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Introduction
In 3GPP RAN1 #116bis, some agreements on the additional study on AI/ML-based CSI compression have been made as follows [1]. In this contribution, we present our views on various aspects, including the evaluation methodologies and preliminary results for spatial/frequency/temporal domain CSI compression and localized model. In addition, we also provide some discussions about the inter-vendor training collaboration issue. 
Agreement
For the results template used to collect evaluation results for temporal domain compression Case 1/2/5, adopt Table 1 used in Rel-18 as starting point with the following additions:
· Temporal domain CSI setting
· CSI feedback periodicity
· CSI-RS periodicity 
· Description of model input/output and Case
· Compression case, e.g., Case 1/2/5
· Usage of historical CSI at UE/NW side (e.g., number / time distance, eigen-vectors / raw channels, etc)
· Methods to handle UCI loss (if applicable), e.g., CSI buffer reset, CSI retransmission, etc.
· Methods to handle rank adaptation (if applicable)
· UE distribution (Option 1 or Option 2) and UE speed
· CSI feedback overhead rate: X/Y/Z bits per normalized time unit
· Normalized time unit = 5ms and adopt same X/Y/Z values as in Table 1 of Rel-18
· Benchmark scheme
· Rel-16 eT2 and compression Case 0 (i.e., Rel-18 AI/ML based CSI compression)
· Whether/how spatial consistency is modelled
· Whether/how UCI loss is modelled
· The same UCI loss model shall be applied to the benchmark for fair comparison. 
· Whether/how rank adaptation is modelled
· Modelling of channel estimation error
· Whether/how phase discontinuity is modelled (if applicable) 
Agreement
For the results template used to collect evaluation results for temporal domain prediction and compression Case 3/4, adopt Table 1 used in Rel-18 as starting point with the following additions:
· Temporal domain CSI setting
· CSI feedback periodicity
· CSI-RS periodicity 
· Description of model input/output and use case
· Compression case, e.g., case 3 / 4
· Observation window (usage of historical CSI at UE/NW side, e.g., number / time distance, eigen-vectors / raw channels, etc)
· Prediction window (e.g., time distance between 1st prediction instance and last observation instance, number / time distance of predicted CSI)
· Methods to handle UCI loss (if applicable)


· UE distribution (Option 1 or Option 2) and UE speed
· CSI feedback overhead rate: X/Y/Z bits per normalized time unit
· Normalized time unit = 5ms and adopt same X/Y/Z values as in Table 1 of Rel-18
· SGCS values before (if applicable) and after compression
· Assumption on the prediction of future CSI 
· Separate step or jointly with compression
· If separate, description of the AI or non-AI prediction algorithms: ideal prediction, AI-based prediction, non-AI-based prediction (e.g., nearest historical CSI and its location, learning window size / time correlation matrix size for auto-regression based prediction),
· Note: the same prediction algorithm to be used for the benchmark scheme.
· Benchmark schemes
· Description of feedback schemes, i.e., Rel-18 doppler eT2
· Whether/how spatial consistency is modeled
· Whether/how UCI loss is modelled
· The same UCI loss model shall be applied to the benchmark for fair comparison. 
· Modelling of channel estimation error
· Whether/how phase discontinuity is modelled (if applicable)
Conclusion
For multi-vendor results table, adopt Rel-18 Table 4 for joint training and Rel-18 Table 5 for separate training as starting point, with the same additions of above 2 agreements.

Conclusion
For model generalization results table, adopt Rel-18 Table 2 and Generalization Case 1 / 2 / 3 as starting point with same additions above. For generalization aspects, adopt the following
· Various UE speed
· UE distribution
· Various CSI-RS periodicity
Conclusion
For model scalability results table, adopt Rel-18 Table 3 and Generalization Case 1 / 2 / 3 as starting point with same additions above. For generalization aspects, adopt the following
· Various numbers of antenna ports
· Various frequency granularity
· Various payload size
Conclusion:
· Conclude, from RAN1 perspective, that Option 1, if feasible for specification, eliminate the inter-vendor collaboration complexity (e.g., whether bilateral collaboration is required between vendors).
· It is RAN1’s understanding that Option 1 corresponds to RAN4 options, e.g., RAN4-Option3, or RAN4-Option4. Further study and final conclusion on interoperability and RAN4 testing of the RAN4-Option3 and RAN4-Option4 is up to RAN4.
Observation
· Option 1 and 2 may have limited performance in the field compared to Options 3, 4, and 5, further study is needed 
· Option 1 and 2 may require high specification effort from RAN1 perspective.
Conclusion
· Deprioritize Option 2 for inter-vendor training collaboration.
· Note: This de-prioritization shall not affect the ongoing discussion in RAN4 on RAN4-Option3 and RAN4-Option4.
Agreement
· For Option 3, further define the two sub-options:
· 3a: Parameters received at the UE or UE-side goes through offline engineering at the UE-side (e.g., UE-side OTT server), e.g., potential re-training, re-development of a different model, and/or offline testing.
· 3b: Parameters received at the UE are directly used for inference at the UE without offline engineering, potentially with on-device operations.


· For Option 5, further define the two sub-options:
· 5a: Model received at the UE or UE-side goes through offline engineering at the UE-side (e.g., UE-side OTT server), e.g., potential re-training, re-development of a different model, and/or offline testing.
· 5b: Model received at the UE are directly used for inference at the UE without offline engineering, potentially with on-device operations.
· For Option 4, it is clarified that:
· Dataset received at the UE or UE-side goes through offline engineering at the UE- side (e.g., UE-side OTT server), e.g., model training or offline testing.
· Note: The descriptions under each option are only for the purpose of simplified discussion and do not mean deprioritizing any other flavors (such as an exchange originating from the UE-side and ending at the NW-side) from potential specification. 
Agreement
· For Option 3/4/5, focus further discussion on the following assumptions:
· Option 3a/5a
· The model(5a)/parameter(3a) exchange originates from the NW-side and ends at the UE-side.
· Model(5a)/parameters(3a) exchanged from the NW-side to UE-side is either CSI generation or reconstruction part or both.
· Option 3a-1/5a-1: Model/Parameters exchanged from the NW-side to UE-side is CSI generation part.
· Option 3a-2/5a-2: Model/Parameters exchanged from the NW-side to UE-side is CSI reconstruction part.
· Option 3a-3/5a-3: Model/Parameters exchanged from the NW-side to UE-side are both CSI generation part and CSI reconstruction part.
· Some additional information, if necessary, may be shared from the NW-side to help UE-side offline engineering and provide performance guidance.
· Performance target 
· Dataset or information related to collecting dataset
· Study different methods of exchanging, e.g., over the air-interface, offline delivery, etc.
· Option 3b
· The method of exchanging is over the air-interface via model transfer/delivery Case z4.
· The parameter exchange is from NW to UE.
· Parameters exchanged from the NW-side to UE-side is CSI generation part.
· Option 5b
· The method of exchanging is over the air-interface via model transfer/delivery Case z4, assuming that the model structure is aligned based on offline inter-vendor collaboration.
· The model exchange is from NW to UE.
· Model exchanged from the NW-side to UE-side is CSI generation part.
· Option 4:
· The dataset exchange originates from the NW-side and ends at the UE-side.
· Option 4-1: Dataset exchanged from the NW-side to UE-side consists of (target CSI, CSI feedback).
· Option 4-2: Dataset exchanged from the NW-side to UE-side consists of (CSI feedback, reconstructed target CSI).
· Option 4-3: Dataset exchanged from the NW-side to UE-side consists of (target CSI, CSI feedback, reconstructed target CSI).
· Some additional information, if necessary, may be shared from the NW-side to help UE-side offline engineering and provide performance guidance.
· Performance target
· Study different methods of exchanging, e.g., over the air-interface, offline delivery, etc.

· Note: For each option/sub-option of interest, companies to bring discussion on how inter-vendor collaboration complexity, interoperability, and feasibility may be addressed. Companies to strive to provide solution(s) that can address all the following aspects: inter-vendor collaboration complexity, performance, interoperability, and feasibility.
· Note: The descriptions under each option are only for the purpose of simplified discussion and do not mean deprioritizing any other flavors (such as an exchange originating from the UE-side and ending at the NW-side) from potential specification. 
Agreement
· For the results template used to collect evaluation results for AI/ML-based CSI compression using localized models, adopt Table 1 used in Rel-18 as starting point, capturing the generalized model result and the localized model result as separate columns, with the following additions for the localized model:
· Dataset description
· Local region modelling: e.g., Option 1 or Option 2, and further details
· Temporal modelling: e.g., how temporal variation is modelled in train and test sets
· Dataset description for generalized model
Conclusion
In Rel-19 study of temporal domain aspects of AI/ML-based CSI compression using two-sided model, CSI prediction that is performed entirely at NW-side is deprioritized.



