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Introduction
CSI prediction is identified as a sub-use case for further study in R19 [1]. Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 














In this paper, we discuss the evaluation methodology and potential specification impact of CSI prediction sub-use case.  
Discussion
Summary of R18 CSI prediction use case  
In R18 study of CSI prediction sub-use case, two benchmarks were identified. 
For CSI-prediction: 
Both of the following are taken as baseline: 
-	The nearest historical CSI without prediction
-	Non-AI/ML or AI/ML with collaboration level x-based CSI prediction for which corresponding details would need to be reported

In RAN1 #115, the following summary and recommendation are agreed for CSI prediction. 


The performance and potential specification impact were studied for AI/ML based UE side CSI prediction sub use case. 
· Evaluation has been performed to assess AI/ML based CSI prediction from various aspects, including performance compared to baseline, model input/output type, generalization over UE speed, etc. Some aspects are studied but lack observations, including scalability over various configurations and generalization over other scenarios and approach of fine tuning. Performance monitoring accuracy is not evaluated.  
· Performance compared with baseline is summarized in clause 6.2.2.8 of TR 38.843.
· Potential specification impact on data collection and performance monitoring are discussed in section 7.2.2 of TR 38.843. 
· Limited specification aspects were considered.

From RAN1 perspective, there is no consensus on the recommendation of CSI prediction for normative work.
· The reason for the lack of RAN1 consensus on the recommendation of CSI prediction for normative work is due to 
· Lack of results on the performance gain over non-AI/ML based approach and associated complexity
· Other aspects that require further study/conclusion are captured in the summary.






















In the evaluation, two performance benchmarks were studied: sample and hold benchmark, and the filter-based CSI predictor based on a statistical model. For filter-based predictor performance, there is no calibration of the filter performance in either R18 AI study, or in R18 MIMO.  In R19, the CSI prediction sub-use case can be further studied to address the main concern captured in the RAN1 summary.  
  
 Weiner filter-based prediction.   
For traditional filter-based predictor, the predictor performance highly depends on the adaptivity of the designed filter. The Weiner filter-based predictor can be calculated as 

where Rxx. is the correlation between the past measurement, and rxy is the correlation between the past measurement and future predicted channel ground truth. 

To calculate the filter weight w, Rxx and rxy can be calculated per UE, per Tx/Rx antenna pair, per RB or subbands, per real and imagine value of the complex channel response. Based on the calculation, the filter coefficients can be optimized per UE, per subband, per Tx/Rx antenna pair, per real/imag value. This gives optimized performance at the expense of either high number of offline pre-calculated coefficients set, or large number of online matrix inversion for Rxx-1

When the Weiner filter is designed and optimized offline for all the UEs, the filter coefficients are stored in the device. Similar to the AI based approach with offline training, only the filtering/inference complexity needs to be considered. 

When the Weiner filter is updated based on periodic measurement, the UE is required to online calculate the filter coefficients, which dramatically increases the complexity as it requires frequent calculation of  Rxx , rxy with an online matrix inversion for Rxx-1

Observation 1: For CSI prediction using a non-AI based approach, complexity and performance varies with different assumption such as whether the filter is designed per UE with frequent filter updates, the granularity of filter etc. 

Computation complexity 
In our evaluation, both filter based, and AI based solution process time domain SISO sequence. Considering the evaluation with 20MHz 104 PRB, 32 gNB antenna port, and 4 UE antenna port, one CSI-RS measurement per PRB, we have total of 104 x 32 x 4 x 2 equivalent SISO measurement sequence for prediction. 2 represent the real and imag part of the complex CSI-RS measurement. 

We focus on the complexity when prediction window is 1 sample (1/5ms/5ms). For each SISO predictor, let Nmeas represents the number of samples in the measurement window, for filter based without any update, this is the simplest case, where per SISO channel filter itself takes Nmeas multiplication and Nmeas additions to get the prediction value. The filter is applied to per subband, so total FLOPs are Nsb x Nt x Nr x 2 x 2Nmeas. 

