Error! No text of specified style in document.
11
Release 18

3GPP TSG-SA5 Meeting #155 	S5-243428
Jeju, South Korea, 27 – 31 May 2024
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	28.105
	CR
	Draft CR
	rev
	
	Current version:
	18.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	[bookmark: _Hlk167759328]Title:	
	Input to Draft CR Rel-18 TS28.105 ML entity to ML model corrections

	
	

	[bookmark: _Hlk167759413]Source to WG:
	NEC, Intel, Ericsson, Nokia, Huawei, Asiainfo, Verizon, Deutsche Telekom

	Source to TSG:
	S5

	
	

	Work item code:
	AIML_MGT
	
	Date:
	2024-05-30

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	Discussions on terminologies concluded in SA5#154 towards changing all instances of ML entity to ML model to avoid confusion, specially to other wGs who normally adopt model term only.

This input to the draft CR is based on coordinated efforts by the group of companies authoring this input to draft CR.

	
	

	Summary of change:
	All instances of ML entity have been changed to ML model along with the necessary minor corrections of the relevant texts where necessary.
The CR also addressed the followings:
· Aligned the text with the updated terminologies during this meeting.
· Split testing from training, both stage 1 & 2.
· Minor editorials clean up

	
	

	Consequences if not approved:
	Unclear terminologies that makes it difficult for other working groups to understand and refer to the terminologies developed by SA5 AI/ML specifications.

	
	

	Clauses affected:
	all clauses in the spec starting from clause 4.

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	Draft CRs are implemented on the latest baseline Rel-18 TS28.105 v18.3.0 with change marks.

	
	

	This CR's revision history:
	

First change
[bookmark: foreword][bookmark: introduction][bookmark: scope][bookmark: references][bookmark: definitions] 3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc106015846][bookmark: _Toc106098484][bookmark: _Toc163137404]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
ML entity: a manageable artifact of an ML model.
NOTE 1:	An ML entity may contain metadata related to the model. Metadata may include e.g. the applicable runtime context for the ML model.
ML model: mathematical algorithm that can be "trained" by data and human expert input as examples to replicate a decision an expert would make when provided that same information.
NOTE 2:	The ML models are proprietary and not in scope for standardization.

[bookmark: _Ref153958713]
ML model training: process performed by an ML training function to take training data, run it through an ML model, derive the associated loss and adjust the parameterization of that ML model based on the computed loss.
ML initial training: the ML model training that generates the initial version of an ML entity.
ML re-training: The process of training of a previously trained ML model.
NOTE 3:	A new version of a trained ML entity supports the same type of inference as the previous version of the ML entity, i.e., the data type of inference input and data type of inference output remain unchanged between the two versions of the ML entity, but parameter values might be different for the re-trained model.
ML joint training: the ML training for a group of ML models that are trained and targeted for inference.
ML training: refers to the end-to-end processes to enable an ML training function to perform ML model initial training or re-training (as defined above).
NOTE 4:	ML training may include interaction with other parties to collect and format the data required for ML model training.
ML training function: a logical function with ML model training capabilities.
AI/ML inference: refers to the process of running a set of input data through a trained ML entity to produce set of output data, such as predictions.
AI/ML inference function: a logical function that employs an ML model to conduct inference.

Start of chenges

[bookmark: clause4][bookmark: _Toc106015849][bookmark: _Toc106098487][bookmark: _Toc163137407]4	Concepts and overview
[bookmark: _Toc106015850][bookmark: _Toc106098488][bookmark: _Toc163137408]4.1	Overview
The AI/ML techniques and relevant applications are being increasingly adopted by the wider industries and proved to be successful. These are now being applied to telecommunication industry including mobile networks.
Although AI/ML techniques in general are quite mature nowadays, some of the relevant aspects of the technology are still evolving while new complementary techniques are frequently emerging.
The AI/ML techniques can be generally characterized from different perspectives including the followings:
-	Learning methods
The learning methods include supervised learning, semi-supervised learning, unsupervised learning and reinforcement learning. Each learning method fits one or more specific category of inference (e.g. prediction), and requires specific type of training data. A brief comparison of these learning methods is provided in table 4.1-1.
Table 4.1-1: Comparison of Learning methods
	
	Supervised learning
	Semi-supervised learning
	Unsupervised learning
	Reinforcement learning

	Category of inference
	Regression (numeric), classification
	Regression (numeric), classification
	Association,
Clustering
	Reward-based behaviour

	Type of training data
	Labelled data (Note)
	Labelled data (Note), and unlabelled data
	Unlabelled data
	Not pre-defined

	NOTE:	The labelled data means the input and output parameters are explicitly labelled for each training data example.

-	Learning complexity:
-	As per the learning complexity, there are Machine Learning (i.e. basic learning) and Deep Learning.
-	Learning architecture
-	Based on the topology and location where the learning tasks take place, the AI/ML can be categorized to centralized learning, distributed learning and federated learning.
-	Learning continuity
-	From learning continuity perspective, the AI/ML can be offline learning or continual learning.
Artificial Intelligence/Machine Learning (AI/ML) capabilities are used in various domains in 5GS, including management and orchestration (e.g. MDA, see 3GPP TS 28.104 [2]) and 5G networks (e.g. NWDAF, see 3GPP TS 23.288 [3]).
The AI/ML-inference function in the 5GS uses the ML model for inference.
Each AI/ML technique, depending on the adopted specific characteristics as mentioned above, may be suitable for supporting certain type/category of use case(s) in 5GS.
To enable and facilitate the AI/ML capabilities with the suitable AI/ML techniques in 5GS, the ML model and AI/ML inference function need to be managed.
The present document specifies the AI/ML management related capabilities and services, which include the followings:
-	ML trainingML model training.
[bookmark: _Toc163137409][bookmark: _Toc106015851][bookmark: _Toc106098489]4a	AI/ML management functionality and service framework
[bookmark: _Toc106015852][bookmark: _Toc106098490][bookmark: _Toc130201963][bookmark: _Toc163137411]4a.0	ML model LifecycleAI/ML operational workflow
AI/ML techniques are widely used in 5GS (including 5GC, NG-RAN, and management system), the generic AI/ML operational workflow in the lifecycle of an ML entitymodel, is depicted in Figure 4a.0-1.

[image: A diagram of a flowchart

Description automatically generated]
Figure 4a.0-1: AI/ML operationalmodel lifecycle workflow
The workflow ML model lifecyle includes involves 4 main operational phases; namely training, testing, emulation, deployment, and inference phases. These steps The main tasks for each phase are briefly described below:
Training phase:
-	ML model model training: training, including initial training and re-training, of an ML model or a group of ML models. It also includes validation of the ML entitymodel to evaluate the performance when the ML entitymodel performs on the training data and validation data. If the validation result does not meet the expectations (e.g., the variance is not acceptable), the ML model associated with that entity needs to be re-trained. The ML model training is the initial phase of the workflow.

-	ML testingML model testing: testing of the a validated ML entitymodel to evaluate the performance of the trained ML model when it performs on testing data. If the testing result meets the expectations, the ML entitymodel may proceed to the next phasestep, otherwise the ML model associated with that entity may need to be re-trained. If the testing result does not meet the expectations, the ML model needs to be re-trained.
Emulation phase:
-	ML emulation: running an ML entitymodel for inference in an emulation environment. The purpose is to evaluate the inference performance of the ML entitymodel in the emulation environment prior to applying it to the target network or system.
NOTE: 	The ML emulation phase is considered optional and can be skipped in the AI/ML operational workflow.
Deployment phase:
[bookmark: _Hlk147868552]-	ML model entity deploymentloading: ML model deployment includes the ML model loading process (a.k.a. a sequence of atomic actions) of making to make a trained ML entity model available for use at the target AI/ML inference function.
The dML model deployment phase may not be needed in some cases, for example when the training function and inference function are co-located.
Inference phase:
-	AI/ML inference: performing inference using a trained ML entitymodel by the AI/ML inference function. The AI/ML inference may also trigger model re-training or update based on e.g., performance monitoring and evaluation.

4a.1	Functionality and service framework for ML trainingML model training
An ML training Function playing the role of ML training MnS producer, may consume various data for ML model training purpose.
As illustrated in Figure 4a.1-1 the ML model training capability is provided via ML training MnS in the context of SBMA to the authorized consumer(s) by ML training MnS producer.

Figure 4a.1-1: Functional overview and service framework for ML model training
The internal business logic of ML model training leverages the current and historical relevant data, including those listed below to monitor the networks and/or services where relevant to the ML model, prepare the data, trigger and conduct the training:
-	Performance Measurements (PM) as per 3GPP TS 28.552 [4], 3GPP TS 32.425 [5] and Key Performance Indicators (KPIs) as per 3GPP TS 28.554 [6].
-	Trace/MDT/RLF/RCEF data, as per 3GPP TS 32.422 [7].
-	QoE and service experience data as per 3GPP TS 28.405 [9].
-	Analytics data offered by NWDAF as per 3GPP TS 23.288 [3].
-	Alarm information and notifications as per 3GPP TS 28.532 [11].
-	CM information and notifications.
-	MDA reports from MDA MnS producers as per 3GPP TS 28.104 [2].
-	Management data from non-3GPP systems.
-	Other data that can be used for training.

[bookmark: _Toc145421979][bookmark: _Toc145421213][bookmark: _Toc145334769][bookmark: _Toc163114530]4a.2	AI/ML functionalities management scenarios (relation with managed AI/ML features)
The ML training function and/or AI/ML inference function can be located in the RAN domain MnS consumer (e.g. cross-domain management system) or the domain-specific management system (i.e. a management function for RAN or CN), or Network Function.
For MDA, the ML training function can be located inside or outside of the MDAF. The AI/ML inference function is in the MDAF.
For NWDAF, the ML training function can be located in the MTLF of the NWDAF or the management system, the AI/ML inference function is in the NWDAFAnLF.
For RAN, the ML training function and AI/ML inference function can both be located in the gNB, or the ML training function can be located in the management system and AI/ML inference function is located in the gNB.
Therefore, there might exist several location scenarios for ML training function and AI/ML inference function.
Scenario 1:
The ML training function and AI/ML inference function are both located in the 3GPP management system (e.g. RAN domain management function). For instance, for RAN domain-specific MDA, the ML training function and AI/ML inference functions for MDA can be located in the RAN domain-specific MDAF. As depicted in figure 4a.2-1.

[image: A diagram of a network

Description automatically generated]
Figure 4a.2-1: Management for RAN domain analyticsspecific MDAF
Similarly, for CN domain-specific MDA the ML training function and AI/ML inference function can be located in CN domain-specific MDAF or in the cross-domain MDAF.

Scenario 2:
[bookmark: _Hlk150921284]For RAN AI/ML capabilities Tthe ML training function is located in the 3GPP RAN domain-specific management function while the AI/ML inference function is located in gNB. See figure 4a.2-2.
[image: A diagram of a computer

Description automatically generated]
Figure 4a.2-2: Management where the ML model training is located in RAN domain management function and AI/ML inference is located in gNB
Scenario 3:
The ML training function and AI/ML inference function are both located in the gNB. See figure 4a.2-3.
[image: A diagram of a function

Description automatically generated]
Figure 4a.2-3: Management where the ML model training and AI/ML inference are both located in gNB
Scenario 4:
For NWDAF, the ML training function and AI/ML inference function are both located in the NWDAF. See figure 4a.2-4.

Figure 4a.2-4: Management where the ML model training and AI/ML inference are both located in CN

[bookmark: _Toc163137413]5	Void
[bookmark: _Toc106015853][bookmark: _Toc106098491][bookmark: _Toc163137414]6	AI/ML management use cases and requirements
[bookmark: _Toc106015854][bookmark: _Toc106098492][bookmark: _Toc134614631][bookmark: _Toc134626378][bookmark: _Toc134632600][bookmark: _Toc134633525][bookmark: _Toc134633965][bookmark: _Toc163137416]6.1	ML model Lifecycle management capabilitiesGeneral
Each operational step in the ML model Lifecycle workflow (see clause 5.04a.0.1) is supported by one or more AI/ML management capabilities as listed depicted below for each of the operational phases.
Management capabilities for ML model training
[bookmark: _Hlk134804333][bookmark: _Hlk134737308]-	ML model training management: allowing the MnS consumer to request the ML model training, consume and control the producer-initiated training, and manage the ML model training/re-training process. The training management capability may include training performance management and setting a policy for the producer-initiated ML model training.
[bookmark: _Hlk134804500]-	ML validation: ML model training capability also includes validation to evaluate the performance of the ML entitymodel when performing on the validation data, and to identify the variance of the performance on the training and validation data. If the variance is not acceptable, the ML entitymodel would need to be tuned (re-trained) before being made available for the next step in the operational workflow (e.g., ML entitymodel testing).
Management capabilities for ML model testing
-	ML testingML model testing management: allowing the MnS consumer to request the ML entitymodel testing, and to receive the testing results for a trained ML entitymodel. It may also include capabilities for selecting the specific performance metrics to be used or reported by the ML testing function. MnS consumer may also be allowed to trigger ML model re-training based on the ML entitymodel testing performance requirementsresults.
Management capabilities for ML emulation phase:
· AI/ML inference emulation: a capability allowing an MnS consumer to request an ML inference emulation for a specific ML entitymodel or entitiesmodels (after the training, validation, and testing) to evaluate the inference performance in an emulation environment prior to applying it to the target network or system.
[bookmark: _Hlk143783189]Management capabilities for ML model entity deployment phase:
[bookmark: _Hlk143783118]-	ML entity loading management: allowing the MnS consumer to trigger, control and/or monitor the ML entitymodel loading process.
Management capabilities for AI/ML inference phase:
-	AI/ML inference management: allowing an MnS consumer to control the inference, i.e., activate/deactivate the inference function and/or ML entitymodel/entitiesmodels, configure the allowed ranges of the inference output parameters. The capabilities also allow the MnS consumer to monitor and evaluate the inference performance and when needed trigger an update of an ML entitymodel or an AI/ML inference function.
The use cases and corresponding requirements for AI/ML management capabilities are specified in the following clauses for each phase of the operational workflow.