Agreement
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, for the temporal domain prediction and compression Case 3 and Case 4, adopt the following evaluation assumptions as baseline:
· Observation window (number/distance):
· For periodic CSI-RS with 5ms periodicity: 12/5ms, 10/5ms, 8/5ms, 5/5ms, 4/5ms, unrestricted observation window
· For periodic CSI-RS with 20ms periodicity: up to companies (encouraged)
· For aperiodic CSI-RS: 12/2ms, 8/2ms, 4/2ms
· Others can be additionally submitted
· Prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance):  4/5ms/5ms
· Others can be additionally submitted, e.g. 4/1ms/5ms, 8/1ms/5ms, 4/5ms/10ms, 1/-/5ms
Agreement
For the results template used to collect evaluation results for temporal domain prediction and compression Case 4, adopt Table 1 used in Rel-18 as starting point with the following additions:
· Description of model input/output and use case
· Methods to handle rank adaptation (if applicable)


Spatial/frequency/temporal-domain CSI compression
Discussions on different cases
In RAN1 #116, temporal domain aspects of CSI compression have been discussed a lot. As agreeed in the categorization table of the AI/ML-based CSI compression using two-sided model in Rel-19, Case0 - Case 5 can be evaluated respectively so that RAN1 can better understand the potential benefit for different cases. However, considering the workload and limited time before the RAN#105 checkpoint in September, down-selection among Case 0 - Case 5 is suggested, so that RAN1 can focus on the cases which can provide adequate performance with AI/ML based CSI compression. Our views on different cases are given as follows:
· Case 0: the spatial/frequency (SF)-domain CSI compression evaluated in Rel-18 has been categorized as Case 0, where the past CSI information is not used at either UE-side or NW-side with the present slot as the target CSI slot. For better comparison to spatial/frequency/temporal (SFT)-domain CSI compression, Case0 can be used as additional benchmark besides Rel-16 eType II baseline.  
· Case 1, Case 2 and Case 5: for SFT-domain CSI compression, three different categorizations are introduced in the last meeting, where the target CSI is present slot without CSI prediction. By exploring the CSI correlation between present slot and past slots in temporal domain, SFT-domain CSI compression is expected to provide larger performance gain than Case 0. 
· Case 1: the past CSI information is adopted at UE-side only. From our understanding, if no temporal domain CSI correlation is utilized at NW-side for Case 1, the CSI reconstruction part model cannot extract extra information from past CSI, and the optimal feedback should only include the compressed information from present slot. Therefore, we think Case 1 is not workable for providing larger performance gain compared with SF-domain CSI compression Case 0. 
· Case 5: the past CSI information is adopted at NW-side only. Obviously, the CSI compression part model can enhance the CSI of present slot recovery by combing the information from the feedback of UE-side model and the past CSI information pre-saved at the NW-side. Therefore, we think Case 5 is capable of exploring the CSI correlation in temporal domain and further enhance the CSI feedback performance. But as per our understanding, there is no difference between Case 5 and Case 0 from the perspective spec impact, since they share the same feedback content over the air interface. Whether NW utilizes the past CSI information or not remains NW-implementation issue and is transparent to UE. 
· Case 2: the past CSI information is utilized at both UE-side and NW-side, which is potential to provide the largest performance gain compared with Case 1 or Case 5. Therefore, for three SFT-domain CSI compression cases, we suggest to treat Case 2 in higher priority and companies can provide evaluation results based on Case 2 assumptions. 
· Case 3 and Case 4: for CSI compression plus prediction, two different categorizations are introduced in the last meeting, where the target CSI slot(s) is the future slot(s). 
· Case 3: the past CSI information is adopted at UE-side only. Specifically, for separate CSI prediction and compression at UE-side, ideal, non-AI and AI based CSI prediction methods can be considered for CSI prediction, Rel-18 eType II codebook and AI based CSI compression can be considered for CSI compression. 
· Case 4: the past CSI information is adopted at both UE-side and NW-side. As per our understanding, if we also use past CSI information at the NW-side for joint CSI prediction and CSI reconstruction together, we cannot draw clear conclusions whether the performance gain is obtained from CSI prediction or CSI reconstruction. 
Therefore, considering the complexity and workload in RAN1, we prefer to treat Case 3 in higher priority and Case 4 in lower priority for joint CSI prediction and compression cases, and companies can submit their results in Case 4 optionally. 
Based on above discussions, we have the following observations and proposals:
Observation 1: Regarding the evaluation of temporal domain of AI/ML-based CSI compression using two-sided model in Rel-19, Case 1 seems not workable to provide higher performance gain than Case 0.
Observation 2: Regarding the evaluation of temporal domain of AI/ML-based CSI compression using two-sided model in Rel-19, no difference between Case 5 and Case 0 from the perspective of reporting content over air interface. Whether NW-side uses past CSI information is NW-implementation and transparent to UE. 
Proposal 1: For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel-19, suggest to down-select from Case 0 - Case 5:
· Study Case 2 without CSI prediction in high priority
· Study Case 3 with CSI prediction in high priority
· Study Case 1/4/5 in low priority
Note: Companies report how the past CSI information is used in different cases.
Discussions on different training types
Similar to what we have discussed in Rel-18, three kinds of training collaboration types can also be considered for the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model.  Details are discussed as follows:
· Type 1 (joint training at single side/entity): The two-sided model can be trained at UE-side or NW-side. From our view, we also prefer to focus on the evaluation of different cases in Type 1 training manner, so that we can touch the upper bound of introducing temporal domain correlation for CSI compression, and then draw a high-level conclusion before the RAN#105 checkpoint. 
· Type 2 (joint training across NW-side and UW-side): As we have discussed in Rel-18, Type 2 joint training requires gradient exchange across NW-side and UE-side, which has been deprioritized in Rel-18 SI. In Rel-19 SI, we also suggest to deprioritize Type 2 joint training when introducing temporal domain CSI compression.
· Type 3 (separate training at NW-side and UE-side): separate training includes sequential training starting with UE-side training, or sequential training starting with NW-side training. 
· UE-first training: Firstly, UE trains CSI generation part model and UE-side CSI reconstruction part model by using the temporal domain CSI correlation. Secondly, UE reports the target CSI label and intermediate datasets including the output bits from the CSI generation part model. Thirdly, NW trains its own CSI reconstruction part model with the intermediate datasets as the input and target CSI as the label. It should be noteworthy that the temporal information, such as data order, start and terminal points, in both target CSI labels and intermediate datasets should be explicitly or implicitly indicated from UE to NW, so that NW can train its own CSI reconstruction part model correctly and can be used together with UE-side CSI generation part model.
· NW-first training: Firstly, NW trains NW-side CSI generation part model and CSI reconstruction part model by using the temporal domain CSI correlation. Secondly, NW transmits the target CSI and intermediate datasets including the output bits from the CSI generation part model. Thirdly, UE trains its own CSI generation part model with the intermediate datasets as the label and target CSI as the input. Similar to UE-first training, the temporal information in both target CSI labels and intermediate datasets should be explicitly or implicitly indicated from NW to UE.
· Other issues for Type 3: As for Type 3 training, how to utilize the CSI correlation in temporal domain at UE-side is transparent to NW-side and vice versa. There is a risk that if the method of utilization of past CSI information is not aligned, the CSI generation part model trained by UE and CSI reconstruction part model trained by NW may not be operated jointly. Therefore, it seems much effort are expected for further evaluations and discussions on Type 3 training. 
Generally, there is no difference between the training procedure itself for SF-domain and SFT-domain CSI compression. However, in order to train the AI model to utilize the CSI correlation in temporal domain, every collected data sample is required to consist of multiple continuous CSI slots in temporal domain in data collection procedure. Based on above discussions, we have the following observations and proposals:
Observation 3: Regarding Type 1, Type 2 and Type 3 training collaboration types of AI/ML-based CSI compression using two-sided model, there is no difference on the training procedure whether or not use temporal domain CSI correlation.
Observation 4: Regarding the dataset collection for AI/ML-based CSI compression using two-sided model with temporal domain CSI correlation, multiple continuous CSI slots should be consisted of within one data sample.
Observation 5: Regarding Type 3 training for AI/ML-based CSI compression using two-sided model with temporal domain CSI correlation, temporal information should be explicitly or implicitly indicated from UE to NW in UE-first training and form NW to UE in NW-first training.
Proposal 2: Regarding different training types for AI/ML-based CSI compression using two-sided model with temporal domain CSI correlation, suggest:
· Type 1 and Type 3 should be treated in priority
· Evaluations on Type 1 should be firstly considered
· Type 3 related issues, e.g., temporal information indicating, alignment of past CSI information utilization, can be discussed in parallel
· Type 2 is deprioritized
Evaluation methodology
Case 2 and Case 5
In this part, we introduce the evaluation methodology of SFT-domain CSI compression with the assumption of Case 2 and Case 5 as an example in Figure 1. Both of the backbone of encoder and decoder is Transformer. At UE-side in Case 2, the past CSI information of slot 0/1/2 is extracted from the intermediate feature layer after self-attention blocks of the encoder, denoted as . Then past CSI information can be concatenated with the intermediate feature layer output of current slot, denoted as  for slot 1,  for slot 2 and  for slot 3. The output of encoder can include both the CSI information from past slots and current slots.
At NW-side in both Case 2 and Case 5, the past CSI information of slot 0/1/2 is extracted from the intermediate feature layer after self-attention blocks of the decoder, denoted as . Then past CSI information can be concatenated with the intermediate feature layer output of current slot, denoted as  for slot 1,  for slot 2 and  for slot 3. Therefore, the decoder can extract both the past CSI information and current CSI information to recover a better CSI for present slots.