When wiener filter is updated, we need to calculate the filter coefficients . To calculate Rxx, per CSI-RS, it requires Nmeas * Nmeas  multiplication. Total is NRB x Nt x Nr x 2 x  Nmeas x Nmeas  multiplication. Depending whether the filter is designed per subband, per Tx/Rx pair, the covariance matrix per CSI-RS sample is averaged. Total of NRB x Nt x Nr x 2 x  Nmeas x Nmeas  additions. Matrix inversion is an expensive calculation. Here we update one filter coefficient across different RBs, Tx/Rx antenna pairs. So total of  Nmeas * Nmeas * Nmeas  Flops  to calculate one matrix inversion.  To calculate rxy, total of NRB x Nt x Nr x 2 x  Nmeas multiplication are needed. Averaging over all PRB, Tx/Rx antenna pairs, total of  NRB x Nt x Nr x 2 x  Nmeas additions are needed. Finally Nmeas * Nmeas  multiplication to get . In summary, for each filter update, where one filter is used per subband, Tx/Rx antenna pairs and real/imag value, we have following FLOPs calculation: 
2 x NRB x Nt x Nr x 2 x Nmeas x Nmeas  + 2 x NRB x Nt x Nr x 2 x  Nmeas + Nsb * (Nmeas x Nmeas x Nmeas   + Nmeas x Nmeas  ) 

For AI based approach, the model is offline trained, and no online update. Therefore only the inferencing complexity is calculated. We used one layer of LSTM and one fully connected layer after LSTM layer. For LSTM layer, the FLOPs are (I + D) × D ×4×2, When I is the input dimension (i.e., Nmeas), and D is the hidden layer. It times 4 because an LSTM has 3 gates and 1 memory cell, and it times 2 because each weight value causes a multiply–and–add operation. One fully connected layer has FLOPs of D for one prediction output. Therefore, total FLOPs calculation is Nsb x Nt x Nr x 2 x  ((Nmeas + D) × D ×4×2 + D). In the evaluation D= 8. Note reducing hidden state D value can dramatically reduce the computation complexity. 

Using NRB = 104, Nsb = 13, Nt =32, Nr = 4 as example, the FLOPs value is shown in Table I for measurement window = 10.

	Table I: Computation complexity with different baseline method with observation window of 10/5ms/5ms

	
	Filtering/inferencing 
	Filter update 

	Offline calculated wiener filter 
	67 K
	0

	Offline trained AI model
	3.86 M 
	0

	Wiener filter with online update
	67K
	11.2 M


 

Observation 2: For non-AI based solution, main computation complexity is dominated by filter update.  

Preliminary evaluation results 
In RAN1 #116bis, to align results, baseline evaluation is agreed as  

Agreement
· For the AI/ML based CSI prediction, adopt following assumptions as a baseline for evaluation purpose
· UE speed: 30km/h, 60km/h
· Others can be additionally submitted, e.g., 10km/h, 120km/h
· Observation window (number/distance): 5/5ms,10/5ms
· Others can be additionally submitted, e.g., 4/5ms, 15/5ms 
· Prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance):  1/5ms/5ms, 4/5ms/5ms
· Others can be additionally submitted, e.g., 2/5ms/5ms, 3/5ms/5ms, 1/5ms/10ms
· For other assumptions, reuse Rel-18 baseline 

Agreement
For evaluation, to report computational complexity in unit of FLOPs including additional complexity if applicable, e.g., update of filter, and their assumption on non-AI based CSI prediction when performance results are provided. 






















In this contribution, we focus on 30km/h UE speed, and observation window of 5/5ms, 10/5ms, with prediction window of 1/5ms/5ms. We compare the AI based approach and filter-based approach SGCS, following R18 AI based CSI prediction evaluation methodology.  

For the Weiner filter, two different approaches are used. The simple one is without filter update, the coefficients are calculated offline across all UEs, using the same training dataset that is used for the AI model. The complicated method is to continuously update the correlation matrix calculation based on each periodic CSI-RS measurement, as averaging across past measurement windows, as shown in Fig. 2. 

[image: ]
Fig. 2. Wiener filter is updated per CSI-RS measurement

For ap-CSI-RS, updating the filter coefficients can be difficult. In this case, the offline trained AI model or filter coefficients is used. 

For periodic CSI-RS with 20ms, with a Doppler speed of 30kmph, the channel is changing too fast with the phase ambiguity caused by the Doppler. In this case, neither the filter based, nor the AI based approaches provide reasonable performance.  

Table II shows SGCS for layer 1 eigen-vector of different methods. We observe that AI based approach outperforms the filter-based approach for offline training, and the filter-based approach with dynamic filter update of every 5ms provides best performance. 