[bookmark: _Hlk167759945]Next change
6.2	Void
6.2a	ML training phase
Void
6.2a.1	ML training
6.2a.1.1	Description
Before an ML entity is deployed to conduct inference, the ML model associated with the ML entity needs to be trained. The ML model training can be an initial training or the re-training of an already trained ML entity.
The ML model is trained by the ML training MnS producer, and the training can be triggered by request(s) from one or more ML training MnS consumer(s), or initiated by the ML training MnS producer (e.g., as a result of model performance evaluation).
6.2a.1.2	Use cases
6.2a.1.2.1	ML training requested by consumer

[image: A black background with green lines

Description automatically generated]

Figure 6.2a.1.2.1-1: ML training requested by ML training MnS consumer
The ML training may be triggered by the request(s) from one or more ML training MnS consumer(s). The consumer may be for example a network function, a management function, an operator, or another functional differentiation.
To trigger an initial ML training, the MnS consumer needs to specify in the ML training request the inference type which indicates the function or purpose of the ML entity, e.g. CoverageProblemAnalysis [see TS 28.104 [2]]. The ML training MnS producer can perform the initial training according to the designated inference type. To trigger an ML re-training, the MnS consumer needs to specify in the ML training request the identifier of the ML entity to be re-trained.
The consumer may provide the data source(s) that contain(s) the training data which are considered as inputs candidates for training. To obtain the valid training outcomes, consumers may also designate their requirements for model performance (e.g. accuracy, etc) in the training request.
The performance of the ML entity depends on the degree of commonality between the distribution of the data used for training and the distribution of the data used for inference. As time progresses, the distribution of the input data used for inference might change as compared to the distribution of the data used for training. In such a scenario, the performance of the ML entity degrades over time. The ML training MnS producer may re-train the ML model associated to the entity if the inference performance of the ML entity falls below a certain threshold, which needs to be configurable by the MnS consumer.
Following the ML training request by the M training MnS consumer, the ML training MnS producer provides a response to the consumer indicating whether the request was accepted.
If the request is accepted, the ML training MnS producer decides when to start the ML training with consideration of the request(s) from the consumer(s). Once the training is decided, the producer performs the following:
-	selects the training data, with consideration of the consumer provided candidate training data. Since the training data directly influences the algorithm and performance of the trained ML entity, the ML training MnS producer may examine the consumer's provided training data and decide to select none, some or all of them. In addition, the ML training MnS producer may select some other training data that are available;
-	trains the ML model using the selected training data;
- 	validate the trained model using validation set of the training data;
-	provides the training results (including the identifier of the ML entity generated from the initially trained ML model or the version number of the ML entity associated with the re-trained model, training performance results, etc.) to the ML training MnS consumer(s).
6.2a.1.2.2	ML training initiated by producer
The ML training may be initiated by the ML training MnS producer, for instance as a result of performance evaluation of the ML entity or based on feedback or new training data received from the consumer, or when new training data, which are not from the consumer, describing the new network status/events become available.
Therefore, there is a need to monitor the performance and/or the KPIs of the ML entity and use the thresholds that the ML training MnS consumer configured for the ML training MnS producer to trigger the training or re-training.
When the ML training MnS producer decides to start the ML training, the producer performs the followings:
-	selects the training data;
-	trains the ML model using the selected training data;
-	provides the training results (including the identifier of the ML entity generated from the initially trained ML model or the version number of the ML entity associated with the re-trained model, training performance, etc.) to the ML training MnS consumer(s) who have subscribed to receive the ML training results.
6.2a.1.2.3	ML entity selection
For a given machine learning-based use case, different entities that apply the respective ML model or AI/ML inference function may have different inference requirements and capabilities. For example, one consumer with specific responsibility wishes to have an AI/ML inference function supported by an ML model or entity trained for city central business district where mobile users move at speeds not exceeding 30 km/hr. On the other hand, another consumer, for the same use case may support a rural environment and as such wishes to have an ML model and AI/ML inference function fitting that type of environment. The different consumers need to know the available versions of ML entities, with the variants of trained ML models or entities and to select the appropriate one for their respective conditions.
Besides, there is no guarantee that the available ML models/entities have been trained according to the characteristics that the consumers expect. As such the consumers need to know the conditions for which the ML models or ML entities have been trained to then enable them to select the models that are best fit to their conditions and needs.
The models that have been trained may differ in terms of complexity and performance. For example, a generic comprehensive and complex model may have been trained in a cloud-like environment, but such a model cannot be used in the gNB and instead, a less complex model, trained as a derivative of this generic model, could be a better candidate. Moreover, multiple less complex models could be trained with different levels of complexity and performance which would then allow different relevant models to be delivered to different consumers depending on operating conditions and performance requirements. The consumers need to know the alternative models available and interactively request and replace them when needed and depending on the observed inferencerelated constraints and performance requirements.
6.2a.1.2.4	Managing ML training processes
This relates to the management and controlling of the ML training processes.
To achieve the desired outcomes of any machine learning relevant use-case or task, the ML model applied for such use case or task, needs to be trained with the appropriate data. The training may be undertaken in a managed function or in a management function.
In either case, the network management system not only needs to have the required training capabilities but needs to also have the means to manage the training process of the ML models. The consumers need to be able to interact with the training process, e.g., to suspend or restart the process; and also need to manage and control the requests related to such training process.
6.2a.1.2.5	Handling errors in data and ML decisions
Ideally, the ML models/entities (e.g., ML entity1 and ML entity2 in figure 6.2a.1.2.5-1) are trained on good quality data, i.e. data that was collected correctly and reflected the real network status to represent the expected context in which the ML entity is meant to operate. However, this is not always the case in real world as data cannot be completely error-free. Good quality data is void of errors, such as:
-	Imprecise measurements
-	Missing values or records
-	Records which are communicated with a significant delay (in case of online measurements).
Without errors, an ML entity can depend on a few precise inputs, and does not need to exploit the redundancy present in the training data. However, during inference, the ML entity is very likely to come across these inconsistencies. When this happens, the ML entity shows high error in the inference outputs, even if redundant and uncorrupted data are available from other sources.

Figure 6.2a.1.2.5-1: The propagation of erroneous information
As such, the training function should attempt to identify errors in the input data. If an entity has been trained on erroneous or inconsistent data, the consumer should be made aware of such.
6.2a.1.2.6	ML entity joint training
Each ML entity supports a specific type of inference. An AI/ML inference function may use one or more ML entities to perform the inference(s). When multiple ML entities are employed, these ML entities may operate together in a coordinated way, such as in a sequence, or even in a more complicated structure. In this case, any change in the performance of one ML entity may impact another, and consequently impact the overall performance of the whole AI/ML inference function.
There are different ways in which the group of ML entities may coordinate. An example is the case where the output of one ML entity can be used as input to another ML entity forming a sequence of interlinked ML entities. Another example is the case where multiple ML entities provide the output in parallel (either the same output type where outputs may be merged (e.g., using weights), or their outputs are needed in parallel as input to another ML entity. The group of ML entities needs to be employed in a coordinated way to support an AI/ML inference function.
Therefore, it is desirable that the ML models associated with these coordinated ML entities can be trained or re-trained jointly, so that the group of these ML entities can complete a more complex task jointly with better performance.
The ML entity joint training may be initiated by the ML training MnS producer or the ML training MnS consumer, with the grouping of the ML entities shared by the ML training MnS producer with the ML training MnS consumer.
6.2a.1.2.7	ML entity validation performance reporting
During the ML training process, the generated ML entity needs to be validated. The purpose of ML validation is to evaluate the performance of the ML entity when performing on the validation data, and to identify the variance of the performance on the training data and the validation data. The training data and validation data are of the same pattern as they normally split from the same data set with a certain ratio in terms of quantity of the data samples.
In the ML training, the ML entity is generated based on the learning from the training data and validated using the validation data. The performance of the ML entity has tight dependency on the data (i.e., training data) from which the ML entity is generated. Therefore, an ML entity performing well on the training data may not necessarily perform well on other data e.g., while conducting inference. If the performance of ML entity is not good enough according to the result of ML validation, the ML entity will be tuned (i.e., the model associated with it be re-trained) and validated again. The process of ML entity tuning and validation is repeated by the ML training function, until the performance of the ML entity meets the expectation on both training data and validation data. The MnS producer subsequently selects one or more ML entities with the best level of performance on both training data and validation data as the result of the ML training, and reports accordingly to the consumer. The performance of each selected ML entity on both training data and validation data also needs to be reported.
The performance result of the validation may also be impacted by the ratio of the training data and the validation data. MnS consumer needs to be aware of the ratio of training data and the validation data, coupled with the performance score on each data set, in order to be confident about the performance of ML entity.
6.2a.1.2.8	Training data effectiveness reporting
Training data effectiveness refers to the process of evaluating the contribution of a single data instance or a type of input training data (e.g., one measurement type among all types of input training data) to ML model training process.
To efficiently train a ML model, high quality and large volume of training data instances are considered essential. The open use of all available data can be costly, both in terms of data collection process and from a computational resources perspective since the data also contains the unnecessary data samples that are computed through the ML model. It is better that the training function evaluates the usefulness of different data samples and indicates that level of usefulness to the consumer so that the data used for re-training can be further enhanced/optimized.
The 3GPP management system needs to support means to report the extent of effectiveness of the different training data samples used in ML training based on insight of how the different portion of data contribute differently to the trained model accuracy.
6.2a.1.3	Requirements for ML training
Table 6.2a.1.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_TRAIN-FUN-01
	The ML training MnS producer shall have a capability allowing an authorized ML training MnS consumer to request ML training.
	ML training requested by consumer (clause 6.2a.1.2.1)

	REQ- ML_TRAIN-FUN-02
	The ML training MnS producer shall have a capability allowing the authorized ML training MnS consumer to specify the data sources containing the candidate training data for ML training.
	ML training requested by consumer (clause 6.2a.1.2.1)

	REQ- ML_TRAIN-FUN-03
	The ML training MnS producer shall have a capability allowing the authorized ML training MnS consumer to specify the AI/ML inference name of the ML entity to be trained.
	ML training requested by consumer (clause 6.2a.1.2.1)

	REQ- ML_TRAIN-FUN-04
	The ML training MnS producer shall have a capability to provide the training result to the ML training MnS consumer.
	ML training requested by consumer (clause 6.2a.1.2.1), ML training initiated by producer (clause 6.2a.1.2.2)

	REQ- ML_TRAIN-FUN-05
	The ML training MnS producer shall have a capability allowing an authorized ML training MnS consumer to configure the thresholds of the performance measurements and/or KPIs to trigger the re-training of an ML entity. (See Note)
	ML training initiated by producer (clause 6.2a.1.2.2)

	REQ- ML_TRAIN-FUN-06
	The ML training MnS producer shall have a capability to provide the version number of the ML entity when it is generated by ML re-training to the authorized ML training MnS consumer.
	ML training requested by consumer (clause 6.2a.1.2.1), /ML training initiated by producer (clause 6.2a.1.2.2)

	REQ- ML_TRAIN-FUN-07
	The ML training MnS producer shall have a capability allowing an authorized ML training MnS consumer to manage the training process, including starting, suspending, or resuming the training process, and configuring the ML context for ML training.
	ML training requested by consumer (clause 6.2a.1.2.1), ML training initiated by producer (clause 6.2a.1.2.2), ML entity joint training (clause 6.2a.1.2.6)

	REQ- ML_TRAIN-FUN-08
	The ML training MnS producer should have a capability to provide the grouping of ML entities to an authorized ML training MnS consumer to enable coordinated inference.
	ML entity joint training (clause 6.2a.1.2.6)

	REQ- ML_TRAIN-FUN-09
	The ML training MnS producer should have a capability to allow an authorized ML training MnS consumer to request joint training of a group of ML entities.
	ML entity joint training (clause 6.2a.1.2.6)

	REQ- ML_TRAIN-FUN-10
	The ML training MnS producer should have a capability to jointly train a group of ML entities and provide the training results to an authorized consumer.
	ML entity joint training (clause 6.2a.1.2.6)

	REQ-ML_SELECT-01
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer to discover the properties of available ML entities including the contexts under which each of the models associated with the ML entities were trained.
	ML model and ML entity selection (clause 6.2a.1.2.3)

	REQ-ML_SELECT-02
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer to select an ML entity to be used for inference.
	ML models and ML entity selection (clause 6.2a.1.2.3)

	REQ-ML_SELECT-03
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer to request for information and be informed about the available alternative ML entities of differing complexity and performance.
	ML model and ML entity selection (clause 6.2a.1.2.3)

	REQ-ML_SELECT-04
	The 3GPP management system shall have a capability to provide a selected ML entity to the authorized ML training MnS consumer.
	ML model and ML entity selection (clause 6.2a.1.2.3)

	REQ-ML_TRAIN- MGT-01
	The ML training MnS producer shall have a capability allowing an authorized consumer to manage and configure one or more requests for the specific ML training, e.g. to modify the request or to delete the request.
	ML training requested by consumer (clause 6.2a.2.1), Managing ML Training Processes (clause 6.2a.1.2.4)

	REQ-ML_TRAIN- MGT-02
	The ML training MnS producer shall have a capability allowing an authorized ML training MnS consumer to manage and configure one or more training processes, e.g. to start, suspend or restart the training.
	ML training requested by consumer (clause 6.2a.1.2.1),
Managing ML training processes (clause 6.2a.1.2.4)

	REQ-ML_TRAIN- MGT-03
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer (e.g. the function/entity different from the function that generated a request for ML training) to request for a report on the outcomes of a specific training instance.
	Managing ML training processes (clause 6.2a.1.2.4)

	REQ-ML_TRAIN- MGT-04
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer to define the reporting characteristics related to a specific training request or training instance.
	Managing ML training processes (clause 6.2a.1.2.4)

	REQ-ML_TRAIN- MGT-05
	3GPP management system shall have a capability to enable the ML training function to report to any authorized ML training MnS consumer about specific ML training process and/or report about the outcomes of any such ML training process.
	Managing ML training processes (clause 6.2a.1.2.4)

	REQ-ML_ERROR-01
	The 3GPP management system shall enable an authorized consumer of data services (e.g. an ML training function) to request from a producer of data services a Value Quality Score of the data, which is the numerical value that represents the dependability/quality of a given observation and measurement type.
	Handling errors in data and ML decisions (clause 6.2a.1.2.5)

	REQ-ML_ERROR-02
	The 3GPP management system shall enable an authorized consumer of AI/ML decisions (e.g. a controller) to request ML decision confidence score which is the numerical value that represents the dependability/quality of a given decision generated by an AI/ML inference function.
	Handling errors in data and ML decisions (clause 6.2a.1.2.5)

	REQ-ML_ERROR-03
	The 3GPP management system shall have a capability to enable an authorized consumer to provide to the ML Training MnS producer, a training data quality score, which is the numerical value that represents the dependability/quality of a given observation and measurement type..
	Handling errors in data and ML decisions (clause 6.2a.1.2.5)

	REQ-ML_ERROR-04
	The 3GPP management system shall enable a producer of ML decisions (e.g. an AI/ML inference function) to provide to an authorized consumer of ML decisions (e.g. a controller) an AI/ML decision confidence score which is the numerical value that represents the dependability/quality of a given decision generated by the AI/ML inference function.
	Handling errors in data and ML decisions (clause 6.2a.1.2.5)

	REQ-ML_VLD-01
	The ML training MnS producer should have a capability to validate the ML entities during the ML training process and report the performance of the ML entities on both the training data and validation data to the authorized consumer.
	ML entity validation performance reporting (clause 6.2a.1.2.7)

	REQ-ML_VLD-02
	The ML training MnS producer should have a capability to report the ratio (in terms of quantity of data samples) of the training data and validation data used during the ML training and validation process.
	ML entity validation performance reporting (clause 6.2a.1.2.7)

	REQ-TRAIN_EFF-01
	The 3GPP management system should have the capability to allow an authorized consumer to configure an ML training function to report the effectiveness of data used for model training.
	Training data effectiveness reporting (clause 6.2a.1.2.8)

	NOTE:	The performance measurements and KPIs are specific to each type (i.e., the inference type that the ML entity supports) of ML entity.