[bookmark: _Ref162515893]Figure 1 Framework of SFT-domain CSI compression for Case 2 and Case 5
Based on the discussions above, it seems very clear that how SFT-domain CSI compression works well and the potential performance gain compared with Case 0 can be expected. However, from our understanding, two kinds of assumptions on how to train and deploy the AI model of SFT-domain CSI compression should be additionally addressed:
· Assumption 1 with time window: a time window is used over the temporal domain and the SFT-domain CSI compression is only performed within the same time window. Specifically, the m-th time window consists of K continuous slots [slot mK, slot mK+1, …, slot mK+K-1]. The past CSI information from slot  can only be used at slot  with the limitation of . The past CSI information from the m-th time window cannot be flowed into the m+1-th time window. Under this assumption, the training and inference procedures can be easily performed window-by-window. One simple training procedure can be given as a reference:
· Step 0: dataset preparation based on time window. The datasets consisting of N UEs and T slots per UE are divided into  non-overlapped windows.
· Step 1: SF-domain AI model training and past CSI information output of the slot mK, . The SF-domain AI model training is performed based on Rel-18 framework. Then, the SF-domain AI model is inferenced on slot mK, , and the past CSI information  and   can be obtained.
· Step 2: SFT-domain AI model training. For the slot mK+1, , the past CSI information  and   can be used for SFT-domain AI model training of slot mK+1. When model training is finished,  and   can be obtained as the past CSI information for the subsequent slots within the time window.
· Assumption 2 without time window: no time window is used and the SFT-domain CSI compression is performed in a slidable manner over the temporal domain. The past CSI information from slot  can be used at slot  only with the limitation of . From our understanding, the model training phase and inference phase is coupled together under this assumption. The past CSI information required during training stage have to be obtained from an un-stable output of model itself. This may cause the past CSI information cannot be correctly extracted and may not be helpful for CSI recovery in present slots. Therefore, how the model training is performed under this assumption should be discussed.
In our contribution, we select assumption 1 with time window to reduce the training complexity. Based on above discussions, we have the following proposal:
Proposal 3: Regarding the training and deploy methodology of SFT-domain CSI compression, two kinds of assumptions can be considered:
· Assumption 1: with time window (baseline)
· Assumption 2: without time window (optional)
· How to perform model training under Assumption 2 should be studied
Note: Companies to report which assumption is selected.
Case 3
In this part, we introduce the evaluation methodology of CSI prediction plus compression with Case 3, wherein the CSI prediction and compression are performed in a separate manner as shown in Figure 2. For CSI prediction operation, take the observation window number/time distance = 5/5ms and prediction window number/time distance = 4/5ms as an example, the measured raw channel  and the predicted raw channel   are adopted as the input and output of CSI prediction part, respectively. 
For CSI compression part, considering CSI eigenvectors are mainly used as the input of encoder and output of decoder, SVD operation is performed to convert the predicted raw channel to CSI eigenvectors . Then, for AI based CSI compression, all predicted CSI eigenvectors are jointly compressed and fed back to NW-side decoder for reconstruction.
Specifically, for CSI prediction operation, both ideal CSI prediction without prediction error, non-AI CSI prediction (e.g. auto-regression method) and AI based CSI prediction can be used. Then for CSI compression operation, both Rel-18 doppler eTypeII codebook and AI based CSI compression can be used. When comparing the performance of different CSI compression methods, the same CSI prediction method should be adopted. 


[bookmark: _Ref165214499]Figure 2 Framework of Case 3
Non-ideal UCI feedback
As agreed in RAN1 #116 and RAN1 #116bis, for the evaluation of temporal domain of AI/ML-based CSI compression using two-sided model in Rel-19, for Case 2, Case 4 and Case 5, the performance impact resulting from non-ideal should be studied. Actually, non-ideal UCI feedback is a realistic issue when using SFT-domain CSI compression. However, how to model the non-ideal UCI feedback has not been well discussed in the last meeting. Here we give two different modeling methods as examples:
· UCI loss happens in p% probability for each slot of CSI feedback. This assumption means for each time of CSI feedback, there is p% probability that all CSI reporting is missing. Then NW can use the latest successful UCI feedback as the input of decoder and the past CSI information to recover a new target CSI for present slot. 
· UCI reporting error in p% probability for each slot of CSI feedback. This assumption means for each time of CSI feedback, there is p% probability that the reported bit is wrongly received. From our view, the AI model is still workable with the input of small number of wrong bits. 
We can see that different non-ideal UCI feedback modeling methods may produce diverse results. We should avoid the diverging discussions within the limited time budget. In our contribution, we select the first modeling method for non-ideal UCI feedback evaluation. Moreover, it is unfair for the performance comparison when introducing non-ideal UCI feedback into SFT-domain CSI compression but no such assumption is considered in Case 0 SF-domain CSI compression and eType II codebook baseline. From our understanding, non-ideal UCI feedback is caused by the non-ideal uplink channel including noise, fading and interference, which also happens for both eType II codebook and Case 0. Therefore, non-ideal UCI feedback should be a general issue no matter what kind of CSI compression method is utilized.
Based on above discussions, we have the following observations and proposals:
Observation 6: Regarding the modeling of non-ideal UCI feedback, two kinds of modeling assumptions can be considered:
· Assumption 1: UCI loss happens in p% probability for each slot of CSI feedback
· Assumption 2: UCI reporting error in p% probability for each slot of CSI feedback
Observation 7: Non-ideal UCI feedback is a general issue for both SFT-domain, SF-domain and eType II based CSI feedback.
Proposal 4: Regarding the modeling assumption of non-ideal UCI feedback, use Assumption 1 for evaluations.
Performance evaluation
Intermediate KPI for Case 1/2/5
In this part, we evaluate the SGCS performance of Case 1/2/5 compared with Rel-16 eType II codebook and Case 0 benchmark and the corresponding AI model complexity from the perspective of FLOPs and trainable parameters. Some basic simulation parameters are listed in Table 1.
[bookmark: _Ref162623746]Table 1 Basic simulation parameters for SFT-domain CSI compression
	Parameter
	Value

	Number of UEs: N
	570k for training, 30k for testing

	Number of slots per UE: T
	4

	Window size: K
	4

	UE distribution
	Option 1: 80% indoor, 20% outdoor

	UE speed
	3km/h for indoor, 30km/h for outdoor

	CSI-RS configuration
	5ms periodicity

	CSI feedback payload
	67bit


[bookmark: _Ref162624026]Take Case 2 of SFT-domain CSI compression as an example, the FLOPs and trainable parameters are given in Table 2. Given the window size K=4, the total FLOPs and trainable parameters for SFT-domain model are about 4 times of that in SF-domain model. This result means that the model complexity of SFT-domain CSI compression increases in proportion to the length of time window. 
[bookmark: _Ref162629182]Table 2 FLOPs and trainable parameters of Case 2 of SFT-domain CSI compression
	FLOPs (M)
	Slot 0
	Slot 1
	Slot 2
	Slot 3
	Total

