will impact what kinds of decoders and encoders could be created for real deployments then careful agreement of the training conditions would be needed.
[bookmark: _Toc166491828]It is useful but not essential to report or agree training parameters to enable alignment. Section 2.2 provides a table of training parameters for discussion.
An example for training parameters is provided here for discussion:
	Model Training related parameters
	Training procedure
	FFS (e.g., Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc.)

	
	Convolutional: Feedback bits per transmission
	e.g., 10 x 4 = 40

	
	
	

	
	Transformer: Optimizer
	e.g., Adam

	
	Learning rate
	

	
	Loss function
	NMSE

	
	Batch size
	e.g., 256

	
	Training datasets
	Use RAN1 system assumptions to generate dataset in the first instance.

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc. should be at least stated

	
	Cross-validation details
	Dataset splits for training/testing/validation TBC




Comparing 2-sided models
A test decoder needs to fulfil two criteria:
· It enables reproduceable, consistent testing
· It enables encoders/decoders to be developed that can pass the test and can perform well in real operation.

If the test set is designed to cover expected scenarios then both of these should be achievable by means of ensuring that the decoder is designed to pass the test and shows reproducible behaviour for the test condition. If, however the test condition would be limited (for example to one or a few SNR etc.), then it may be necessarily to evaluate separately each of the two criteria.
During RAN4#110bis, there was an offline discussion on assessing the performance of test models by means of taking some RAN1 assumptions as input to link level simulations, at a limited set of SNR points. An alternative was proposed to be to use the RAN4 test conditions today to compare model performance.
Neither of these approaches would ensure that the test decoder would enable design of relevant encoders/decoders. Furthermore, they may not test sufficiently.
In order to assess the decoder, an alternative is to use the set of monte-carlo dropped UEs from RAN1 system simulations as a dataset for testing. This would at least ensure comparison of the model performance for a variety of SNR levels, directions, channel conditions etc. Such an approach would be similar to the approach used for assessing intermediate metrics in RAN1.
[bookmark: _Toc166491829]Use a dataset obtained from RAN1 system simulations as a starting point for comparing proposed test decoders.



2.3	Option 4 considerations

According to option 4, the specification contains sufficient information that a test decoder can be derived based on the specification by any party, and will lead to repeatable testing. It is yet to be proven that option 4 is actually workable. However, in our understanding, to be workable as a minimum the specification will need to contain a representation of the latent space. Without the latent space being specified then even if all other parameters such as the training dataset and model hyperparameters are captured in the specification, there will be no guarantee of interoperable decoders/encoders being generated by multiple parties.
As with option 3, in our understanding the representation of the latent space needs to be reasonable considering the full set of operating conditions that can be expected in a real deployment. This is both because the testing should be wide enough that it can cover the range of expected conditions during operation and also because devising a test decoder based on a limited latent space would probably very negatively restrict the options for development and operation of real encoders/decoders (that are expected to pass the test)
[bookmark: _Toc166491830]For option 4, the latent space needs to be standardized

There may be several ways to capture the latent space. In our view, in order to ensure that a wide and representative representation of the latent space is captured, an efficient means would be to capture a reference encoder (if a test decoder is to be generated).
[bookmark: _Toc166491831]For option 4, standardize a reference encoder in order to capture the latent space

Conclusion
Based on the discussion in the previous sections we propose the following:
Proposal 1	A reference model is a model agreed in RAN4, but not necessarily used for testing and not mandatory in any implementation.
	For option 3, a reference model (e.g., a reference encoder) could be standardized and used for verification of implementation of a standardized test model (e.g. test decoder) or an actual proprietary model (e.g. decoder).
	For option 4, a reference model (e.g. a reference encoder) could be standardized as a means of capturing the latent space. A test decoder can be developed based on the reference encoder and a suitable training dataset.
	For both 2-sided and 1-sided AI functionality, it may be necessary to agree on a reference model in order that the specified performance requirement at an agreed complexity and implementation benchmark can be derived. In this case, the reference model may not need to be standardized it could be documented in a TR (or even no documented at all).
Proposal 2	The test decoder needs to have a latent space and be trained with a dataset wide enough to cover real expected scenarios. Otherwise, it may not be possible to create real encoder/decoders that both pass the test and provide useful performance in real operation.
Proposal 3	The table of model architecture is provided in section 2.2 as input to the discussion.
Proposal 4	It is useful but not essential to report or agree training parameters to enable alignment. Section 2.2 provides a table of training parameters for discussion.
Proposal 5	Use a dataset obtained from RAN1 system simulations as a starting point for comparing proposed test decoders.
Proposal 6	For option 4, the latent space needs to be standardized
Proposal 7	For option 4, standardize a reference encoder in order to capture the latent space
 
	4/4	