6.2a.2	Performance management for ML training and testing
6.2a.2.1	Description
In the ML model training , the performance of ML entity needs to be evaluated on training data and testing data. The performance is the degree to which the ML entities fulfil the objectives for which they were trained. The related performance indicators need to be collected and analyzed.
6.2a.2.2	Use cases
6.2a.2.2.1	Performance indicator selection for ML training and testing
The ML model training function may support training for a single or several ML models and may support the capability to evaluate each ML entity by one or more performance indicators.
The MnS consumer may prefer to use some performance indicator(s) over others to evaluate one kind of ML entity. The performance indicators for training mainly include the following aspects:ML training process monitors performance indicators: the performance indicators of the system that trains the ML entity, including training duration indicator.
-	ML training model performance indicators: performance indicators of the ML entity itself, including but not limited to:
-	Accuracy indicator,
-	Precision indicator,
-	Recall indicator,
-	F1 score indicator,
-	MSE (Mean Squared Error) indicator, and
-	MAE (Mean Absolute Error) indicator,
-	RMSE (Root Mean Square Error) indicator.
The MnS consumer may prefer to use some performance indicator(s) over others to evaluate one kind of ML entity. The performance indicators for testing mainly include the following aspects:
-	ML testing model performance indicators: performance indicators of the ML entity itself, including but not limited to:
-	Accuracy indicator,
-	Precision indicator,
-	Recall indicator,
-	F1 score indicator,
-	MSE (Mean Squared Error) indicator,
-	MAE (Mean Absolute Error) indicator, and
-	RMSE (Root Mean Square Error) indicator.
The MnS producer for ML training and testing needs to provide the name(s) of supported performance indicator(s) for the MnS consumer to query and select for ML entity performance evaluation. The MnS consumer may also need to provide the performance requirements of the ML entity using the selected performance indicators.
The MnS producer for ML training and testing uses the selected performance indicators for evaluating ML training and testing, and reports with the corresponding performance score in the ML training report or ML testing report when the training or testing is completed.
6.2a.2.2.2	ML entity performance indicators query and selection for ML training and testing
The ML entity performance evaluation and management is needed during training and testing. The related performance indicators need to be collected and analyzed. The MnS producer of ML training or testing should determine which indicators are needed, i.e., select some indicators based on the use case and use these indicators for performance evaluation.
The ML MnS consumer or testing may have different requests on AI/ML performance, depending on its use case and requirements, which may imply that different performance indicators may be relevant for performance evaluation. The MnS producer for ML training/testing can be queried to provide the information on supported performance indicators referring to ML training/testing. Such performance indicators in training phase may be for example accuracy/precision/recall/F1-score/MSE/MAE, and in test phase may be data drift in data statistics. Based on supported performance indicators in different phase as well as based on consumer’s requirements, the MnS consumer for ML training or ML testing may request a sub-set of supported performance indicators to be monitored and used for performance evaluation. Management capabilities are needed to enable the MnS consumer for ML training or ML testing to query the supported performance indicators and select a sub-set of performance indicators in training phase to be used for performance evaluation.
6.2a.2.2.3	MnS consumer policy-based selection of ML entity performance indicators for ML training and testing
ML entity performance evaluation and management is needed during ML training phase. The related performance indicators need to be collected and analysed. The MnS producer for ML training should determine which indicators are needed or may be reported, i.e., select some indicators based on the service and use these indicators for performance evaluation.
The MnS consumer for ML training or testing may have differentiated levels of interest in the different performance dimensions or metrics. Thus, depending on its use case, the AI/ML MnS consumer may indicate the preferred behaviour and performance requirement that needs to be considered during training or testing of/from the ML entity by the ML MnS producer for ML training or testing. These performance requirements need not indicate the technical performance indicators used for ML training, testing or inference, such as "accuracy" or "precision" or "recall" or "MSE" or "MAE" or “F1 score" etc. The ML MnS consumer for ML training or testing may not be capable enough to indicate the performance metrics to be used for training or testing.
6.2a.2.3	Requirements for ML training and testing performance management
Table 6.2a.2.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_TRAIN_PM-1
	The ML Training or Testing MnS producer should have a capability to allow an authorized consumer to get the capabilities about what kind of ML models the ML training function or ML testing function is able to train or test.
	Performance indicator selection for ML training (clause 6.2a.2.2.1)

	REQ-ML_TRAIN_PM-2
	The ML Training or Testing MnS producer should have a capability to allow an authorized consumer to query what performance indicators are supported by the ML training function or ML testing function for each ML entity.
	Performance indicator selection for ML training (clause 6.2a.2.2.1)

	REQ-ML_TRAIN_PM-3
	The ML Training or Testing MnS producer should have a capability to allow an authorized consumer to select the performance indicators from those supported by the ML training function or ML testing function for reporting the training or testing performance for each ML entity.
	Performance indicator selection for ML training (clause 6.2a.2.2.1)

	REQ-ML_TRAIN_PM-4
	The ML Training MnS producer should have a capability to allow an authorized consumer to provide the performance requirements for the ML model training using the selected the performance indicators from those supported by the ML training function.
	Performance indicator selection for ML training (clause 6.2a.2.2.1)

6.2a.3	ML testing
6.2a.3.1	Description
During ML training phase, after the training and validation, the ML entity needs to be tested to evaluate the performance of the ML entity when it conducts inference using the testing data.
If the testing performance is not acceptable or does not meet the pre-defined requirements, the consumer may request the ML training producer to re-train the ML model with specific training data and/or performance requirements.
6.2a.3.2	Use cases
6.2a.3.2.1	Consumer-requested ML entity testing
After receiving an ML training report about a trained ML entity from the ML training MnS producer, the consumer may request the ML testing MnS producer to test the ML entity before applying it to the target inference function.
The ML testing is to conduct inference on the tested ML entity using the testing data as inference inputs and produce the inference output for each testing dataset example.
The ML testing MnS producer may be the same as or different from the ML training MnS producer.
After completing the ML testing, the ML testing MnS producer provides the testing report indicating the success or failure of the ML testing to the consumer. For a successful ML testing, the testing report contains the testing results, i.e., the inference output for each testing dataset example.

6.2a.3.2.2	Producer-initiated ML entity testing
The ML entity testing may also be initiated by the MnS producer, after the ML entity is trained and validated. A consumer (e.g., an operator) may still need to define the policies (e.g., allowed time window, maximum number of testing iterations, etc.) for the testing of a given ML entity. The consumer may pre-define performance requirements for the ML entity testing and allow the MnS producer to decide on whether re-training/validation need to be triggered. Re-training may be triggered by the testing MnS producer itself based on the performance requirements supplied by the MnS consumer.
6.2a.3.2.3	Joint testing of multiple ML entities
A group of ML entities may work in a coordinated manner for complex use cases..
The group of ML entities is generated by the ML training function. The group, including all contained ML entities, needs to be tested. After the ML testing of the group, the MnS producer provides the testing results to the consumer.
NOTE:	This use case is about the ML entities testing during the training phase and is irrelevant to the testing cases that the ML entities have been deployed.
6.2a.3.3	Requirements for ML testing
	Table 6.2a.3.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_TEST-1
	The ML testing MnS producer shall have a capability to allow an authorized consumer to request the testing of a specific ML entity.
	Consumer-requested ML entity testing (clause 6.2a.3.2.1)

	REQ-ML_TEST-2
	The ML testing MnS producer shall have a capability to trigger the testing of an ML entity and allow the MnS consumer to set the policy for the testing.
	Producer-initiated ML entity testing (6.2a.3.2.2)

	REQ-ML_TEST-3
	The ML testing MnS producer shall have a capability to report the performance of the ML entity when it performs inference on the testing data.
	Consumer-requested ML entity testing (clause 6.2a.3.2.1), and
producer-triggered ML entity testing (clause 6.2a.3.2.2)

	REQ-ML_TEST-4
	The ML testing MnS producer shall have a capability allowing an authorized consumer to request the testing of a group of ML entities.
	Joint testing of multiple ML entities (clause 6.2a.3.2.3)

[bookmark: _Toc163137417]6.2xa	ML trainingML model training phase
[bookmark: _Toc163137418]6.2a.1	ML training
[bookmark: _Toc163137419]6.2xa.1.1	Description
Before an ML entity model is deployed to conduct inference, the ML model algoritm associated with the ML entity model needs to be trained. The ML model training can be an initial training or the re-training of an already trained ML modelentity.
The ML model is trained by the ML training MnS producer, and the training can be triggered by request(s) from one or more ML training MnS consumer(s), or initiated by the ML training MnS producer (e.g., as a result of model performance evaluation).
[bookmark: _Toc163137420]6.2xa.1.2	Use cases
6.2x.2.1	ML model training requested by consumer
The ML training capabilities are provided by an MLT MnS producer to one or more consumer(s).

[image: A black background with green lines

Description automatically generated][image: A black background with green lines

Description automatically generated]
Figure 6.2ax.1.2.1-1: ML model training requested by ML training MnS consumer
The ML model training may be triggered by the request(s) from one or more ML training MnS consumer(s). The consumer may be for example a network function, a management function, an operator, or another functional differentiation. Figure 6.2a.1.2.1-1 highlights the high-level overview of the process and the relevant sequence.
To trigger an initial ML model training, the MnS consumer needs to specify in the ML training request the inference type which indicates the function or purpose of the ML entitymodel, e.g. CoverageProblemAnalysis [see TS 28.104 [2]]. The ML training MnS producer can perform the initial training according to the designated inference type. To trigger an ML model re-training, the MnS consumer needs to specify in the ML training request the identifier of the ML entitymodel to be re-trained.
The consumer may provide the data source(s) that contain(s) the training data which are considered as inputs candidates for training. To obtain the valid training outcomes, consumers may also designate their requirements for model performance (e.g. accuracy, etc) in the training request.
The performance of the ML entitymodel depends on the degree of commonality between the distribution of the data used for training and the distribution of the data used for inference. As time progresses, the distribution of the input data used for inference might change as compared to the distribution of the data used for training. In such a scenario, the performance of the ML entity model degrades over time. The ML training MnS producer may re-train the ML model associated to the entity if the inference performance of the ML entitymodel falls below a certain threshold, which needs to be configurable by the MnS consumer.
Following the ML training request by the ML training MnS consumer, the ML training MnS producer provides a response to the consumer indicating whether the request was accepted.
If the request is accepted, the ML training MnS producer decides when to start the ML model training with consideration of the request(s) from the consumer(s). Once the training is decided, the producer performs the following:
-	selects the training data, with consideration of the consumer provided candidate training data. Since the training data directly influences the algorithm and performance of the trained ML entitymodel, the ML training MnS producer may examine the consumer's provided training data and decide to select none, some or all of them. In addition, the ML training MnS producer may select some other training data that are available;
-	trains the ML model using the selected training data;
- 	validate the trained model using validation set of the training data;
-	provides the training results (including the identifier of the ML entitymodel generated from the initially trained ML model or the version number of the ML entitymodel associated with the re-trained model, training performance results, etc.) to the ML training MnS consumer(s).
[bookmark: _Toc163137422]6.2xa.1.2.2	ML model training initiated by producer
The ML model training training or may be initiated by the ML training MnS producer, for instance as a result of performance evaluation of the ML entity model or based on feedback or new training data received from the consumer, or when new training data, which are not from the consumer, describing the new network status/events become available.
Therefore, there is a need to monitor the performance and/or the KPIs of the ML modelentity and use the thresholds that the ML training MnS consumer configured for the ML training MnS producer to trigger the training or re-training.
When the ML training MnS producer decides to start the ML model training, the producer performs the followings:
-	selects the training data;
-	trains the ML model using the selected training data;
-	provides the training results (including the identifier of the ML entitymodel generated from the initially trained ML model or the version number of the ML entitymodel associated with the re-trained model, training performance, etc.) to the ML training MnS consumer(s) who have subscribed to receive the ML model training results.
[bookmark: _Toc163137423]6.2xa.1.2.3	ML entitymodel selection
For a given machine learning-based use case, different entities that apply the respective ML model or AI/ML inference function may have different inference requirements and capabilities. For example, one consumer with specific responsibility wishes to have an AI/ML inference function supported by an ML model or entity trained for city central business district where mobile users move at speeds not exceeding 30 km/hr. On the other hand, another consumer, for the same use case may support a rural environment and as such wishes to have an ML model and AI/ML inference function fitting that type of environment. The different consumers need to know the available versions of ML modelentities, with the variants of trained ML models or entities and to select the appropriate one for their respective conditions.
Besides, there is no guarantee that the available ML models/entities have been trained according to the characteristics that the consumers expect. As such the consumers need to know the conditions for which the ML models or ML entities have been trained to then enable them to select the models that are best fit to their conditions and needs.
The models that have been trained may differ in terms of complexity and performance. For example, a generic comprehensive and complex model may have been trained in a cloud-like environment, but such a model cannot be used in the gNB and instead, a less complex model, trained as a derivative of this generic model, could be a better candidate. Moreover, multiple less complex models could be trained with different levels of complexity and performance which would then allow different relevant models to be delivered to different consumers depending on operating conditions and performance requirements. The consumers need to know the alternative models available and interactively request and replace them when needed and depending on the observed inferencerelated constraints and performance requirements.
[bookmark: _Toc163137424]6.2xa.1.2.4	Managing ML model training processes
This relates to the management and controlling of the ML model training processes.
To achieve the desired outcomes of any machine learning relevant use-case or task, the ML model applied for such use case or task, needs to be trained with the appropriate data. The training may be undertaken in a managed function or in a management function.
In either case, the network management system not only needs to have the required training capabilities but needs to also have the means to manage the training process of the ML models. The consumers need to be able to interact with the training process, e.g., to suspend or restart the process; and also need to manage and control the requests related to such training process.
[bookmark: _Toc163137425]6.2xa.1.2.5	Handling errors in data and ML decisions
Ideally, the ML models/entities (e.g., ML entity1 and ML entity2 in figure 6.2a.1.2.5-1) are trained on good quality data, i.e. data that was collected correctly and reflected the real network status to represent the expected context in which the ML entitymodel is meant to operate. However, this is not always the case in real world as data cannot be completely error-free. Good quality data is void of errors, such as:
-	Imprecise measurements
-	Missing values or records
-	Records which are communicated with a significant delay (in case of online measurements).
Without errors, an ML entitymodel can depend on a few precise inputs, and does not need to exploit the redundancy present in the training data. However, during inference, the ML entitymodel is very likely to come across these inconsistencies. When this happens, the ML entitymodel shows high error in the inference outputs, even if redundant and uncorrupted data are available from other sources.