	Encoder
	10.70
	10.87
	10.89
	10.90
	43.53

	Decoder
	10.70
	10.87
	10.89
	10.90
	43.53

	Encoder + Decoder
	21.40
	21.74
	21.78
	21.80
	87.06

	Trainable parameters (M) 
	Slot 0
	Slot 1
	Slot 2
	Slot 3
	Total

	Encoder
	10.72
	10.89
	10.91
	10.92
	43.44

	Decoder
	10.72
	10.89
	10.91
	10.92
	43.44

	Encoder + Decoder
	21.44
	21.74
	21.82
	21.84
	86.88


 Observation 8: FLOPs and trainable parameters of AI model for SFT-domain CSI compression increases in proportion of the length of time window.
[bookmark: _Ref162687508]Table 3 SGCS comparison between different SFT-domain CSI compression cases
	SGCS
	Slot 0
	Slot 1
	Slot 2
	Slot 3
	Average

	eType II
	0.714
	0.714
	0.714
	0.714
	0.714

	Case 0
	0.774 (+8.40%)
	0.774 (+8.40%)
	0.774 (+8.40%)
	0.774 (+8.40%)
	0.774 (+8.40%)

	Case 1
	0.774 (+8.40%)
	0.744 (+4.20%)
	0.740 (+3.64%)
	0.737 (+3.22%)
	0.749 (+4.90%)

	Case 2
	0.774 (+8.40%)
	0.789 (+10.36%)
	0.799 (+11.90%)
	0.801 (+12.18%)
	0.791 (+10.78%)

	Case 5
	0.774 (+8.40%)
	0.784 (+9.80%)
	0.794 (+11.48%)
	0.796 (+11.48%)
	0.787 (+10.22%)


In Table 3, both Case 1, Case 2 and Case 5 are evaluated for comparison with the eType II and Case 0 SF-domain CSI compression. Obviously, both Case 2 and Case 5 can achieve SGCS performance gain compared with eType II and Case 0. Moreover, Case 2 slightly outperforms Case 5 because the past CSI information is utilized at both UE-side and NW-side in Case 2. While for Case 1, as we have discussed in subsection 2.1, it performs worse than Case 0, which proves that only use past CSI information in UE-side is not helpful for CSI compression. 
In addition, for Case 2, the relative performance gain grows slower when slot number increases. For example, from slot 0 to slot 1, the relative gain grows from 8.40% to 10.36%, while from slot 2 to slot 3, the relative gain only grows from 11.90% to 12.18%. This is because the past CSI information far away from present slot may be out of date, and only brings limited useful information. Therefore, a proper window size is required to achieve the trade-off between performance and complexity. 
Observation 9: Both Case 2 and Case 5 outperform Case 0 with SF-domain CSI compression from the perspective of SGCS relative gain than eType II baseline.
· Case 2 achieves 10.78% average relative SGCS gain
· Case 5 achieves 10.22% average relative SGCS gain
Observation 10: Case 1 performs worse than Case 0 with SF-domain CSI compression from the perspective of SGCS.
Observation 11: The performance gain obtained by SFT-domain CSI compression grows slower when slot number increases within the time window.
Proposal 5: Suggest no further evaluation and discussion on Case 1
Proposal 6: Regarding the model of SFT-domain CSI compression, a proper time window size is required to achieve the trade-off between performance and complexity
We further evaluate the influence of non-ideal UCI feedback on Rel-16 eType II codebook in Table 4. Case 0 and Case 2, where the Assumption 1 with UCI loss happens in 10% probability for each slot of CSI feedback is adopted.
[bookmark: _Ref165985497]Table 4 SGCS comparison with 10% UCI loss
	SGCS
	Slot 0
	Slot 1
	Slot 2
	Slot 3
	Average

	eType II
	0.713
	0.713
	0.713
	0.713
	0.713

	Case 0
	0.773 (+8.42%)
	0.773 (+8.42%)
	0.773 (+8.42%)
	0.773 (+8.42%)
	0.773 (+8.42%)

	Case 2
	0.773 (+8.42%)
	0.762 (+6.87%)
	0.797 (+11.78%)
	0.800 (+12.20%)
	0.783 (+9.82%)


In Table 4, we find that the 10% UCI loss causes very slight performance loss for Rel-16 eType II codebook and Case 0 without temporal domain aspects in CSI feedback. For Case 2, the average performance degrades from 0.791 to 0.783 (-0.96% loss). In our evaluations, when UCI loss happens at NW, NW directly use the latest successfully received CSI feedback and the produce the past CSI information in temporal domain. We can find that in average, Case 2 still has about 9.82% performance gain over eType II benchmark and 1.50% performance gap over Case 0. 
Observation 12: Considering 10% UCI loss, Case 2 still outperforms Case 0, the relative SGCS performance gain over Rel-16 eType II benchmark improves from 8.42% to 9.82%.
Intermediate KPI for Case 3
In this part, we evaluate the SGCS performance of Case 3 with separate CSI prediction and compression manner in . Here the observation window with 5/5ms and prediction window with 4/5ms/5ms are assumed. For the CSI prediction part, 5 raw channel observations are used as the input by using three different methods, including non-AI (auto-regression), AI-MLPMixer model (same as our CSI prediction contribution [2]) and ideal prediction without prediction error. For the CSI compression part, 4 CSI eigenvectors are jointly compressed and feedback with 4*67bits = 268bits, and NW directly uses this feedback for joint CSI recovery. Both the CSI generation part and CSI reconstruction part models use Transformer backbone, and the auto-regression CSI prediction with Rel-18 eType II codebook is used as the benchmark.
	CSI Prediction method
	CSI Compression method
	SGCS (relative gain)

	Auto-regression
	Rel-18 eType II codebook
	0.700

	Auto-regression
	AI
	0.814 (+16.3%)

	AI
	AI
	0.817 (+16.7%)

	Ideal
	AI
	0.843 (+20.4%)


Observation 13: Regarding the SGCS performance, Case 3 with different CSI prediction methods and AI based joint CSI compression outperform the benchmark.
Localized model for CSI compression
Evaluation methodology
In Rel-18 discussion, a generalized model is assumed for many cells. The AI/ML model is trained based on dataset constructed from multiple cells. To further explore the potential performance gain of AI/ML based CSI compression, the localized model, also named as cell/site/scenario-specific model is considered in Rel-19 evaluations, where the AI/ML model is trained based on the training data from one cell/site/scenario and then it is working for the same cell/site/scenario.
For both generalized model and localized model training phase, total 720k samples consisting of 720k UEs with 1 sample-per-UE are used as the training set, 60k samples consisting of 60k UEs with1 sample-per-UE are used as the test set. 
The same EVCsiNet-T (shown in Figure 3) with Transformer backbone is utilized for both generalized model and localized model. For CSI generation part model (also named as encoder), an embedding layer followed by 6 self-attention blocks and a mixed 3bit/2bit quantization layer is utilized. As for the CSI reconstruction part (also named as decoder), 6 self-attention blocks followed by a full-connection layer are used after the 3bit/2bit dequantization layer. The CSI feedback payload is set as 67bit in the following evaluations.


Figure 3 EVCsiNet-T architecture
The primary different parameters between generalized model and localized model are listed in Table 5, other basic parameters follow the same EVM agreed in TR 38.843.
[bookmark: _Ref158036135]Table 5 Primary different parameters between generalized model and localized model
	Parameters
	Generalized model
	Localized model

	Scenario
	Dense Urban Macro, 19 cells
	Dense Urban Macro, 1 cell

	UE distribution
	80% indoor (3km/h)
20% outdoor (30km/h)
	100% outdoor (30km/h)

	Spatial consistency
	Off
	Off/On



Performance evaluation
The SGCS comparison between generalized model and localized model is shown in Table 6 and Table 7. The spatial consistency is not enabled for Table 6 and is enabled for Table 7. For outdoor UEs, we consider various LoS/NLoS ratios from 1:0 (pure LoS condition) to 0.03:0.97 (almost pure NLoS condition). Specifically, the LoS/NLoS ratio=0.53:0.47 follows the LoS probability defined in TR 38.901 Table 7.4.2-1 (shown in Figure 4), where the red point is the UE with NLoS channel and green point is the UE with LoS channel. The LoS probability increases when UE is near the cell central gNB. For other LoS/NLoS ratios, the LoS probability is re-defined specifically according to the distance from UE to gNB. 