		Table II: SGCS comparison of layer 1 eigen-vector with different baseline method  

	
	1/5ms/5ms

	Sample and hold  
	0.81

	Wiener filter (ap-CSI-RS, offline calculated filter coefficients)
	0.83   

	Wiener filter (filter update every 5ms with p-CSI-RS)
	0.99

	AI (LSTM) based approach 
	0.97





Observation 3: For CSI prediction using non-AI based approach, when ap-CSI-RS is used, filter update is difficult.    

Observation 4: When p-CSI-RS with 20ms periodicity is assumed, prediction fails for 30km/h and 60km/h speed.

Observation 5: Comparing to sample and hold benchmark, LSTM based prediction achieves roughly 20% SGCS performance gain. 

Observation 6: Wiener filter-based CSI predictor with ap-CSI-RS (without filter update) outperform sample and hold method by marginal gain of 2% in terms of SGCS. 

Observation 7: Wiener filter-based CSI predictor with 5ms filter update periodicity achieves the better SGCS performance, with the highest complexity for filter update.  

For both the filter-based approach and AI based approach, only time domain correlation is used for CSI prediction. The same filter or AI model is calculated across different antenna ports and different sub-bands and has robust generalization performance.

  
Observation 8: Both filter-based CSI predictor and AI (LSTM) based predictor generalize/scalable to different frequency granularity and antenna ports.   



 Potential specification impact  
Data collection and performance monitoring are the two main potential specification impact aspects that were studied for CSI prediction. In the TR summary of section 8, it was pointed out that the performance monitoring accuracy was not evaluated. 
Three types of performance monitoring were proposed. In type 1 and type 3 performance monitoring, UE calculates the performance metrics by comparing the predicted channel versus the ground truth CSI-RS measurement. For type 2, UE reports predicted CSI and/or the corresponding ground truth back to NW, so NW can calculate the performance metric. The performance monitoring accuracy is mainly related to the ground truth and predicted CSI accuracy. 
In R18 CSI prediction EVM and RAN1 116 evaluation assumption discussion, there were no performance monitoring accuracy related EVM discussions. Since type 2 performance monitoring incurs large overhead without a clear benefit over type 1 and type 3, we recommend deprioritizing type 2 performance monitoring, and the corresponding accuracy evaluation.   
Proposal 1: Deprioritize type 2 performance monitoring and corresponding accuracy evaluation.  

In type 1 and type 3 performance monitoring, UE reports the performance monitoring output to the gNB. The details of performance monitoring output are not defined. 
· Type 1: 
· UE calculates the performance metric(s) 
· UE reports the performance monitoring output that facilitates functionality fallback decision at the network
· Performance monitoring output details can be further defined 
· NW may configure a threshold criterion to facilitate UE side performance monitoring (if needed). 
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 


To avoid frequent and in-accurate functionality fallback operation, similar mechanism like RLM or BFD can be used. For example, NW can configure an evaluation window and a SGCS threshold for each performance monitoring, and UE can report the performance output if the metric within evaluation window is lower than the threshold. 

    
Proposal 2: For potential specification impact, for type 1 performance monitoring, consider RLM/BFD like mechanism to define performance monitoring output.     

Conclusion
In this contribution, we discussed the evaluation methodology of CSI prediction and its potential specification impact, based on R18 CSI prediction use case summary. Based on the discussion, the following proposals have been proposed.
Observation 1: For CSI prediction using a non-AI based approach, complexity and performance varies with different assumption such as whether the filter is designed per UE with frequent filter updates, the granularity of filter etc. 

Observation 2: For non-AI based solution, main computation complexity is dominated by filter update.  

Observation 3: For CSI prediction using non-AI based approach, when ap-CSI-RS is used, filter update is difficult.    

Observation 4: When p-CSI-RS with 20ms periodicity is assumed, prediction fails for 30km/h and 60km/h speed.

Observation 5: Comparing to sample and hold benchmark, LSTM based prediction achieves roughly 20% SGCS performance gain. 

Observation 6: Wiener filter-based CSI predictor with ap-CSI-RS (without filter update) outperform sample and hold method by marginal gain of 2% in terms of SGCS. 

Observation 7: Wiener filter-based CSI predictor with 5ms filter update periodicity achieves the better SGCS performance, with the highest complexity for filter update.  

Observation 8: Both filter-based CSI predictor and AI (LSTM) based predictor generalize/scalable to different frequency granularity and antenna ports.   

Proposal 1: Deprioritize type 2 performance monitoring and corresponding accuracy evaluation.  

Proposal 2: For potential specification impact, for type 1 performance monitoring, consider RLM/BFD like mechanism to define performance monitoring output.     
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