[image:]
Figure 6.2xa.1.2.5-1: The propagation of erroneous information
As such, the training function should attempt to identify errors in the input data. If an entitymodel has been trained on erroneous or inconsistent data, the consumer should be made aware of such.
[bookmark: _Toc163137426]6.2xa.1.2.6	ML entitymodel joint training
Each ML entitymodel supports a specific type of inference. An AI/ML inference function may use one or more ML modelsentities to perform the inference(s). When multiple ML modelsentities are employed, these ML modelsentities may operate together in a coordinated way, such as in a sequence, or even in a more complicated structure. In this case, any change in the performance of one ML entitymodel may impact another, and consequently impact the overall performance of the whole AI/ML inference function.
There are different ways in which the group of ML modelsentities may coordinate. An example is the case where the output of one ML entitymodel can be used as input to another ML entitymodel forming a sequence of interlinked ML modelsentities. Another example is the case where multiple ML modelsentities provide the output in parallel (either the same output type where outputs may be merged (e.g., using weights), or their outputs are needed in parallel as input to another ML entitymodel. The group of ML modelsentities needs to be employed in a coordinated way to support an AI/ML inference function.
Therefore, it is desirable that the ML models associated with these coordinated ML entities can be trained or re-trained jointly, so that the group of these ML entities models can complete a more complex task jointly with better performance.
The ML entitymodel joint training may be initiated by the ML training MnS producer or the ML training MnS consumer, with the grouping of the ML entities models shared by the ML training MnS producer with the ML training MnS consumer.
[bookmark: _Toc163137427]6.2xa.1.2.7	ML entitymodel validation performance reporting
During the ML model training process, the generated ML entitymodel needs to be validated. The purpose of ML validation is to evaluate the performance of the ML entitymodel when performing on the validation data, and to identify the variance of the performance on the training data and the validation data. The training data and validation data are of the same pattern as they normally split from the same data set with a certain ratio in terms of quantity of the data samples.
In the ML model training, the ML entitymodel is generated based on the learning from the training data and validated using the validation data. The performance of the ML entitymodel has tight dependency on the data (i.e., training data) from which the ML entitymodel is generated. Therefore, an ML entitymodel performing well on the training data may not necessarily perform well on other data e.g., while conducting inference. If the performance of ML entitymodel is not good enough according to the result of ML validation, the ML entitymodel will be tuned (i.e., the model associated with it be re-trained) and validated again. The process of ML entitymodel tuning and validation is repeated by the ML model training function, until the performance of the ML entitymodel meets the expectation on both training data and validation data. The MnS producer subsequently selects one or more ML entities models with the best level of performance on both training data and validation data as the result of the ML model training, and reports accordingly to the consumer. The performance of each selected ML entitymodel on both training data and validation data also needs to be reported.
The performance result of the validation may also be impacted by the ratio of the training data and the validation data. MnS consumer needs to be aware of the ratio of training data and the validation data, coupled with the performance score on each data set, in order to be confident about the performance of ML entitymodel.
[bookmark: _Toc163137428]6.2xa.1.2.8	Training data effectiveness reporting
Training data effectiveness refers to the process of evaluating the contribution of a single data instance or a type of input training data (e.g., one measurement type among all types of input training data) to ML model training process.
To efficiently train a ML model, high quality and large volume of training data instances are considered essential. The open use of all available data can be costly, both in terms of data collection process and from a computational resources perspective since the data also contains the unnecessary data samples that are computed through the ML model. It is better that the training function evaluates the usefulness of different data samples and indicates that level of usefulness to the consumer so that the data used for re-training can be further enhanced/optimized.
The 3GPP management system needs to support means to report the extent of effectiveness of the different training data samples used in ML model training based on insight of how the different portion of data contribute differently to the trained model accuracy.
6.2x.2.9	Performance management for ML model training
6.2x.2.9.1	Overview
In the ML model training, the performance of ML model needs to be evaluated on training data. The performance is the degree to which the ML models fulfil the objectives for which they were trained. The related performance indicators need to be collected and analyzed.
6.2x.2.9.2	Performance indicator selection for MLmodel training
The ML model training function may support training for a single or several ML model algorithm and may support the capability to evaluate each ML model by one or more performance indicators.
The MnS consumer may prefer to use some performance indicator(s) over others to evaluate one kind of ML model. The performance indicators for training mainly include the following aspects:ML model training process monitors performance indicators: the performance indicators of the system that trains the ML model, including training duration indicator.
-	ML model training model performance indicators: performance indicators of the ML model itself, including but not limited to:
-	Accuracy indicator,
-	Precision indicator,
-	Recall indicator,
-	F1 score indicator,
-	MSE (Mean Squared Error) indicator, and
-	MAE (Mean Absolute Error) indicator,
-	RMSE (Root Mean Square Error) indicator.
The MnS producer for ML model training needs to provide the name(s) of supported performance indicator(s) for the MnS consumer to query and select for ML model performance evaluation. The MnS consumer may also need to provide the performance requirements of the ML model using the selected performance indicators.
The MnS producer for ML model training uses the selected performance indicators for evaluating ML model training, and reports with the corresponding performance score in the ML model training report when the training is completed.
6.2x.2.9.3	ML model performance indicators query and selection for ML
ML model performance evaluation and management are needed during training. The related performance indicators need to be collected and analyzed. The MnS producer of ML model training should determine which indicators are needed, i.e., select some indicators based on the use case and use these indicators for performance evaluation.
The ML MnS consumer may have different requests on AI/ML performance, depending on its use case and requirements, which may imply that different performance indicators may be relevant for performance evaluation. The MnS producer for ML model training can be queried to provide the information on supported performance indicators referring to ML model training. Such performance indicators for training may be for example accuracy/precision/recall/F1-score/MSE/MAE. Based on supported performance indicators as well as based on consumer’s requirements, the MnS consumer for ML model training may request a sub-set of supported performance indicators to be monitored and used for performance evaluation. Management capabilities are needed to enable the MnS consumer for ML model training or to query the supported performance indicators and select a sub-set of performance indicators to be used for performance evaluation.
6.2x.2.9.4	MnS consumer policy-based selection of ML model performance indicators for ML model training
ML model performance evaluation and management is needed during ML model training. The related performance indicators need to be collected and analysed. The MnS producer for ML model training should determine which indicators are needed or may be reported, i.e., select some indicators based on the service and use these indicators for performance evaluation.
The MnS consumer for ML model training may have differentiated levels of interest in the different performance dimensions or metrics. Thus, depending on its use case, the AI/ML MnS consumer may indicate the preferred behaviour and performance requirement that needs to be considered during training by the MnS producer. These performance requirements do not need to indicate the technical performance indicators used for ML model training, testing or inference, such as "accuracy" or "precision" or "recall" or "MSE" or "MAE" or “F1 score" etc. The ML MnS consumer for ML model training may not be capable enough to indicate the performance metrics to be used for training.
[bookmark: _Toc163137429]6.2xa.1.3	Requirements for ML model training
Table 6.2a.1.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_TRAIN-FUN-01
	The ML training MnS producer shall have a capability allowing an authorized ML training MnS consumer to request ML model training.
	ML model training requested by consumer (clause 6.2xa.1.2.1)

	REQ- ML_TRAIN-FUN-02
	The ML training MnS producer shall have a capability allowing the authorized ML training MnS consumer to specify the data sources containing the candidate training data for ML model training.
	ML model training requested by consumer (clause 6.2xa.1.2.1)

	REQ- ML_TRAIN-FUN-03
	The ML training MnS producer shall have a capability allowing the authorized ML training MnS consumer to specify the AI/ML inference name type of the ML entitymodel to be trained.
	ML model training requested by consumer (clause 6.2xa.1.2.1)

	REQ- ML_TRAIN-FUN-04
	The ML training MnS producer shall have a capability to provide the training result to the ML training MnS consumer.
	ML model training requested by consumer (clause 6.2xa.1.2.1), ML model training initiated by producer (clause 6.2xa.1.2.2)

	REQ- ML_TRAIN-FUN-05
	The ML training MnS producer shall have a capability allowing an authorized ML training MnS consumer to configure the thresholds of the performance measurements and/or KPIs to trigger the re-training of an ML entitymodel. (See Note)
	ML model training initiated by producer (clause 6.2ax.1.2.2)

	REQ- ML_TRAIN-FUN-06
	The ML training MnS producer shall have a capability to provide the version number of the ML entitymodel and the time when it is generated by ML model re-training to the authorized ML training MnS consumer.
	ML model training requested by consumer (clause 6.2xa.1.2.1), /ML model training initiated by producer (clause 6.2xa.1.2.2)

	REQ- ML_TRAIN-FUN-07
	The ML training MnS producer shall have a capability allowing an authorized ML training MnS consumer to manage the training process, including starting, suspending, or resuming the training process, and configuring the ML context for ML model training.
	ML model training requested by consumer (clause 6.2xa.1.2.1), ML model training initiated by producer (clause 6.2xa.1.2.2), ML entitymodel joint training (clause 6.2xa.1.2.6)

	REQ- ML_TRAIN-FUN-08
	The ML training MnS producer should have a capability to provide the grouping of ML entitiesmodels to an authorized ML training MnS consumer to enable coordinated inference.
	ML entitymodel joint training (clause 6.2a.1.2.6)

	REQ- ML_TRAIN-FUN-09
	The ML training MnS producer should have a capability to allow an authorized ML training MnS consumer to request joint training of a group of ML entitiesmodels.
	ML entitymodel joint training (clause 6.2xa.1.2.6)

	REQ- ML_TRAIN-FUN-10
	The ML training MnS producer should have a capability to jointly train a group of ML entitiesmodels and provide the training results to an authorized consumer.
	ML entitymodel joint training (clause 6.2xa.1.2.6)

	REQ-ML_SELECT-01
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer to discover the properties of available ML entitiesmodels including the contexts under which each of the models associated with the ML entities were trained.
	ML model and ML entitymodel selection (clause 6.2xa.1.2.3)

	REQ-ML_SELECT-02
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer to select an ML entitymodel to be used for inference.
	ML models and ML entitymodel selection (clause 6.2xa.1.2.3)

	REQ-ML_SELECT-03
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer to request for information and be informed about the available alternative ML entitiesmodels of differing complexity and performance.
	ML model and ML entitymodel selection (clause 6.2xa.1.2.3)

	REQ-ML_SELECT-04
	The 3GPP management system shall have a capability to provide a selected ML entitymodel to the authorized ML training MnS consumer.
	ML model and ML entitymodel selection (clause 6.2xa.1.2.3)

	REQ-ML_TRAIN- MGT-01
	The ML training MnS producer shall have a capability allowing an authorized consumer to manage and configure one or more requests for the specific ML model training, e.g. to modify the request or to delete the request.
	ML model training requested by consumer (clause 6.2xa.2.1), Managing ML model Training Processes (clause 6.2xa.1.2.4)

	REQ-ML_TRAIN- MGT-02
	The ML training MnS producer shall have a capability allowing an authorized ML training MnS consumer to manage and configure one or more training processes, e.g. to start, suspend or restart the training.
	ML model training requested by consumer (clause 6.2xa.1.2.1),
Managing ML model training processes (clause 6.2xa.1.2.4)

	REQ-ML_TRAIN- MGT-03
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer (e.g. the function/entitymodel different from the function that generated a request for ML model training) to request for a report on the outcomes of a specific training instance.
	Managing ML model training processes (clause 6.2xa.1.2.4)

	REQ-ML_TRAIN- MGT-04
	3GPP management system shall have a capability to enable an authorized ML training MnS consumer to define the reporting characteristics related to a specific training request or training instance.
	Managing ML model training processes (clause 6.2xa.1.2.4)

	REQ-ML_TRAIN- MGT-05
	3GPP management system shall have a capability to enable the ML training function to report to any authorized ML training MnS consumer about specific ML model training process and/or report about the outcomes of any such ML model training process.
	Managing ML model training processes (clause 6.2xa.1.2.4)

	REQ-ML_ERROR-01
	The 3GPP management system shall enable an authorized consumer of data services (e.g. an ML training function) to request from a producer of data services a Value Quality Score of the data, which is the numerical value that represents the dependability/quality of a given observation and measurement type.
	Handling errors in data and ML decisions (clause 6.2xa.1.2.5)

	REQ-ML_ERROR-02
	The 3GPP management system shall enable an authorized consumer of AI/ML decisions (e.g. a controller) to request ML decision confidence score which is the numerical value that represents the dependability/quality of a given decision generated by an AI/ML inference function.
	Handling errors in data and ML decisions (clause 6.2xa.1.2.5)

	REQ-ML_ERROR-03
	The 3GPP management system shall have a capability to enable an authorized consumer to provide to the ML Training MnS producer, a training data quality score, which is the numerical value that represents the dependability/quality of a given observation and measurement type.The 3GPP management system shall enable a producer of data services (e.g. a gNB) to provide to an authorized consumer (e.g. an ML training function) a Value Quality Score of the data, which is the numerical value that represents the dependability/quality of a given observation and measurement type.
	Handling errors in data and ML decisions (clause 6.2xa.1.2.5)

	REQ-ML_ERROR-04
	The 3GPP management system shall enable a producer of ML decisions (e.g. an AI/ML inference function) to provide to an authorized consumer of ML decisions (e.g. a controller) an AI/ML decision confidence score which is the numerical value that represents the dependability/quality of a given decision generated by the AI/ML inference function.
	Handling errors in data and ML decisions (clause 6.2xa.1.2.5)

	REQ-ML_VLD-01
	The ML training MnS producer should have a capability to validate the ML entitiesmodels during the ML model training process and report the performance of the ML entitiesmodels on both the training data and validation data to the authorized consumer.
	ML entitymodel validation performance reporting (clause 6.2xa.1.2.7)

	REQ-ML_VLD-02
	The ML training MnS producer should have a capability to report the ratio (in terms of quantity of data samples) of the training data and validation data used during the ML model training and validation process.
	ML entitymodel validation performance reporting (clause 6.2xa.1.2.7)

	REQ-TRAIN_EFF-01
	The 3GPP management system should have the capability to allow an authorized consumer to configure an ML training function to report the effectiveness of data used for model training.
	Training data effectiveness reporting (clause 6.2xa.1.2.8)

	REQ-ML_TRAIN_PM-1
	The ML Training MnS producer should have a capability to allow an authorized consumer to get the capabilities about what kind of ML models the ML training function is able to train.
	Performance indicator selection for ML model training (clause 6.2x.2.9.2)

	REQ-ML_TRAIN_PM-2
	The ML Training MnS producer should have a capability to allow an authorized consumer to query what performance indicators are supported by the ML model training for each ML model.
	Performance indicator selection for ML model training (clause 6.2x.2.9.2)

	REQ-ML_TRAIN_PM-3
	The ML Training MnS producer should have a capability to allow an authorized consumer to select the performance indicators from those supported by the ML training function for reporting the training performance for each ML model.
	Performance indicator selection for ML model training (clause 6.2x.2.9.2)

	REQ-ML_TRAIN_PM-4
	The ML Training MnS producer should have a capability to allow an authorized consumer to provide the performance requirements for the ML model training using the selected the performance indicators from those supported by the ML training function.
	Performance indicator selection for ML model training (clause 6.2x.2.9.2)

	NOTE:	The performance measurements and KPIs are specific to each type (i.e., the inference type that the ML entitymodel supports) of ML entitymodel.