[bookmark: _Ref158110745]Figure 4 An example of outdoor UE distribution with LoS/NLoS ratio=0.53:0.47
[bookmark: _Ref158109308]Table 6 SGCS comparison between generalized model and localized model without spatial consistency
	SGCS
(Spatial consistency off)
	 Outdoor LoS/NLoS ratio

	
	1:0
	0.53:0.47
	0.4:0.6
	0.2:0.8
	0.03:0.97

	Rel-16 eType II
	0.924
	0.769
	0.736
	0.673
	0.610

	AI generalized model
	0.930
	0.796
	0.765
	0.712
	0.657

	Generalized relative gain
	0.63%
	3.53%
	4.00%
	5.78%
	7.75%

	AI localized model
	0.945
	0.820
	0.792
	0.745
	0.684

	Localized relative gain
	2.28%
	6.65%
	7.58%
	10.70%
	12.20%



[bookmark: _Ref158109310]Table 7 SGCS comparison between generalized model and localized model with spatial consistency
	SGCS
(Spatial consistency on)
	 Outdoor LoS/NLoS ratio

	
	1:0
	0.53:0.47
	0.4:0.6
	0.2:0.8
	0.03:0.97

	Rel-16 eType II
	0.920
	0.765
	0.731
	0.669
	0.606

	AI generalized model
	0.924
	0.796
	0.763
	0.709
	0.656

	Generalized relative gain
	0.46%
	3.97%
	4.33%
	6.07%
	8.22%

	AI localized model
	0.952
	0.826
	0.793
	0.750
	0.700

	Localized relative gain
	3.47%
	7.88%
	8.54%
	12.15%
	15.57%


Firstly, for different outdoor LoS/NLoS ratios, localized model achieves higher SGCS than generalized model with and without spatial consistency. Specifically, without/with spatial consistency, generalized model achieves 0.63%~7.75%/0.46%~8.22% relative gain compared to Rel-16 eType II baseline. Localized model achieves 2.28%~12.20%/3.47%~15.57% relative gain compared to Rel-16 eType II baseline.  Moreover, for outdoor UEs with higher NLoS ratio, localized model can provide larger performance gain compared to Rel-16 eTypeII and generalized model. 
Observation 14: Regarding the SGCS of CSI compression, localized model outperforms generlized model and Rel-16 eTypeII baseline, especially for outdoor NLoS heavy scenarios.
Observation 15: Regarding the SGCS of CSI compression, localized model has larger performance gain when spatial consistency in considered.
In addition, we further have evaluated the performance gain for different UEs within a cell, as shown in Table 8. Here, the spatial consistency is enabled. Two different statistical methods are adopted as follows:
(1) K% users with highest localized performance gain,
where K% users with highest localized performance gain are utilized as test set, to verify whether any user within the cell can obtain CSI compression gain greater than the average gain level, and the corresponding UE distribution by LoS/NLoS ratio.
(2) K% users with worst performance of Rel-16 eTypeII,
where K% users with worst baseline performance are utilized as test set, to verify whether users who perform the worst in CSI compression through Rel-16 eTypeII method within a cell can obtain AI/ML based CSI compression gain greater than the average gain level, and the corresponding UE distribution by LoS/NLoS ratio.
Simulation results are shown in Table 7, where K% is set as [50%, 20%, 5%], the whole LoS/NLoS ratio with in the cell is set as [1:0, 0.4:0.6, 0.2:0.8]. The absolute value of SGCS and relative gain compared to Rel-16 eTypeII baseline are given for both cell-common model and cell-specific model.
[bookmark: _Ref159163996]Table 8 SGCS comparison between generalized model and localized model, for K% users with highest cell-specific performance gain, and for K% users with worst performance of Rel-16 eTypeII
	SGCS
(LoS/NLoS ratio 1:0)
	 K% users with highest localized performance gain
	K% users with worst 
 performance of Rel-16 eTypeII

	
	50%
	20%
	5%
	50%
	20%
	5%

	LoS ratio within K% users
	100%
	100%
	100%
	100%
	100%
	100%

	Rel-16 eType II
	0.879
	0.785
	0.665
	0.857
	0.736
	0.570

	AI generalized model
	0.903
	0.834
	0.763
	0.880
	0.779
	0.636

	Generalized relative gain
	2.73%
	6.16%
	14.75%
	2.70%
	5.87%
	11.72%

	AI localized model
	0.937
	0.884
	0.840
	0.909
	0.814
	0.647

	Localized relative gain
	6.68%
	12.62%
	26.26%
	6.04%
	10.60%
	13.55%

	SGCS
(LoS/NLoS ratio 0.4:0.6)
	 K% users with highest localized performance gain
	K% users with worst 
 performance of Rel-16 eTypeII

	
	50%
	20%
	5%
	50%
	20%
	5%

	LoS ratio within K% users
	13.4%
	8.5%
	6%
	6.8%
	3.6%
	2.4%

	Rel-16 eType II
	0.606
	0.534
	0.456
	0.554
	0.452
	0.358

	AI generalized model
	0.674
	0.643
	0.626
	0.609
	0.513
	0.440

	Generalized relative gain
	11.36%
	20.45%
	37.34%
	9.82%
	13.68%
	22.86%

	AI localized model
	0.721
	0.707
	0.706
	0.646
	0.551
	0.478

	Localized relative gain
	19.12%
	32.37%
	54.94%
	16.58%
	21.99%
	33.54%

	SGCS
(LoS/NLoS ratio 0.2:0.8)
	 K% users with highest localized performance gain
	K% users with worst 
 performance of Rel-16 eTypeII