[bookmark: _Toc163137441]6.2a.3x	ML testingML model testing
6.2a.3x.1	Description
During ML training phase, Aafter the training and validation, the ML entitymodel needs to be tested to evaluate the performance of itthe ML entity when it conducts inference using the testing data. Testing may involve interaction with third parties (besides the developer of the ML training function), e.g., the operators may use the ML training function or third-party systems/functions that may rely on the inference results computed by the ML entity for testing.
If the testing performance is not acceptable or does not meet the pre-defined requirements, the consumer may request the ML training producer to re-train the ML model with specific training data and/or performance requirements.
6.2a.3x.2	Use cases
6.2a.3x.2.1	Consumer-requested ML entitymodel testing
After receiving an ML training report about a trained ML entitymodel from the ML training MnS producer, the consumer may request the ML testing MnS producer to test the ML entitymodel before applying it to the target inference function.
The ML testingML model testing is to conduct inference on the tested ML entitymodel using the testing data as inference inputs and produce the inference output for each testing dataset example.
The ML testing MnS producer may be the same as or different from the ML training MnS producer.
After completing the ML testingML model testing, the ML testing MnS producer provides the testing report indicating the success or failure of the ML testingML model testing to the consumer. For a successful ML testingML model testing, the testing report contains the testing results, i.e., the inference output for each testing dataset example.
The ML testing MnS producer needs to have the capabilities to provide the services needed to enable the consumer to request testing and receive results on the testing of an ML entity.
6.2a.3x.2.2	Producer-initiated ML entitymodel testing
The ML entitymodel testing may also be initiated by the MnS producer, after the ML entitymodel is trained and validated. A consumer (e.g., an operator) may still need to define the policies (e.g., allowed time window, maximum number of testing iterations, etc.) for the testing of a given ML entitymodel. The consumer may pre-define performance requirements for the ML entitymodel testing and allow the MnS producer to decide on whether ML model re-training/validation need to be triggered. ML model Rre-training may be triggered by the testing MnS producer itself based on the performance requirements supplied by the MnS consumer.
[bookmark: _Toc163137442]6.2a.3x.2.3	Joint testing of multiple ML modelsentities
A group of ML entities models may work in a coordinated manner for complex use cases.. In such cases an ML entity is just one step of the inference processes of an AI/ML inference function, with the inference outputs of an ML entity as the inputs to the next ML entity.
The group of ML modelsentities is generated by the ML training function. The group, including all contained ML modelsentities, needs to be tested. After the ML testingML model testing of the group, the MnS producer provides the testing results to the consumer.
NOTE:	This use case is about the ML modelsentities testing before deploymentduring the training phase and is irrelevant to the testing cases that the ML entities have been deployed.
6.3x.2.4	Performance management for ML model testing
6.3x.2.4.1	Overview
During ML model testing, the performance of ML model needs to be evaluated on testing data. The performance is the degree to which the ML models fulfil the objectives for which they were trained. The related performance indicators need to be collected and analyzed.
6.3x.2.4.2	Performance indicator selection for ML model testing
The ML model testing function may support testing for a single or several ML model algorithms and may support the capability to evaluate each ML model by one or more performance indicators.
The MnS consumer may prefer to use some performance indicator(s) over others to evaluate one kind of ML model. The performance indicators for testing mainly include the following aspects:
-	ML model testing performance indicators: performance indicators of the ML model itself, including but not limited to:
-	Accuracy indicator,
-	Precision indicator,
-	Recall indicator,
-	F1 score indicator,
-	MSE (Mean Squared Error) indicator,
-	MAE (Mean Absolute Error) indicator, and
-	RMSE (Root Mean Square Error) indicator.
In a similar way as for training, the MnS producer for ML model testing needs to provide the name(s) of supported performance indicator(s) for the MnS consumer to query and select for ML model performance evaluation. The MnS consumer may also need to provide the performance requirements of the ML model using the selected performance indicators.
The MnS producer for ML model testing uses the selected performance indicators for evaluating ML model testing, and reports with the corresponding performance score in the ML testing report when testing is completed.
6.3x.2.4.3	ML model performance indicators query and selection for ML model testing
In a similar way as for training, the MnS producer of ML model training or testing should determine which indicators are needed, i.e., select some indicators based on the use case and use these indicators for performance evaluation.The ML MnS consumer for ML model testing may have different requests on AI/ML performance, depending on its use case and requirements, which may imply that different performance indicators may be relevant for performance evaluation. The procedure is the same as described in 6.2x.2.9.3 for traing.
6.3x.2.4.4	MnS consumer policy-based selection of ML model performance indicators for ML model testing
In a similar way as for training, the MnS consumer for ML model testing may have differentiated levels of interest in the different performance dimensions or metrics. Thus, depending on its use case, the AI/ML MnS consumer may indicate the preferred behaviour and performance requirement that needs to be considered during testing Same description in 6.2x.2.9.4 applies for policy basaed selection of performance indiactors for testing.

[bookmark: _Toc163137443]6.2a.3x.3	Requirements for ML testingML model testing
	Table 6.2xa.3.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_TEST-1
	The ML testing MnS producer shall have a capability to allow an authorized consumer to request the testing of a specific ML entitymodel.
	Consumer-requested ML entitymodel testing (clause 6.2a.3x.2.1)

	REQ-ML_TEST-2
	The ML testing MnS producer shall have a capability to trigger the testing of an ML entitymodel and allow the MnS consumer to set the policy for the testing.
	Producer-initiated ML entitymodel testing (6.2a.3x.2.2)

	REQ-ML_TEST-3
	The ML testing MnS producer shall have a capability to report the performance of the ML entitymodel when it performs inference on the testing data.
	Consumer-requested ML entitymodel testing (clause 6.2a.3.2.1), and
producer-triggered ML entitymodel testing (clause 6.2a.3x.2.2)

	REQ-ML_TEST-4
	The ML testing MnS producer shall have a capability allowing an authorized consumer to request the testing of a group of ML entitiesmodels.
	Joint testing of multiple ML entities models (clause 6.2a.3x.2.3)

	REQ-ML_Test_PM-1
	The ML testing MnS producer should have a capability to allow an authorized consumer to get the capabilities about what kind of ML models the ML testing function is able to test.
	Performance indicator selection for ML model testing (clause 6.3x.2.4.2)

	REQ-ML_Test_PM-2
	The ML testing MnS producer should have a capability to allow an authorized consumer to query what performance indicators are supported by the ML testing function for each ML model.
	Performance indicator selection for ML model testing (clause 6.3x.2.4.2)

	REQ-ML_Test_PM-3
	The ML testing MnS producer should have a capability to allow an authorized consumer to select the performance indicators from those supported by the ML testing function for reporting the testing performance for each ML model.
	Performance indicator selection for ML tra (clause 6.3x.2.4.2)

[bookmark: _Toc134626397][bookmark: _Toc134632617][bookmark: _Toc134633545][bookmark: _Toc134633985][bookmark: _Toc163137444]
[bookmark: _Hlk166848571][bookmark: _Hlk166848594]Next change
[bookmark: _Toc163137493][bookmark: _Toc130201978][bookmark: _Toc106015868][bookmark: _Toc106098506]6.3	AI/ML emulation phase
[bookmark: _Toc163137445]6.3.1	Description
Before the ML entity model is applied in the production network, the MnS inference consumer may want to receive results of inference in one or more environments that emulate (to different extents) the expected inference characteristics, in a process that may be termed as Inference emulation. The Inference emulation phase enables this.
[bookmark: _Toc163137446][bookmark: _Toc129155944][bookmark: _Toc129030077][bookmark: _Toc129028547][bookmark: _Toc128685274]6.3.2	Use cases
[bookmark: _Toc163137447]6.3.2.1	AI/ML Inference emulation
After the ML entity model is validated and tested during development, the MnS consumer may wish to receive information from an inference emulation process that indicates if the ML entity model or the associated ML inference function is working correctly under certain runtime context.
The management system should have the capabilities enabling an MnS consumer:
-	request an inference emulation function to provide emulation reports; and
-	to receive the results from running inference through an AI/ML inference emulation environment available at the emulation MnS producer.
[bookmark: _Toc163137448]6.3.3	Requirements for Managing AI/ML Inference emulation
Table 6.3.3-1
	Requirement label
	Description
	Related use case(s)

	[bookmark: _Hlk135928502]REQ-AI/ML_EMUL-1:
	The MnS producer for AI/ML inference emulation should have a capability enabling an authorized MnS consumer to receive reporting about the ML inference emulation.
	AI/ML Inference emulation (clause 6.3.2.1)

	REQ-AI/ML_EMUL-2:
	The MnS producer for AI/ML inference emulation should have a capability enabling an authorized MnS consumer to request an inference emulation function to provide inference emulation reports on an ML entity model or inference Function.
	AI/ML Inference emulation (clause 6.3.2.1)

	Next change

[bookmark: _Toc163137449]6.4	ML entity model deployment phase
[bookmark: _Toc163137450]6.4.1	ML entity model loading
[bookmark: _Toc163137451]6.4.1.1	Description
[bookmark: OLE_LINK17][bookmark: OLE_LINK5][bookmark: OLE_LINK8]ML entitymodel loading refers to the process of making an ML entitymodel available for use in the inference function . After a trained ML entitymodel meets the performance criteria per the ML entitymodel testing and optionally ML emulation, the ML entitymodel could be loaded into the target inference function(s) in the system. The way for loading the ML entitymodel is not in scope of the present document.
[bookmark: _Toc163137452]6.4.1.2	Use cases
[bookmark: _Toc163137453]6.4.1.2.1	Consumer requested ML entitymodel loading
[bookmark: OLE_LINK47][bookmark: OLE_LINK44]After a trained ML entitymodel or the coordination group of ML entities models are tested and optionally emulated, if the performance of the ML entitymodel or the coordination group of ML entitiesmodels meet the MnS consumer’s requirements, the MnS consumer may request to load the one or more ML entitiesmodels to one or more target inference function(s) where the ML entitymodel will be used for conducting inference. Once the ML entitymodel loading request is accepted, the MnS consumer (e.g., operator) needs to know the progress of the loading and needs to be able to control (e.g., cancel, suspend, resume) the loading process. For a completed ML entitymodel loading, the ML entitymodel instance loaded to each target inference function needs to be manageable individually, for instance, to be activated/deactivated individually or concurrently.
[bookmark: _Toc163137454]6.4.1.2.2	Control of producer-initiated ML entitymodel loading
To enable more autonomous AI/ML operations, the MnS producer is allowed to load the ML entitymodel or the coordination group of ML entitiesmodels without the consumer’s specific request.
In this case, the consumer needs to be able to set the policy for the ML loading, to make sure that ML entitiesmodels loaded by the MnS producer meet the performance target. The policy could be, for example, the threshold of the testing performance of the ML entitiesmodels, the threshold of the inference performance of the existing ML model, the time schedule allowed for ML entitymodel loading, etc.
ML models are typically trained and tested to meet specific requirements for inference, addressing a specific use case or task. The network conditions may change regularly, for example, the gNB providing coverage for a specific location is scheduled to accommodate different load levels and/or patterns of services at different times of the day, or on different days in a week. One or more ML entitiesmodels may be loaded per the policy to adapt to a specific load/traffic pattern.
[bookmark: _Toc163137455][bookmark: _Hlk147870428]6.4.1.2.3	ML entitymodel registration
After multiple iterations, there could be a large number of ML entitiesmodels with different versions, deployment environments, performance levels, and functionalities. ML entitymodel registration refers to the process of recording, tracking, controlling those trained ML entitiesmodels enabling future retrieval, reproducibility, sharing and loading in the target inference functions across different environments. For example, the inference MnS consumer could recall the most applicable version dealing with a sudden changed deployment environment of the target inference function by tracking the registration information.
The ML training MnS producer should register the ML entitymodel along with its loading information, e.g., ML entitymodel metadata and relevant information (e.g., description, version, version date, target inference function, deployment environment, etc.).
[bookmark: _Toc163137456]6.4.1.3	Requirements for ML entitymodel loading
Table 6.4.1.3-1
	Requirement label
	Description
	Related use case(s)

	REQ- ML_LOAD-FUN-01
	The MnS producer for ML entitymodel loading shall have a capability allowing an authorized consumer to request to trigger loading of an ML entitymodel or a group of ML entities.
	Consumer requested ML entitymodel loading (clause 6.4.1.2.1)

	REQ- ML_LOAD-FUN-02
	The MnS producer for ML entitymodel loading shall have a capability allowing an authorized consumer to provide a policy for the MnS producer to trigger loading of an ML entitymodel or a group of ML entities.
	Producer-initiated ML entitymodel loading (clause 6.4.1.2.2)

	REQ- ML_LOAD-FUN-03
	The MnS producer for ML entitymodel loading shall be able to inform an authorized consumer about the progress of ML entitymodel loading.
	Consumer requested ML entitymodel loading (clause 6.4.1.2.1) and Producer-initiated ML entitymodel loading (clause 6.4.1.2.2)

	REQ- ML_LOAD-FUN-04
	The MnS producer for ML entitymodel loading shall have a capability allowing an authorized consumer to control the process of ML entitymodel loading.
	Consumer requested ML entitymodel loading (clause 6.4.1.2.1) and Producer-initiated ML entitymodel loading (clause 6.4.1.2.2)

	REQ- ML_REG-01
	The ML training MnS producer should have a capability to register an ML entitymodel to record the relevant information that may be used for loading.
	ML entitymodel registration (Clause 6.4.1.2.3)

	REQ- ML_REG-02
	The ML training MnS producer should have a capability to allow an authorized consumer (e.g., an AI/ML inference function) to acquire the registration information of ML entitiesmodels.
	ML entitymodel registration (Clause 6.4.1.2.3)