	
	50%
	20%
	5%
	50%
	20%
	5%

	LoS ratio within K% users 






	4.5%
	3.1%
	2.1%
	2.7%
	1.6%
	1.1%

	Rel-16 eType II
	0.569
	0.509
	0.425
	0.516
	0.429
	0.337

	AI generalized model
	0.647
	0.625
	0.606
	0.573
	0.495
	0.432

	Generalized relative gain
	13.85%
	23.08%
	42.84%
	10.85%
	15.33%
	28.30%

	AI localized model
	0.707
	0.702
	0.702
	0.622
	0.546
	0.484

	Localized relative gain
	24.42%
	38.22%
	65.31%
	20.43%
	27.18%
	43.64%


It can be observed that for [50%, 20%, 5%] users with highest localized performance gain and [50%, 20%, 5%] users with worst performance of Rel-16 eType II, both generalized model and localized model can achieve higher performance gain over Rel-16 eType II baseline compared with average level in the whole cell. Moreover, for both two statistic methods, we also find the performance gap between generalized model and localized model of top-K% users also grow larger when K% is decreased from 100% (seen in Table 3) to 5%. Meanwhile, with more NLoS users in the cell, the performance gap from generalized model to localized model increases obviously. 
We can find that the performance gain between localized model, generliazed model and Rel-16 eType II baseline is user-specific. For part of users, AI/ML based CSI compression with both generalized model and localized model can obtain higher performance gain than average level within the cell. The functionality/model of AI/ML based CSI compression can be enabled for this part of users. While for another part of users, the performance gain may be smaller or AI/ML performs inferior than Rel-16 eTypeII baseline, the AI/ML functionality/model can be disabled. 
Based on above results and discussions, we have the following observations and proposals:
[bookmark: _Ref158281989][bookmark: _Ref159248678]Observation 16: For users with worst performance of Rel-16 eTypeII baseline, both generalized model and localized model achieve higher performance gain compared with average level within the cell. The functionality/model of AI/ML based CSI compression can be enabled for this part of users.
[bookmark: _Ref159248680]Observation 17: For users with K% users with highest performance gain and K% users with worst performance of Rel-16 eTypeII baseline, the performance gap between localized model and generalized model grows larger when smaller K% users are selected.
[bookmark: _Ref158281995]Proposal 7: Suggest to study AI/ML based CSI compression with localized model in Rel-19, and discuss the EVM including the following aspects:
· Impact of spatial consistency
· Different scenarios, e.g., indoor/outdoor UE distributions, LoS/NLoS ratios. 
Spec related issues 
As we have discussed and evaluated above, CSI compression with localized model brings more performance gain from the perspective of intermediate KPI SGCS. Therefore, some localized model related aspects should be further considered, including the data collection and some LCM procedures such as model training, model performance monitoring, model switching and other possible issues.
Regarding the data collection, cell/site/scenario related “condition information” and “addition condition information” should be considered during the data collection stage. For the “condition information” part, some CSI-related information should be considered, such as the CSI type to be compressed, e.g. raw channel or precoding matrix, and the CSI configurations, e.g. number of antenna ports, number of sub-bands, ranks. For the “additional condition information” part, some cell/site/scenario related information should be considered, such as cell/site/scenario ID, indoor/outdoor indication, LoS/NLoS flag and UE ID.
[bookmark: _Ref158281999]Proposal 8: Regarding the data collection for C\SI compression, cell/site/scenario related “condition information” and “addition condition information” should be considered during the data collection stage
· Condition information including CSI-related information such as the CSI type, e.g. raw channel or precoding matrix, and the CSI configurations, e.g. number of antenna ports, number of sub-bands, ranks.
· Additional condition information including cell/site/scenario related information such as cell/site/scenario ID, indoor/outdoor indication, LoS/NLoS flag and UE ID.
Regarding the model training procedure, three types of training collaboration levels including Type 1, Type 2 and Type 3 have been discussed in Rel-18 study phase. As we have claimed in Rel-18, Type 1 and Type 3 should be studied in priority, Type 2 should be deprioritized for further study on two-sided CSI compression topic in Rel-19.
For the model training of cell/site/scenario-specific model, two possible ways can be considered. 
(1) the model can be directly trained on dataset with amount of cell/site/scenario-specific data samples. This way is potential to providing localized model with higher performance gain. However, the problem is that the data collection overhead for obtaining various kinds of large scale cell/site/scenario-specific datasets may be very huge. 
(2) the model is finetuned based on a generalized model with small cell/site/scenario-specific datasets. The data collection issue of the second way can be relaxed. The possible problem is that the model may be not good enough to provide sufficient cell/site/scenario-specific performance gain. 
Therefore, to obtain the cell/site/scenario specific localized model, the trade-off between potential performance gain and complexity/overhead of model training procedure should be further considered.
[bookmark: _Ref158282005]Proposal 9: Regarding the cell/site/scenario specific localized model training, two ways can be considered, including
· Direct training based on large cell/site/scenario-specific datasets
· Finetuning based on generalized model with small cell/site/scenario-specific datasets
The trade-off between potential performance gain and complexity/overhead should be further studied.
Inter-vendor collaboration 
As we have agreed in last two meetings, to alleviate the concerns related to inter-vendor collaboration, several options have been identified. Before discussing these options, the difference between ‘reference model’ defined in the RAN1 last meeting and RAN4 should be addressed. 
From our understanding, reference model in RAN4 is utilized to pass the minimum performance test under some simple channel assumptions, e.g. a very simple DNN model with a few full-connection layers can reach this target under TDL channels, which may be not workable in actual deployment.  However, the reference model defined in RAN1 should be considered facing to commercial use with sufficient performance. Therefore, the requirement of model complexity and ability for RAN1 reference model and RAN4 reference model may be very different, which also lead to diverse levels of standardization difficulty. As for the subsequent discussions, RAN1 cannot directly inherit the agreement on reference model in RAN4, which may need some further studies in RAN1.
Proposal 10: Suggest to distinguish the reference model in RAN1 to in RAN4
· Higher requirement on model performance for reference model in RAN1 
· RAN1 cannot directly use the agreement on reference model in RAN4
Since conclusions on Option 1/2 have been drawn in RAN1 #116bis, we mainly focus on Option 3/4/5 in this contribution based on the details and sub-options agreed for Option 3/4/5.
Option 3
Firstly, for Option 3, how to standardize the reference model structure is still unclear and requires much more effort in RAN1.  Two sub-options are further defined in RAN1 #116bis as follows:
· Option 3a: parameters received at the UE or UE-side goes through offline engineering at the UE-side (e.g., UE-side OTT server), e.g., potential re-training, re-development of a different model, and/or offline testing. Moreover, Option 3a-1/3a-2/3a-3 are further categorized from what parameters are exchanged from NW-side to UW-side, referred to as CSI generation part/CSI reconstruction part/both CSI generation part and CSI reconstruction part. 
· Feasibility: whether Option 3a is feasible depends on how reference model structure is specified. If RAN1 can standardize the reference model structure, parameters exchange can be performed in offline manner or over the air-interface. If the parameters are exchanged in offline manner, the standardization effort in RAN1 may be fewer. It also seems more feasible since both parameters exchange and subsequent engineering are through offline ways, which brings little RAN1 impact. While if the parameters are exchanged over the air-interface, how to support parameters exchange over the air-interface should be further discussed and may bring much more RAN1 standardization effort and impact.
· Inter-vendor collaboration complexity: once model structure is standardized, the inter-vendor collaboration complexity can be alleviated to some extent. However, whether parameters exchange through offline or over the air-interface may result different levels of inter-vendor collaboration complexity. If offline manner is utilized, the inter-vendor complexity for offline parameters exchange from NW-side to UE-side is still required. Specifically, the offline collaboration complexity may be arising when one UE vendor is required to collaborate to multiple NW vendors and vice versa. As comparison, if the parameters exchange is over the air-interface, the procedure and signaling can be specified so that the inter-vendor collaboration complexity can be alleviated. And the possible offline engineering, such as offline testing still needs further inter-vendor collaboration.
· Performance:  the performance of Option 3a is better than fully standardized model structure and parameters in Option 1. Moreover, the performance of Option 3a can also be further improved if offline engineering, e.g., re-training and re-development is performed. 
1) Option 3a-1, only the parameters of CSI generation part is exchanged from NW-side to UE-side, hence UE-side/UE-side OTT server can only re-train the CSI generation part. This offline re-retraining requires dataset sharing from NW-side to UE-side, including the target CSI label and intermediate information of NW-side CSI generation part output. As per our understanding, offline re-training only on UE-side CSI generation part with the intermediate information as the label is useless to further improve the final performance, since the upper-bound has been limited by the optimal intermediate information as the input of NW-side CSI reconstruction part.
2) Option 3a-2, only the parameters of CSI reconstruction part is exchanged from NW-side to UE-side, hence UE-side/UE-side OTT server can train UE-side CSI generation part with this CSI reconstruction part. This offline training requires dataset sharing from NW-side to UE-side, including the target CSI label. By freezing the CSI reconstruction part and training the CSI generation part, the final performance can be improved. One possible problem is that, without the exchanged parameters of CSI generation part from NW-side, the offline training for UE-side generation part from a random start may be time consuming and cannot arrive to optimal convergence. 
3) Option 3a-3, both the parameters of CSI generation part and CSI reconstruction part are exchanged from NW-side to UE-side, hence UE-side/UE-side OTT server can re-train UE-side CSI generation part. Compared to Option 3a-2, the re-training based on the exchanged parameters of CSI generation part is more rapid and likely to achieve the optimal convergence. However, Option 3a-3 may result the largest parameters overhead in offline exchange or over the air-interface.
· Interoperability and RAN4 testing:  as per our understanding, if the reference model structure can be specified, this issue can be alleviated to some extent. However, the final conclusion should be up to RAN4 discussion.
· Option 3b: parameters received at the UE are directly used for inference at the UE without offline engineering, potentially with on-device operations. The method of exchanging is over the air-interface via model transfer/delivery Case z4. 
· Feasibility: whether Option 3b is feasible also depends on how reference model structure is specified. If RAN1 can standardize the reference model structure, parameters exchange can be performed over the air-interface. How to support parameters exchange over the air-interface should be further discussed and may bring much more RAN1 standardization effort and impact.
· Inter-vendor collaboration complexity: once model structure is standardized, the inter-vendor collaboration complexity can be alleviated to some extent. Since the parameters exchange is over the air-interface, the procedure and signaling can be specified so that the inter-vendor collaboration complexity can be resolved.
· Performance: the performance of Option 3b is better than fully standardized model structure and parameters in Option 1. But its performance is also limited since the structure has been specified, and the performance may not be greatly improved by only on-device operations.
· Interoperability and RAN4 testing:  similarly, if the reference model structure can be specified, this issue can be alleviated to some extent. However, the final conclusion should be up to RAN4 discussion.
Based on above discussions, we have the following observation and proposal:
Observation 18: Regarding Option 3, if the reference model structure is standardized, the feasibility, inter-vendor collaboration complexity, performance and interoperability/RAN 4 testing are summarized as:
	Option
	Feasibility
	Inter-vendor collaboration complexity
	Performance
	Interoperability/RAN4 testing

	Option 3a
	Offline exchanging
	Feasible
	Require offline collaboration
	Better than Option 1.
3a-2/3 can further improve performance
	Alleviated. Final conclusion up to RAN4

	
	Over-the air-interface
	More standardization work
	Alleviated
	
	