Next change

[bookmark: _Toc134633995][bookmark: _Toc163137457][bookmark: _Hlk165561159]6.5	AI/ML inference phase
[bookmark: _Toc163137458][bookmark: _Toc134633996]6.5.1	AI/ML inference performance management
[bookmark: _Toc163137459]6.5.1.1	Description
In theDuring AI/ML inference phase, the performance of the AI/ML inference function and ML entity model need to be evaluated against the MnS consumer's provided performance expectations/targets, to identify and timely fix any problem. Actions to fix any problem would be e.g., to trigger the ML model re-training, ML model testing, or re-deployment.
[bookmark: _Toc128685282][bookmark: _Toc129028555][bookmark: _Toc129030085][bookmark: _Toc129155952][bookmark: _Toc163137460]6.5.1.2	Use cases
[bookmark: _Toc128685283][bookmark: _Toc129028556][bookmark: _Toc129030086][bookmark: _Toc129155953][bookmark: _Toc163137461][bookmark: _Hlk134531308]6.5.1.2.1	AI/ML inference performance evaluation
In theDuring AI/ML inference phase, the AI/ML inference function (including e.g., MDAF, NWDAF or RAN functions) uses one or more ML entitiesmodels for inference to generate the AI/ML inference output. The performance of a running ML entity model may degrade over time due to changes in network state, which will affect the related network performance and service. Thus, it is necessary to evaluate performance of the ML entitymodel during the AI/ML inference process. If the inference output is executed, the network performance related to each AI/ML inference function also needs to be evaluated.
The consumer (e.g., a Network or Management function) may take some actions according to the AI/ML inference output provided by the AI/ML inference function. If the actions are taken accordingly, the network performance is expected to be optimized. Each AI/ML inference function has its specific focus and will impact the network performance from different perspectives.
The consumer may choose to not take any actions for various reasons, e.g., lacking confidence in the inference output, avoiding potential conflict with other actions or when no actions are needed or recommended at all according to the inference output.
For evaluating the performance of the AI/ML inference function and ML entitymodel, the MnS producer responsible for ML inference performance management needs to be able to get the inference output generated by each AI/ML inference function. Then, the MnS producer can evaluate the performance based on the inference output and related network measurements (i.e., the actual output).
Depending on the performance evaluation results, some actions (e.g., deactivate the running entitymodel, start retraining, change the running entitymodel with a new one, etc) can be taken to avoid generating the inaccurate inference output.
To monitor the performance in theduring AI/ML inference phase, the MnS producer responsible for AI/ML inference performance management can perform evaluation periodically. The performance evaluation period may be determined based on the network change speed. Besides, a consumer (e.g., an operator) may wish to control and manage the performance evaluation capability. For example, the operator may configure the performance evaluation period of a specified ML entitymodel.
[bookmark: _Toc128685285][bookmark: _Toc129028558][bookmark: _Toc129030088][bookmark: _Toc129155955][bookmark: _Toc163137462]6.5.1.2.2	AI/ML performance measurements selection based on MnS consumer policy
Evaluation and management of the performance of an ML entitymodel is needed during AI/ML inference phase. The related performance measurements need to be collected and analysed. The MnS producer for inference should determine which measurements are needed or may be reported, i.e., select some measurements based on the service and use these measurements for performance evaluation.
The MnS consumer for inference may have differentiated levels of interest in the different performance dimensions or metrics. Thus, depending on its use case, the MnS consumer may indicate the preferred behaviour and performance requirement that needs to be considered during inference from the ML entitymodel by the AI/ML inference MnS Producer. The AI/ML inference MnS consumer may not be capable enough to indicate the performance metrics. Instead, the AI/ML MnS consumer may indicate the requirement using a policy or guidance that reflects the preferred performance characteristics of the ML entitymodel. Based on the indicated policy/guidance, the AI/ML MnS producer may then deduce and apply the appropriate performance indicators for inference. Management capabilities are needed to enable the MnS consumer to indicate the behavioural and performance policy/guidance that may be translated by the MnS producer into one or more technical performance measurements during inference.
[bookmark: _Toc163137463]6.5.1.3	Requirements for AI/ML inference performance management
Table 6.5.1.3-1
	Requirement label
	Description
	Related use case(s)

	REQ- AI/ML_INF_PE-01
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to get the inference output provided by an AI/ML inference function (e.g., MDAF, NWDAF or RAN function).
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ- AI/ML_INF_PE-02
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to get the performance evaluation of an AI/ML inference output as measured by a defined set of performance metrics
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ- AI/ML_INF_PE-03
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to provide feedback about an AI/ML inference output expressing the degree to which the inference output meets the consumer's expectations.
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ- AI/ML_INF_PE-04
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to be informed about the executed actions that were triggered based on the inference output provided by an AI/ML inference function (e.g., MDAF, NWDAF or RAN function).
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ- AI/ML_INF_PE-05
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to obtain the performance data related to an ML entitymodel or an AI/ML inference function (e.g., MDAF, NWDAF or RAN function).
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ-AI/ML_PERF-SEL-1
	The ML training MnS producer shall have a capability allowing an authorized MnS consumer to discover supported AI/ML performance measurements related to AI/ML inference and select some of the desired measurements based on the MnS consumer’s requirements.
	AI/ML performance measurements selection based on MnS consumer policy (clause 6.5.1.2.2)

	REQ-AI/ML_PERF-POL-1
	The AI/ML MnS producer shall have a capability allowing the authorized MnS consumer to indicate a performance policy related to AI/ML inference phase.
	AI/ML performance measurements selection based on MnS consumer policy (clause 6.5.1.2.2)

[bookmark: _Toc163137464]6.5.2	AI/ML update control
[bookmark: _Toc120528538][bookmark: _Toc129028587][bookmark: _Toc129030117][bookmark: _Toc133417941][bookmark: _Toc133482989][bookmark: _Toc133484081][bookmark: _Toc163137465]6.5.2.1	Description
In many cases, network conditions change makes the capabilities of the ML entitymodel(s)/entities decay, or at least become inappropriate for the changed conditions. In such cases, the MnS consumer should still be enabled to trigger updates, e.g., when the consumer realizes that the insight or decisions generated by the function are no longer appropriate for the observed network states, when the consumer observes the inference performance of ML entitymodel(s)/entities is decreasing.
The MnS consumer may request the AI/ML iInference MnS producer to use an updated ML entitymodel(s)/entities for the inference with some specific performance requirements. This gives flexibility to the AI/ML inference MnS producer on how to address the requirements by for example getting ML entitymodel(s)/entities updated, which may be loading the already trained ML entitymodels/entities or may lead to requesting to train/re-train the ML entitymodel(s)/entities by utilizing the ML training MnS.
[bookmark: _Toc120528539][bookmark: _Toc129028588][bookmark: _Toc129030118][bookmark: _Toc133417942][bookmark: _Toc133482990][bookmark: _Toc133484082][bookmark: _Toc163137466]6.5.2.2	Use cases
[bookmark: _Toc129028589][bookmark: _Toc129030119][bookmark: _Toc133417943][bookmark: _Toc133482991][bookmark: _Toc133484083][bookmark: _Toc163137467]6.5.2.2.1	Availability of new capabilities or ML entitiesmodels
Depending on their configurations, AI/ML inference functions may learn new characteristics during their utilization, e.g., if they are configured to learn through reinforcement learning or if they are configured to download new versions of their constituent ML entitiesmodels. In such cases, the authorized consumer of AI/ML may wish to be informed by the AI/ML Inference MnS producer (e.g., the operator, a management function, or a network function) about their new capabilities.
[bookmark: _Toc129028590][bookmark: _Toc129030120][bookmark: _Toc133417944][bookmark: _Toc133482992][bookmark: _Toc133484084][bookmark: _Toc163137468]6.5.2.2.2	Triggering ML entitymodel update
[bookmark: _Hlk131480287]When the inference capabilities of AI/ML inference functions degenerate, the typical action may be to trigger ML model re-training of the constituent ML entitiesmodels. It is possible, however, that the AI/ML inference MnS producer only offers inference capabilities and is not equipped with capabilities to update, train/re-train its constituent ML entitiesmodels. Nevertheless, the authorized MnS consumer may still need to request for improvements in the capabilities of the AI/ML inference function. In such cases, the authorized MnS consumer may still wish to request for an improvement and may specify in its request e.g., a new version of the ML entitiesmodels, i.e., to have the ML entitiesmodels updated or re-trained. The corresponding internal actions taken by the AI/ML MnS inference producer may not be necessarily known by the consumer.
The AI/ML inference MnS consumer needs to request the AI/ML inference MnS producer to update its capabilities or its constituent ML entitiesmodels and the AI/ML MnS producer should respond accordingly. For example, the AI/ML inference MnS producer may download new software that supports the required updates, download from a remote server a file containing configurations and parameters to update one or more of its constituent ML entitiesmodels, or it may trigger one or more remote or local AI/ML-related processes (including ML model training/re-training, testing, etc.) needed to generate the required updates. Related notifications for update can be sent to the AI/ML inference MnS consumer to indicate the information of the update process, e.g., the update is finished successfully, the maximum time taken to complete the update is reached but the performance does not achieve the requirements, etc.
Besides, an AI/ML inference MnS consumer may wish to manage the update process(es), e.g., to define policies on how often the update may occur, suspend or restart the update or adjust the update conditions or characteristics, the requirements could include, e.g., the times when the update may be executed, the expected achievable performance for updating, the expected time taken to complete the update, etc.
[bookmark: _Toc163137469]6.5.2.3	Requirements for AIML update control
Table 6.5.2.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-AIML_UPDATE-1
	The AI/ML Inference MnS producer should have a capability to inform an authorized MnS consumer of the availability of AI/ML capabilities or ML entitiesmodels or versions thereof (e.g., as learned through a training process or as provided via a software update) and the readiness to update the AI/ML capabilities of the respective network function when triggered
	Availability of new capabilities or ML entitiesmodels (clause 6.5.2.2.1)

	REQ-AIML_UPDATE-2
	The AI/ML Inference MnS producer should have a capability to inform an authorized MnS consumer of the expected performance gain if/when the AI/ML capabilities or ML entitiesmodels of the respective network function are updated with/to the specific set of newly available AI/ML capabilities
	Availability of new capabilities or ML entitiesmodels (clause 6.5.2.2.1)

	REQ-AIML_UPDATE-3
	The AI/ML Inference MnS producer should have a capability to allow an authorized MnS consumer to request the AI/ML MnS producer to update its ML entitiesmodels using a specific version of newly available AI/ML capabilities or ML entitiesmodels or using AI/ML capabilities or ML entitiesmodels with requirements (e.g., the minimum achievable performance after updating, the maximum time taken to complete the update, etc)..
	Triggering ML entitymodel update (clause 6.5.2.2.2)

	REQ-AIML_UPDATE-4
	The AI/ML Inference MnS producer should have a capability for the AI/ML MnS producer to inform an authorized MnS consumer about of the process or outcomes related to any request for updating the AI/ML capabilities or ML entitiesmodels
	Triggering ML entitymodel update (clause 6.5.2.2.2)

	REQ-AIML_UPDATE-5
	The AI/ML Inference MnS producer should have a capability for the AI/ML MnS producer to inform an authorized MnS consumer about of the achieved performance gain following the update of the AI/ML capabilities of a network function with/to the specific newly available ML entitiesmodels or set of AI/ML capabilities
	Triggering ML entitymodel update (clause 6.5.2.2.2)

	REQ-AIML_UPDATE-6
	The AI/ML Inference MnS producer should have a capability for an authorized MnS consumer (e.g., an operator or the function/entitymodel that generated the request for updating the AI/ML capabilities) to manage the request and subsequent process, e.g. to suspend, re-activate or cancel the request or process; or to adjust the characteristics of the capability update; or to define how often the update may occur, suspend, restart or cancel the request or to further adjust the requirements of the update.
	Triggering ML entitymodel update (clause 6.5.2.2.2)

[bookmark: _Toc163137470]6.5.3	AI/ML inference capabilities management
[bookmark: _Toc163137471]6.5.3.1	Description
A network or management function that applies AI/ML to accomplish specific tasks may be considered to have one or more ML entitiesmodels, each having specific capabilities.
Different network functions, e.g., MDA Functions, may need to rely on existing AI/ML capabilities to accomplish the desired inference. However, the details of such ML-based solutions (i.e., which ML entitiesmodels are applied and how) for accomplishing those inference functionalities is not obvious. The management services are required to identify the capabilities of the involved ML entitiesmodels and to map those capabilities to the desired logic.
[bookmark: _Toc163137472]6.5.3.2	Use cases
[bookmark: _Toc163137473]6.5.3.2.1	Identifying capabilities of ML entitiesmodels
Network functions, especially network automation functions, may need to rely on capabilities of ML entitiesmodels that are not internal to those network functions to accomplish the desired automation (inference). For example, as stated in TS 28.104 [2], “An MDA Function may optionally be deployed as one or more AI/ML inference function(s) in which the relevant ML entitiesmodels are used for inference per the corresponding MDA.” Similarly, owing to the differences in the kinds and complexity of intents that need to be fulfilled, an intent fulfillment solution may need to employ the capabilities of existing AI/ML inference functions to fulfill the intents. In any such case, management services are required to identify the capabilities of those existing ML entitiesmodels that are employed by AI/ML inference functions.

Figure 6.5.3.2.1-1: Request and reporting on AI/ML inference capabilities
Figure 6.5.3.2.1-1 shows that the consumer may wish to obtain information about the available AI/ML inference capabilities to determine how to use them for the consumer's needs, e.g., for fulfillment of intent targets or other automation targets.
[bookmark: _Toc128685206][bookmark: _Toc129028465][bookmark: _Toc129029994][bookmark: _Toc129155862][bookmark: _Toc163137474]6.5.3.2.2	Mapping of the capabilities of ML entitiesmodels
Besides the discovery of the capabilities of ML entitiesmodels, services are needed for mapping the ML entitiesmodels and capabilities. In other words, instead of the consumer discovering specific capabilities, the consumer may want to know the ML entitiesmodels that can be used to achieve a certain outcome. For this, the producer should be able to inform the consumer of the set of available ML entitiesmodels that together achieve the consumer's automation needs.
In the case of intents for example, the complexity of the stated intents may significantly vary - from simple intents which may be fulfilled with a call to a single ML entitymodel to complex intents that may require an intricate orchestration of multiple ML entitiesmodels. For simple intents, it may be easy to map the execution logic to one or multiple ML entitiesmodels. For complex intents, it may be required to employ multiple ML entitiesmodels along with a corresponding functionality that manages their interrelated execution. The usage of the ML entitiesmodels requires the awareness of their capabilities and interrelations.
Moreover, given the complexity of the required mapping to the multiple ML entitiesmodels, services should be supported to provide the mapping of ML entitiesmodels and capabilities.
[bookmark: _Toc163137475]6.5.3.3	Requirements for AI/ML inference capabilities management
Table 6.5.3.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_CAP-01
	The AI/ML inference MnS Producer shall have a capability allowing an authorized MnS consumer to request the capabilities of existing ML entitiesmodels available within the AI/ML inference producer.
	Identifying capabilities of ML entitiesmodels (clause 6.5.3.2.1)

	REQ- ML_CAP-02
	The AI/ML inference MnS Producer shall have a capability to report to an authorized MnS consumer the capabilities of an ML entitymodel as a decision described as a triplet <object(s), parameters, metrics> with the entries respectively indicating: the object or object types for which the ML entitymodel can undertake optimization or control; the configuration parameters on the stated object or object types, which the ML entitymodel optimizes or controls to achieve the desired outcomes; and the network metrics which the ML entitymodel optimizes through its actions.
	Identifying capabilities of ML entitiesmodels (clause 6.5.3.2.1)

	REQ-ML_CAP-03
	The AI/ML inference MnS Producer shall have a capability to report to an authorized MnS consumer the capabilities of an ML entitymodel as an analysis described as a tuple <object(s), characteristics> with the entries respectively indicating: the object or object types for which the ML entitymodel can undertake analysis; and the network characteristics (related to the stated object or object types) for which the ML entitymodel produces analysis
	Identifying capabilities of ML entitiesmodels (clause 6.5.3.2.1)

	REQ-ML_CAP-04
	The AI/ML inference MnS Producer shall have a capability allowing an authorized MnS consumer to request a mapping of the consumer's inference targets to the capabilities of one or more ML entitiesmodels.
	Mapping of the capabilities of ML entitiesmodels (clause 6.5.3.2.2)

[bookmark: _Toc163137476]6.5.4	AI/ML inference capability configuration management
[bookmark: _Toc163137477]6.5.4.1	Description
The AI/ML inference function and the associated ML entitymodel may need to be managed and configured to conduct inference in the 5G system to align with the consumer´s expectation, e.g., to enable the AI/ML inference function to perform inference.
The MnS producer for AI/ML inference management needs to provide a capability for configuration of the AI/ML inference function.
[bookmark: _Toc163137478]6.5.4.2	Use cases
6.5.4.2.1	Managing NG-RAN AI/ML-based distributed Network Energy Saving
An NG-RAN AI/ML-based distributed Network Energy Saving Function may use one or more ML entitiesmodels or AI/ML Inference Functions to derive energy saving recommendations.