	Option 3b
	More standardization work
	Resolved
	Better than Option 1
	


Proposal 11: RAN1 further study how to standardize reference model structure in Option 3.
Option 4
Firstly, for Option 4, how to standardize data / dataset format standardization is also unclear and requires much effort in RAN1. Then for dataset exchange, the dataset received at the UE or UE-side goes through offline engineering at the UE-side (e.g., UE-side OTT server), e.g., model training or offline testing. Moreover, dataset exchanged from the NW-side to UE-side consists of (target CSI, CSI feedback) / (CSI feedback, reconstructed target CSI) / (target CSI, CSI feedback, reconstructed target CSI) for Option 4-1/4-2/4/3. 
· Feasibility:  the dataset exchange can be offline delivery or over the air-interface. If the dataset exchange is through offline manner, the standardization effort in RAN1 may be fewer. It also seems feasible since both dataset exchange and subsequent engineering are through offline ways, which brings little RAN1 impact. While if dataset exchanging is over the air-interface, how to support dataset exchange over the air-interface should be further discussed and may bring much more RAN1 standardization effort and impact.
· Inter-vendor collaboration complexity: the inter-vendor collaboration complexity can be alleviated to some extent by standardizing the data / dataset format. However, whether dataset exchange through offline or over the air-interface may result different levels of inter-vendor collaboration complexity. If offline manner is utilized, the inter-vendor complexity for offline dataset exchange from NW-side to UE-side is still required. Specifically, the offline collaboration complexity may be arising when one UE vendor is required to collaborate to multiple NW vendors and vice versa. As comparison, if the dataset exchange is over the air-interface, the procedure and signaling can be specified so that the inter-vendor collaboration complexity can be alleviated. 
· Performance: from our understanding, the performance of Option 4 can be guaranteed by the shared dataset from NW-side to UE-side along with the necessary addition information including performance target.
1) Option 4-1: dataset consists of (target CSI, CSI feedback). The dataset can be used for UE-side CSI generation part model training, where the target CSI is used as the input and the CSI feedback is used as the label. However, the final performance of CSI generation part trained at UE-side with CSI reconstruction part at NW-side will not exceed the NW-side only CSI generation part and CSI reconstruction part. Moreover, since UE doesn’t know the model structure and parameters of NW-side CSI reconstruction part, the model mismatch may happen and cause the performance loss.
2) Option 4-2: dataset consists of (CSI feedback, reconstructed target CSI). The dataset can be used for UE-side CSI reconstruction part model training, where the CSI feedback is used as the input and the reconstructed target CSI is used as the label. Obviously, this UE-side CSI reconstruction part model will learn the mapping relationship from CSI feedback to reconstructed target CSI in NW-side CSI reconstruction part model. Therefore, it can be used as the proxy model for UE-side monitoring. Meanwhile, since no UE-side CSI generation part can be trained based on this shared dataset, we should assume that a CSI generation part has been pre-trained and implemented by UE. Then, UE can know the performance of pre-trained CSI generation part and UE-side CSI reconstruction part, hence pre-estimate the final performance of pre-trained CSI generation part and NW-side CSI reconstruction part. But whether pre-trained CSI generation part model can correctly map the target CSI to CSI feedback cannot be guaranteed because of the possible model mismatch to NW-side CSI reconstruction model, hence the final performance is not always good enough for practical deployment.
3) Option 4-3: dataset consists of (target CSI, CSI feedback, reconstructed target CSI). The dataset can be used for UE-side CSI generation part and CSI reconstruction part model training. Combining Option 4-1 and Option 4-2, the performance of Option 4-3 can be guaranteed and can be pre-estimated at UE-side, but the dataset exchange overhead would be larger than both Option 4-1 and Option 4-2.
· Interoperability / RAN4 testing: as per our understanding, if the data / dataset format can be specified, this issue can be alleviated to some extent. However, the final conclusion should be up to RAN4 discussion.
Based on above discussions, we have the following observation and proposal:
Observation 19: Regarding Option 4, if the data / dataset format is standardized, the feasibility, inter-vendor collaboration complexity, performance and interoperability/RAN 4 testing are summarized as:
	Option
	Feasibility
	Inter-vendor collaboration complexity
	Performance
	Interoperability/RAN4 testing

	Option 4
	Offline exchanging
	Feasible
	Require offline collaboration
	Better than Option 1.
Guaranteed performance for 4-1/3. Not always workable for 4-2.
	Alleviated. Final conclusion up to RAN4

	
	Over-the air-interface
	More standardization work
	Alleviated
	
	


Proposal 12: RAN1 further study how to standardize data / dataset format in Option 4.
Option 5
For Option 5, how to standardize the model format and what model format consists of are not clear and require further standardization effort in RAN1. But compared to Option 1 and 3, the standardization work is fewer since the reference model structure is not specified in Option 5. We also defined two sub-options in RAN1 #116bis as follows:
· Option 5a: model received at the UE or UE-side goes through offline engineering at the UE-side (e.g., UE-side OTT server), e.g., potential re-training, re-development of a different model, and/or offline testing. Moreover, Option 5a-1/5a-2/5a-3 are further categorized from what models are exchanged from NW-side to UW-side, referred to as CSI generation part/CSI reconstruction part/both CSI generation part and CSI reconstruction part. 
· Feasibility: similar to Option 3a, whether Option 5a is feasible depends on how reference model format is specified. If RAN1 can standardize the reference model format, model exchange can be performed in offline manner or over the air-interface. If the model is exchanged in offline manner, the standardization effort in RAN1 may be fewer. It also seems more feasible since both model exchange and subsequent engineering are through offline ways, which brings little RAN1 impact. While if the model is exchanged over the air-interface, how to support model exchange over the air-interface should be further discussed and may bring much more RAN1 standardization effort and impact than only exchanging parameters in Option 3 and dataset exchanging in Option 4. 
· Inter-vendor collaboration complexity: once model format is standardized, the inter-vendor collaboration complexity can be alleviated to some extent. However, whether model exchange through offline or over the air-interface may result different levels of inter-vendor collaboration complexity. If offline manner is utilized, the inter-vendor complexity for offline model exchange from NW-side to UE-side is still required. This kind of collaboration complexity is larger than Option 3, since both the reference model structure and parameters should be collaborated offline, which may lead to large collaboration complexity between different NW vendors and UE vendors. As comparison, if the model exchange is over the air-interface, we also provide two ways: 
1) Model parameters exchange over the air-interface with offline model structure alignment: in this way, we still need further inter-vendor collaboration for the offline model structure alignment between multiple NW vendors and UE vendors.
2) Mode structure and parameters exchange over the air-interface: in this way, the procedure and signaling can be specified so that the inter-vendor collaboration complexity can be further alleviated without offline collaboration.
· Performance:  the performance of Option 5a is better than fully standardized model structure and parameters in Option 1. Similar to Option 3a, the performance of Option 5a can also be further improved if offline engineering, e.g., re-training and re-development is performed. Different from Option 3a, here only reference model format is specified in Option 5a, and both model structure and parameters can be flexibly re-trained and re-developed with higher performance. 
· Interoperability and RAN4 testing:  as per our understanding, if the reference model format can be specified, this issue can be alleviated to some extent. But since the reference model structure is still requires offline collaboration, how to solve the interoperability / RAN4 testing issue should be further considered. The final conclusion should also be up to RAN4 discussion.
· Option 5b: model received at the UE are directly used for inference at the UE without offline engineering, potentially with on-device operations. The method of exchanging is over the air-interface via model transfer/delivery Case z4, assuming the model structure is aligned based on offline inter-vendor collaboration.
· Feasibility: whether Option 5b is feasible also depends on how reference model format is specified. If RAN1 can standardize the reference model format, model exchange can be performed over the air-interface. How to support model exchange over the air-interface should be further discussed and may bring much more RAN1 standardization effort and impact than Option 3b.
· Inter-vendor collaboration complexity: since the model exchange is over the air-interface, the procedure and signaling can be specified so that the inter-vendor collaboration complexity can be alleviated to some extent. However, if we assume the model structure is aligned based on offline inter-vendor collaboration, there still remain some inter-vendor collaboration complexity between multiple NW vendors and UE vendors.
· Performance: the performance of Option 5b is better than standardizing model structure in Option 3b. 
· Interoperability and RAN4 testing:  similarly, if the reference model format can be specified, this issue can be alleviated to some extent. But since the reference model structure is still requires offline collaboration, how to solve the interoperability / RAN4 testing issue should be further considered. The final conclusion should also be up to RAN4 discussion.
Based on above discussions, we have the following observation and proposal:
Observation 20: Regarding Option 5, if the reference model format is standardized, the feasibility, inter-vendor collaboration complexity, performance and interoperability/RAN 4 testing are summarized as:
	Option
	Feasibility
	Inter-vendor collaboration complexity
	Performance
	Interoperability/RAN4 testing