This NG-RAN AI/ML-based distributed Network Energy Saving capability needs to be managed. The MnS consumer may need to monitor the network performance and determines if activation or deactivation of an AI/ML Inference Functions related to an AI/ML-based Distributed Network Energy Saving function is required. The activation and deactivation actions for AI/ML Inference Functions related to an AI/ML-based Distributed Network Energy Saving conducted by the MnS producer may also be triggered by some defined policies provided by the consumer.

6.5.4.2.2	Managing NG-RAN AI/ML-based distributed Mobility Optimization
An AI/ML-based distributed Mobility Optimization Function may use one or more ML entitiesmodels or AI/ML Inference Functions to derive handover recommendations.

This NG-RAN AI/ML-based distributed Mobility Optimization may need to monitors the network performance and determines if activation or deactivation and AI/ML Inference Functions related to an AI/ML-based Distributed Mobility Optimization function is required. The activation and deactivation actions for AI/ML Inference Functions related to an AI/ML-based Distributed Mobility Optimization conducted by the MnS producer may also be triggered by some defined policies provided by the consumer.

6.5.4.2.3	Managing NG-RAN AI/ML-based distributed Load Balancing
An NG-RAN AI/ML-based distributed Load Balancing may use one or more ML entitiesmodels or AI/ML Inference Functions to derive load balancing recommendations.

This NG-RAN AI/ML-based distributed Load Balancing may need to monitor the network performance and determines if activation or deactivation an AI/ML Inference Function related to an AI/ML-based Distributed Load balancing function is needed.

6.5.4.3	Requirements for AI/ML inference management
Table 6.5.4.3-1
	Requirement label
	Description
	Related use case(s)

	REQ- AI/ML_INF-01
	3gpp management System of AI/ML-based distributed Network Energy Saving Function should enable an authorized MnS consumer to request to manage the Network Energy Saving inference capabilityML model and/or AI/ML Inference Function related to Distribuited Energy Saving functions.
	Managing AI/ML-based for NG-RAN distributed Network Energy Saving (clause 6.5.4.2.1)

	REQ- AI/ML_INF-02
	3gpp management System of AI/ML-based distributed Mobility Optimization should enable an authorized MnS consumer to request to manage the ML model and/or AI/ML Inference Function related to Distribuited Mobility Optimization functions.
	Managing AI/ML-based for NG-RAN distributed Mobility Optimization (clause 6.5.4.2.2)

	REQ- AI/ML_INF-03
	3gpp management System of AI/ML-based distributed Load Balancing Function should enable an authorized MnS consumer to request to manage ML model and/or AI/ML Inference Function related to Distribuited the Load Balancing functions.
	Managing AI/ML-based for NG-RAN distributed Load Balancing (clause 6.5.4.2.3)

	REQ-AIML_ INF_ACT-1
	The MnS producer for AI/ML inference management should have a capability allowing an authorized MnS consumer to activate and deactivate an ML inference function.
	Managing AI/ML-enabled for Distributed Network Energy Saving (clause 6.5.4.2.1)
Managing AI/ML-enabled for distributed Mobility Optimization (clause 6.5.4.2.2)
Managing AI/ML-enabled for distributed Load balancing (clause 6.5.4.2.3)

	REQ-AIML_ INF_ACT-2
	The MnS producer for AI/ML inference management should have a capability to allow an authorized MnS consumer to provide the policy for activating and deactivating inference function.
Note: The policies instructing the ML MnS producer on how or/and when to activate which ML capabilities.
	Managing AI/ML-enabled for Distributed Network Energy Saving (clause 6.5.4.2.1)
Managing AI/ML-enabled for distributed Mobility Optimization (clause 6.5.4.2.2)
Managing AI/ML-enabled for distributed Load balancing (clause 6.5.4.2.3)

[bookmark: _Toc163137483]6.5.5	Executing AI/ML Inference
[bookmark: _Toc163137484]6.5.5.1	Description
Different functionalities in the network or management domains may utilize AI/ML inference techniques to conduct their tasks under different contexts. Depending on the contexts, the outcome of the ML entitymodel at inference might be different. The history of such inference outcome and the corresponding context within which they were taken may be of interest to different consumers.
6.5.5.2		Use cases
6.5.5.2.1		AI/ML Inference History - tracking inferences and context
[bookmark: _Hlk165561036]For different automation requirements in specific network domain, management/automation functions (e.g., MDAS, SON) may apply ML functionality to make the appropriate inferences in different contexts. The context is the set of appropriate conditions under which the inference was made including network conditions, traffic characteristics, time of day, weather, and climate, etc. And depending on the contexts, the different inferences may have different outcomes. The inference history, which is the history of such inferences and the contexts within which they are taken, may be of interest to different consumers. The AI/ML inference history includes outputs recommendations and insights derived by the ML entitymodel and the contexts, e.g., network resources, time periods, traffic conditions, etc. under which those recommendations and insights were derived. .The inference history output should be reported by the MnS Producer to the MnS Consumer.
ML Inference History Control
MLModelEntity
Request ML Inference History
Report on ML Inference History
ML MnS Producer (provides Inference History)
MnS Consumer

Figure 6.5.5.2.1-1: Example use and control of AI/ML inference history request and reporting.
The inferences (may need to be tracked for future reference, e.g., to evaluate the appropriateness/effectiveness usefullness of the inference outcome for those contexts or to evaluate degradations in the ML entitymodel's performance. For this, the network not only needs to have the required inference capabilities but needs also to have the means to track and enable usage of the history of the inferences made by the ML entitymodel. The MnS producer, i.e., a specific AI/ML inference function should also provide the capability for AI/ML inference history Control, the means to control the process of compiling and reporting on AI/ML inference history.
6.5.5.3	Requirements for Executing AI/ML Inference
Table 6.5.5.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-AI/ML_INF-HIST-01
	The MnS producer for AI/ML inference management should have a capability allowing an. authorized consumer to request receive the inference history of a specific ML entitymodel.
	AI/ML Inference History - tracking inferences and context (clause 6.5.5.2.1)

	REQ-AI/ML-INF-HIST-02
	The MnS producer for AI/ML inference management should have a capability enabling an authorized consumer to define the reporting characteristics of historical inference outputs (e.g., reporting period) related to a specific instance of an ML modelinference history or the reporting thereof.
	AI/ML Inference History - tracking inferences and context (clause 6.5.5.2.1)

	Next change

7.2a	Common information model definitions for AI/ML management
[bookmark: _Toc163137494]7.2a.1	Class diagram
[bookmark: _Toc163137495]7.2a.1.1	Relationships
 INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET INCLUDEPICTURE "https://www.planttext.com/api/plantuml/png/ZP91Jm8n48Nl_HMJzM12iWH9z40C8H8r92B6FNWkkmDRQJkRwH1OVxsx44b1DDpQpllUl6ax2g9Priw22YlZAytQmTZg4391HfAwmYVoaabj4Jonq_PK-Q3prP9fxOinMMBuA8rW90gbBcXZ_18MseQuuiXJNZ8v1E4rgj8K20xT73diDxdXtAAwZXYzdM88UecP-KBet_OYGqy51gpWhgTKtcQ3gVQDj7ZqOgI6-_itfcszYpqS7ZGl-_8xLXIC4BV2YL-qqueXFvj_OYu_q35pkN9Cn8NnEzrpSrtLVwXIPq8bDmbqqXIIJd9m7JGkNZjieGkHNq6EFEBxEaT7vZ6d_XwpfLDEXv3qkzt8IIbFWc1n8K2BavUwskn-4JJjk7bIBm6aH9ZCnc6W00vgYwuf0d5xcAtdhoWRujNk07q1RGkbHiso-UHAVGC0" * MERGEFORMATINET
[image: PlantUML Diagram]

Figure 7.2a.1.1-1: Relations for common information models for AI/ML management
[bookmark: _Toc113634467][bookmark: _Toc163137496]7.2a.1.2	Inheritance
[image: PlantUML diagram]
[image: PlantUML Diagram]

Figure 7.2a.1.2-1: Inheritance Hierarchy for common information models for AI/ML management
[bookmark: _Toc113634468][bookmark: _Toc163137497][bookmark: _Hlk134605339]7.2a.2	Class definitions
[bookmark: _Toc163137498]7.2a.2.1	MLEntityMLModel
[bookmark: _Toc163137499]7.2a.2.1.1	Definition
This IOC represents the ML modelentity. ML model argorithm or ML entity model are not subjects for standardization. It is name-contained by MLModelRepository.
This MLModel instance can be created by the system (MnS producer) or pre-installed.
The MLEntity MLModel may contain 3 types of contexts - TrainingContext, ExpectedRunTimeContext and RunTimeContext which represent status and conditions of the MLEntityModel. These contexts are of mLContext <<dataType>>, see clauses 7.4.3 and 7.5.1 for details.
 It also contains a reference named retrainingEventsMonitorRef which is a pointer to ThresholdMnonitor MOI. This indicates the list of performance measurements and the corresponding thresholds that are monitored and used to identify the need for re-training by the MnS Producer. After the MLEntityModel MOI has been instantiated, the MnS Consumer can request MnS producer to instantiate a ThresholdMonitor MOI and update the reference in the MLEntityModel MOI that can be used by the MnS producer to decide on the re-training of the MLEntityModel. The MnS producer can be ML Training MnS producer or ML Inference MnS Producer.

[bookmark: _Toc163137500]7.2a.2.1.2	Attributes
Table 7.2a.2.1.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLEntityModelId
	M
	T
	F
	F
	T

	aIMLInferenceNameinferenceType
	M
	T
	F
	F
	T

	mLEntityModelVersion
	M
	T
	F
	F
	T

	expectedRunTimeContext
	M
	T
	T
	F
	T

	trainingContext
	CM
	T
	F
	F
	T

	runTimeContext
	O
	T
	F
	F
	T

	supportedPerformanceIndicators
	O
	T
	F
	F
	T

	mLCapabilitiesInfoList
	M
	T
	F
	F
	T

	Attribute related to role
	
	
	
	
	

	retrainingEventsMonitorRef
	O
	T
	T
	F
	T

	sourceTrainedMLEntityModelRef
	CM
	T
	F
	F
	T

[bookmark: _Toc163137501]7.2a.2.1.3	Attribute constraints
Table 7.2a.2.1.3-1
	Name
	Definition

	trainingContext Support Qualifier
	Condition: The trainingContext represents the status and conditions related to training and should be added when training is completed.

	sourceTrainedMLEntityModelRef Support Qualifier
	Condition: The MLEntityModel MOI containing this attribute represents an ML modelentity loaded to an inference function.

[bookmark: _Toc163137502]7.2a.2.1.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc163137503]7.2a.2.2	MLEntityModelRepository
[bookmark: _Toc163137504]7.2a.2.2.1	Definition
The IOC MLEntityModelRepository represents the repository that contains the ML modelsentities. It is name-contained by SubNetwork or ManagedElement.
This MLModelRepository instance can be created by the system (MnS producer) or pre-installed.
The MLEntityModelRepository MOI may contain one or more MLEntityModel(s).
[bookmark: _Toc163137505]7.2a.2.2.2	Attributes
Table 7.a.2.2.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	
	
	
	
	
	

	mlEntityRef
	M
	T
	F
	F
	F

[bookmark: _Toc163137506]7.2a.2.2.3	Attribute constraints
None.
[bookmark: _Toc163137507]7.2a.2.2.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc163137508]7.2a.2.3	MLEntityModelCoordinationGroup
[bookmark: _Toc163137509]7.2a.2.3.1	Definition
This IOC represents the group of ML entitiesmodels, which can be trained and tested jointly and used to perform inference in a coordinated way. It is name-contained by MLModelRepository.
This MLModelCoordinationGroup instance can be created by the system (MnS producer) or pre-installed.
One ML entitymodel may have dependencies on one or more of the other ML entities models of the same group.
One group is associated with at least two ML entitiesmodels.
[bookmark: _Toc163137510]7.2a.2.3.2	Attributes
Table 7.2a.2.3.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	
	
	
	
	
	

	Attribute related to role
	
	
	
	
	

	memberMLEntityModelRefList
	M
	T
	F
	F
	T

[bookmark: _Toc163137511]7.2a.2.3.3	Attribute constraints
None.
[bookmark: _Toc163137512]7.2a.2.3.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc163137513]7.3	Void

[bookmark: _Toc163137514][bookmark: _Hlk141431940]7.3a	Information model definitions for AI/ML operational phases
[bookmark: _Toc163137515]7.3a.1	Information model definitions for ML model Ttraining
[bookmark: _Toc163137516]7.3a.1.1	Class diagram
[bookmark: _Toc130201979][bookmark: _Toc163137517]7.3a.1.1.1	Relationships
This clause depicts the set of classes (e.g. IOCs) that encapsulates the information relevant to ML model training. For the UML semantics, see TS 32.156 [13].
[image: PlantUML Diagram]/*
[image:]
[image: PlantUML Diagram]
Figure 7.3a.1.1.1-1: NRM fragment for ML model training
[image: PlantUML diagram]

Figure 7.3a.1.1.1-2: NRM fragment for ML testing

[bookmark: _Toc130201980][bookmark: _Toc163137518]7.3a.1.1.2	Inheritance

Figure 7.3a.1.1.2-1: Inheritance Hierarchy for ML model training related NRMs

[image: PlantUML diagram]
Figure 7.3a.1.1.2-2: Inheritance Hierarchy for ML testing related NRMs
[bookmark: _Toc130201981][bookmark: _Toc163137519]7.3a.1.2	Class definitions
[bookmark: _Toc130201982][bookmark: _Toc163137520]7.3a.1.2.1	MLTrainingFunction
7.3a.1.2.1.1	Definition
The IOC MLTrainingFunction represents the entitymodel that undertakes ML model training. The MOI of MLTrainingFunction is also the container of the MLTrainingRequest, MLTrainingReport, MLTrainingProcess and ThresholdMonitor MOI(s).
This MLTrainingFunction instance can be created by the system (ML training MnS producer) or pre-installed.
The ThresholdMonitor contains the list of performance measurements and the corresponding thresholds that are monitored and used to identify the need for ML model re-training by the MnS Producer.
The entityML training function represented by MLTrainingFunction MOI supports training of one or more MLEntityModel(s).