	Option 5a
	Offline exchanging
	Feasible
	Require offline collaboration
	Better than Option 3a
	Alleviated, but require further discussion. Final conclusion up to RAN4

	
	Over-the air-interface
	Only model parameters
	More standardization work than Option 3a
	Require offline collaboration
	
	

	
	
	Both model structure and parameters
	
	Alleviated
	
	

	Option 5b
	More standardization work than Option 3b
	Require offline collaboration
	Better than Option 3b
	


Proposal 13: RAN1 further study how to standardize reference model format in Option 5.
Conclusion
In this contribution, we provide some discussions and preliminary results about additional study on AI/ML based CSI compression. Based on the discussions and evaluations, we have following observations and proposals:
Observation 1: Regarding the evaluation of temporal domain of AI/ML-based CSI compression using two-sided model in Rel-19, Case 1 seems not workable to provide higher performance gain than Case 0.
Observation 2: Regarding the evaluation of temporal domain of AI/ML-based CSI compression using two-sided model in Rel-19, no difference between Case 5 and Case 0 from the perspective of reporting content over air interface. Whether NW-side uses past CSI information is NW-implementation and transparent to UE. 
Observation 3: Regarding Type 1, Type 2 and Type 3 training collaboration types of AI/ML-based CSI compression using two-sided model, there is no difference on the training procedure whether or not use temporal domain CSI correlation.
Observation 4: Regarding the dataset collection for AI/ML-based CSI compression using two-sided model with temporal domain CSI correlation, multiple continuous CSI slots should be consisted of within one data sample.
Observation 5: Regarding Type 3 training for AI/ML-based CSI compression using two-sided model with temporal domain CSI correlation, temporal information should be explicitly or implicitly indicated from UE to NW in UE-first training and form NW to UE in NW-first training.
Observation 6: Regarding the modeling of non-ideal UCI feedback, two kinds of modeling assumptions can be considered:
· Assumption 1: UCI loss happens in p% probability for each slot of CSI feedback
· Assumption 2: UCI reporting error in p% probability for each slot of CSI feedback
Observation 7: Non-ideal UCI feedback is a general issue for both SFT-domain, SF-domain and eType II based CSI feedback.
Observation 9: Both Case 2 and Case 5 outperform Case 0 with SF-domain CSI compression from the perspective of SGCS relative gain than eType II baseline.
· Case 2 achieves 10.78% average relative SGCS gain
· Case 5 achieves 10.22% average relative SGCS gain
Observation 10: Case 1 performs worse than Case 0 with SF-domain CSI compression from the perspective of SGCS.
Observation 11: The performance gain obtained by SFT-domain CSI compression grows slower when slot number increases within the time window.
Observation 12: Considering 10% UCI loss, Case 2 still outperforms Case 0, the relative SGCS performance gain over Rel-16 eType II benchmark improves from 8.42% to 9.82%.
Observation 13: Regarding the SGCS performance, Case 3 with different CSI prediction methods and AI based joint CSI compression outperform the benchmark.
Observation 14: Regarding the SGCS of CSI compression, localized model outperforms generlized model and Rel-16 eTypeII baseline, especially for outdoor NLoS heavy scenarios.
Observation 15: Regarding the SGCS of CSI compression, localized model has larger performance gain when spatial consistency in considered.
Observation 16: For users with worst performance of Rel-16 eTypeII baseline, both generalized model and localized model achieve higher performance gain compared with average level within the cell. The functionality/model of AI/ML based CSI compression can be enabled for this part of users.
Observation 17: For users with K% users with highest performance gain and K% users with worst performance of Rel-16 eTypeII baseline, the performance gap between localized model and generalized model grows larger when smaller K% users are selected.
Observation 18: Regarding Option 3, if the reference model structure is standardized, the feasibility, inter-vendor collaboration complexity, performance and interoperability/RAN 4 testing are summarized as:
	Option
	Feasibility
	Inter-vendor collaboration complexity
	Performance
	Interoperability/RAN4 testing

	Option 3a
	Offline exchanging
	Feasible
	Require offline collaboration
	Better than Option 1.
3a-2/3 can further improve performance
	Alleviated. Final conclusion up to RAN4

	
	Over-the air-interface
	More standardization work
	[bookmark: _GoBack]Alleviated
	
	

	Option 3b
	More standardization work
	Resolved
	Better than Option 1
	





Observation 19: Regarding Option 4, if the data / dataset format is standardized, the feasibility, inter-vendor collaboration complexity, performance and interoperability/RAN 4 testing are summarized as:
	Option
	Feasibility
	Inter-vendor collaboration complexity
	Performance
	Interoperability/RAN4 testing

	Option 4
	Offline exchanging
	Feasible
	Require offline collaboration
	Better than Option 1.
Guaranteed performance for 4-1/3. Not always workable for 4-2.
	Alleviated. Final conclusion up to RAN4

	
	Over-the air-interface
	More standardization work
	Alleviated
	
	


Observation 20: Regarding Option 5, if the reference model format is standardized, the feasibility, inter-vendor collaboration complexity, performance and interoperability/RAN 4 testing are summarized as:
	Option
	Feasibility
	Inter-vendor collaboration complexity
	Performance
	Interoperability/RAN4 testing

	Option 5a
	Offline exchanging
	Feasible
	Require offline collaboration
	Better than Option 3a
	Alleviated, but require further discussion. Final conclusion up to RAN4

	
	Over-the air-interface
	Only model parameters
	More standardization work than Option 3a
	Require offline collaboration
	
	

	
	
	Both model structure and parameters
	
	Alleviated
	
	

	Option 5b
	More standardization work than Option 3b
	Require offline collaboration
	Better than Option 3b
	



Proposal 1: For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Rel-19, suggest to down-select from Case 0 - Case 5:
· Study Case 2 without CSI prediction in high priority
· Study Case 3 with CSI prediction in high priority
· Study Case 1/4/5 in low priority
Note: Companies report how the past CSI information is used in different cases.
Proposal 2: Regarding different training types for AI/ML-based CSI compression using two-sided model with temporal domain CSI correlation, suggest:
· Type 1 and Type 3 should be treated in priority
· Evaluations on Type 1 should be firstly considered
· Type 3 related issues, e.g., temporal information indicating, alignment of past CSI information utilization, can be discussed in parallel
· Type 2 is deprioritized
Proposal 3: Regarding the training and deploy methodology of SFT-domain CSI compression, two kinds of assumptions can be considered:
· Assumption 1: with time window (baseline)
· Assumption 2: without time window (optional)
· How to perform model training under Assumption 2 should be studied
Note: Companies to report which assumption is selected.
Proposal 4: Regarding the modeling assumption of non-ideal UCI feedback, use Assumption 1 for evaluations.
Proposal 5: Suggest no further evaluation and discussion on Case 1
Proposal 6: Regarding the model of SFT-domain CSI compression, a proper time window size is required to achieve the trade-off between performance and complexity.
Proposal 7: Suggest to study AI/ML based CSI compression with localized model in Rel-19, and discuss the EVM including the following aspects:
· Impact of spatial consistency
· Different scenarios, e.g., indoor/outdoor UE distributions, LoS/NLoS ratios. 
Proposal 8: Regarding the data collection for C\SI compression, cell/site/scenario related “condition information” and “addition condition information” should be considered during the data collection stage
· Condition information including CSI-related information such as the CSI type, e.g. raw channel or precoding matrix, and the CSI configurations, e.g. number of antenna ports, number of sub-bands, ranks.
· Additional condition information including cell/site/scenario related information such as cell/site/scenario ID, indoor/outdoor indication, LoS/NLoS flag and UE ID.
Proposal 9: Regarding the cell/site/scenario specific localized model training, two ways can be considered, including
· Direct training based on large cell/site/scenario-specific datasets
· Finetuning based on generalized model with small cell/site/scenario-specific datasets
The trade-off between potential performance gain and complexity/overhead should be further studied.
Proposal 10: Suggest to distinguish the reference model in RAN1 to in RAN4
· Higher requirement on model performance for reference model in RAN1 
· RAN1 cannot directly use the agreement on reference model in RAN4
Proposal 11: RAN1 further study how to standardize reference model structure in Option 3.
Proposal 12: RAN1 further study how to standardize data / dataset format in Option 4.
Proposal 13: RAN1 further study how to standardize reference model format in Option 5.
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