[bookmark: _Toc130201984][bookmark: _Toc163137522]7.3a.1.2.1.2	Attributes
Table 7.3a.1.2.1.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	Attribute related to role
	
	
	
	
	

	mLEntityModelRepositoryRef
	M
	T
	F
	F
	T

[bookmark: _Toc130201985][bookmark: _Toc163137523]7.3a.1.2.1.3	Attribute constraints
None.
[bookmark: _Toc130201986][bookmark: _Toc163137524]7.3a.1.2.1.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc130201987][bookmark: _Toc163137525]7.3a.1.2.2	MLTrainingRequest
[bookmark: _Toc130201988][bookmark: _Toc163137526]7.3a.1.2.2.1	Definition
The IOC MLTrainingRequest represents the ML model training request that is created triggered by the ML training MnS consumer.
To trigger the ML model training process, ML training MnS consumer has to create MLTrainingRequest object instances on the ML training MnS producer.
The MLTrainingRequest MOI is contained under one MLTrainingFunction MOI.
The MLTrainingRequest MOI may represent the request for initial ML model training or re-training. For ML model re-training, the MLTrainingRequest is associated to one MLEntityModel for re-training a single ML entity, or associated to one MLEntityModelCoordinationGroup for re-training a group of coordinated ML entities.
The MLTrainingRequest may have a source to identify its origin, which may be used to prioritize the training resources for different sources. The sources may be for example the network functions, operator roles, or other functional differentiations.
Each MLTrainingRequest indicates the expectedRunTimeContext that describes the specific conditions for which the MLEntityModel should be trained.
In case the request is accepted, the ML training MnS producer decides when to start the ML trainingML model training based on consumer requirements. Once the MnS producer decides to start the training based on the request, the ML training MnS producer instantiates one or more MLTrainingProcess MOI(s) that are responsible to perform the followings:
-	collects (more) data for training, if the training data are not available or the data are available but not sufficient for the training;
-	prepares and selects the required training data, with consideration of the consumer’s request provided candidate training data if any. The ML training MnS producer may examine the consumer's provided candidate training data and select none, some or all of them for training. In addition, the ML training MnS producer may select some other training data that are available in order to meet the consumer’s requirements for the MLentity ML model training;
-	trains the MLEntityModel using the selected and prepared training data.
The MLTrainingRequest may have a requestStatus field to represent the status of the specific MLTrainingRequest:
-	The attribute values are "NOT_STARTED", " IN_PROGRESS", "SUSPENDED", "FINISHED", and "CANCELLED".
-	When value turns to " IN_PROGRESS", the ML training MnS producer instantiates one or more MLTrainingProcess MOI(s) representing the training process(es) being performed per the request and notifies the MLT MnS consumer(s) who subscribed to the notification.
When all of the training process associated to this request are completed, the value turns to "FINISHED".
The ML training MnS prodcuer shall automatically delete the corresponding MLTrainingRequest instance in case of the status value turns to "FINISHED" or "CANCELLED". The MnS producer may notify the status of the request to MnS consumer after deleting MLTrainingRequest instance.
7.3a.1.2.2.2	Attributes
Table 7.3a.1.2.2.1-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	aIMLInferenceNameinferenceType
	CM
	T
	F
	F
	T

	candidateTrainingDataSource
	O
	T
	T
	F
	T

	trainingDataQualityScore
	O
	T
	T
	F
	T

	trainingRequestSource
	M
	T
	T
	F
	T

	requestStatus
	M
	T
	F
	F
	T

	expectedRuntimeContext
	M
	T
	T
	F
	T

	performanceRequirements
	M
	T
	T
	F
	T

	cancelRequest
	O
	T
	T
	F
	T

	suspendRequest
	O
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	mLEntityModelToTrainRef
	CM
	T
	F
	F
	T

	mLEntityModelCoordinationGroupToTrainRef
	CM
	T
	F
	F
	T

7.3a.1.2.2.3	Attribute constraints
Table 7.3a.1.2.2.3-1
	Name
	Definition

	aIMLInferenceNameinferenceType Support Qualifier
	Condition: MLTrainingRequest MOI represents the request for initial ML model training.

	mLEntityToTrainRef Support Qualifier
	Condition: MLTrainingRequest MOI represents the request for ML re-training.

	mLEntityCoordinationGroupToTrainRef Support Qualifier
	Condition: MLTrainingRequest MOI represents the request for joint training of a group of ML entities.

[bookmark: _Toc130201991][bookmark: _Toc163137529]7.3a.1.2.2.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc130201992][bookmark: _Toc163137530]7.3a.1.2.3	MLTrainingReport
7.3a.1.2.3.1	Definition
The IOC MLTrainingReport represents the ML model training report that is provided by the training MnS producer. The MLTrainingReport is associated with one MLModel or one MLModelCoordinationGroup.
The MLTrainingReport instance is created by the training MnS producer automatically when creating an MLTrainingRequest instance.
The MLTrainingReport MOI is contained under one MLTrainingFunction MOI.
7.3.1.2.3.2	Attributes
Table 7.3a.1.2.3.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	areConsumerTrainingDataUsed
	M
	T
	F
	F
	T

	usedConsumerTrainingData
	CM
	T
	F
	F
	T

	modelConfidenceIndication
	O
	T
	F
	F
	T

	modelPerformanceTraining
	M
	T
	F
	F
	T

	modelPerformanceValidation
	O
	T
	F
	F
	T

	dataRatioTrainingAndValidation
	O
	T
	F
	F
	T

	areNewTrainingDataUsed
	M
	T
	F
	F
	T

	Attribute related to role
	
	
	
	
	

	trainingRequestRef
	CM
	T
	F
	F
	T

	trainingProcessRef
	M
	T
	F
	F
	T

	lastTrainingRef
	CM
	T
	F
	F
	T

	mLEnityGeneratedRef
	M
	T
	F
	F
	T

	mLEnityModelCoordinationGroupGeneratedRef
	CM
	T
	F
	F
	T

	mLEntityModelRef
	M
	T
	F
	F
	T

	
	
	
	
	
	

7.3a.1.2.3.3	Attribute constraints
Table 7.3a.1.2.3.3-1
	Name
	Definition

	usedConsumerTrainingData Support Qualifier
	Condition: The value of areConsumerTrainingDataUsed attribute is ALL or PARTIALLY.

	trainingRequestRef Support Qualifier
	Condition: The MLTrainingReport MOI represents the report for the ML model training that was requested by the MnS consumer (via MLTrainingRequest MOI).

	lastTrainingRef Support Qualifier
	Condition: The MLTrainingReport MOI represents the report for the ML model training that was not initial training (i.e. the model has been trained before).

	mLEnityCoordinationGroupGeneratedRef Support Qualifier
	Condition: The MLTrainingReport MOI represents the report for a joint training of a group of ML entities.

[bookmark: _Toc130201996][bookmark: _Toc163137534]7.3a.1.2.3.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc130201997][bookmark: _Toc163137535]7.3a.1.2.4	MLTrainingProcess
[bookmark: _Toc130201998][bookmark: _Toc163137536]7.3a.1.2.4.1	Definition
The IOC MLTrainingProcess represents the ML trainingML model training process.
When a ML model training process starts, an instance of the MLTrainingProcess is created automatically by the MnS Producer and informed to MnS consumer.
The MnS producer can delete the MLTrainingProcess instance whose attribute status equals to "FINISHED" or or "CANCELLED" automatically.
One MLTrainingProcess MOI may be instantiated for each MLTrainingRequest MOI or a set of MLTrainingRequest MOIs.
For each MLEntityModel under training, a MLTrainingProcess is instantiated, i.e. an MLTrainingProcess is associated with exactly one MLEntityModel or one MLModelCoordinationGroup. The MLTrainingProcess may be associated with one or more MLTrainingRequest MOI.
The MLTrainingProcess does not have to correspond to a specific MLTrainingRequest, i.e. a MLTrainingRequest does not have to be associated to a specific MLTrainingProcess. The MLTrainingProcess may be managed separately from the MLTrainingRequest MOIs, e.g. the MLTrainingRequest MOI may come from consumers which are network functions while the operator may wish to manage the MLTrainingProcess that is instantiated following the requests. Thus, the MLTrainingProcess may be associated to either one or more MLTrainingRequest MOI.
Each MLTrainingProcess instance needs to be managed differently from the related MLEntityModel, although the MLTrainingProcess may be associated to only one MLEntityModel. For example, the MLTrainingProcess may be triggered to start with a specific version of the MLEntityModel and multiple MLTrainingProcess instances may be triggered for different versions of the MLEntityModel. In either case the MLTrainingProcess instances are still associated with the same MLEntityModel but are managed separately from the MLEntityModel.
Each MLTrainingProcess has a priority that may be used to prioritize the execution of different MLTrainingProcess instances. By default, the priority of the MLTrainingProcess may be related in a 1:1 manner with the priority of the MLTrainingRequest for which the MLTrainingProcess is instantiated.
Each MLTrainingProcess may have one or more termination conditions used to define the points at which the MLTrainingProcess may terminate.
The "progressStatus" attribute represents the status of the ML model training and includes information the ML training MnS consumer can use to monitor the progress and results. The data type of this attribute is "ProcessMonitor" (see 3GPP TS 28.622 [12]). The following specializations are provided for this data type for the ML model training process:
-	The "status" attribute values are "RUNNING", "CANCELLING", "SUSPENDED", "FINISHED", and "CANCELLED". The other values are not used.
-	The "timer" attribute is not used.
-	When the "status" is equal to "RUNNING" the "progressStateInfo" attribute shall indicate one of the following states: "COLLECTING_DATA", "PREPARING_TRAINING_DATA", "TRAINING".
-	No specifications are provided for the "resultStateInfo" attribute. Vendor specific information may be provided though.
When the training is completed with "status" equal to "FINISHED", the MLT MnS producer provides the training report, by creating an MLTrainingReport MOI, to the MLT MnS consumer.
[bookmark: _Toc130201999][bookmark: _Toc163137537]7.3a.1.2.4.2	Attributes
Table 7.3a.1.2.4.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	
	
	
	
	
	

	priority
	M
	T
	T
	F
	T

	terminationConditions
	M
	T
	T
	F
	T

	progressStatus
	M
	T
	F
	F
	T

	cancelProcess
	O
	T
	T
	F
	T

	suspendProcess
	O
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	trainingRequestRef
	CM
	T
	F
	F
	T

	trainingReportRef
	M
	T
	F
	F
	T

	mLEntityGeneratedRef
	CM
	T
	F
	F
	T

	mLEntityModelRef
	M
	T
	F
	F
	T

7.3a.1.2.4.3	Attribute constraints
Table 7.3a.1.2.4.3-1
	Name
	Definition

	trainingRequestRef Support Qualifier
	Condition: The MLTrainingReport MOI represents the report for the ML model training that was requested by the training MnS consumer (via MLTrainingRequest MOI).

	mLEntityGeneratedRef Support Qualifier
	Condition: The MLTrainingProcess MOI is instantiated to retrain an existing MLEntity.

[bookmark: _Toc130202001][bookmark: _Toc163137539]
7.3a.1.2.4.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
7.3a.1.2.5	MLTestingFunction
7.3a.1.2.5.1	Definition
The ML model testing may be conducted by the ML training function, or by a separate function.
This MLTestingFunction instance can be created by the system (ML testing MnS producer) or pre-installed.
In case the ML model testing is conducted by a function separate from the ML training function, the IOC MLTestingFunction is instantiated and represents the logical function that undertakes ML model testing.
The model represented by MLTestingFunction MOI supports testing of one or more MLModel(s).
7.3a.1.2.5.2	Attributes
Table 7.3a.1.2.5.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLModelRef
	M
	T
	F
	F
	F

7.3a.1.2.5.3	Attribute constraints
None.
7.3a.1.2.5.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
7.3a.1.2.6	MLTestingRequest
7.3a.1.2.6.1	Definition
The IOC MLTestingRequest represents the ML model testing request that is triggered by the ML testing MnS consumer.
To trigger the ML model testing process, ML testing MnS consumer has to create MLTrainingRequest object instances on the ML testing MnS producer.
The MLTestingRequest MOI is contained under one MLTestingFunction MOI or MLTrainingFunction MOI which represents the logical function that conducts the ML model testing. Each MLTestingRequest is associated to at least one MLModel.
In case the request is accepted, the ML testing MnS producer decides when to start the ML testing. Once the MnS producer decides to start the testing based on the request, the ML testing MnS producer:
-	collects (more) data for testing, if the testing data are not available or the data are available but not sufficient for the testing;
-	prepares and selects the required testing data;
-	tests the MLModel by performing inference using the selected testing data, and
-	reports the performance of the MLModel when it performs on the selected testing data.
The MLTestingRequest may have a requestStatus field to represent the status of the request:
-	The attribute values are "NOT_STARTED", "IN_PROGRESS", "SUSPENDED", "FINISHED", and "CANCELLED".
The ML testing MnS prodcuer shall automatically delete the corresponding MLTestingRequest instance in case of the status value turns to "FINISHED" or "CANCELLED". The MnS producer may notify the status of the request to MnS consumer before deleting MLTestingRequest instance.
7.3a.1.2.6.2	Attributes
Table 7.3a.1.2.6.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	requestStatus
	M
	T
	F
	F
	T

	cancelRequest
	O
	T
	T
	F
	T

	suspendRequest
	O
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	mLModelRef
	M
	T
	F
	F
	T

	mLModelCoordinationGroupRef
	M
	T
	F
	F
	T

7.3a.1.2.6.3	Attribute constraints

Void

7.3a.1.2.6.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3a.1.2.7	MLTestingReport
7.3a.1.2.7.1	Definition
The IOC MLTestingReport represents the ML testing report that is provided by the ML testing MnS producer.
The MLTestingReport MOI is contained under one MLTestingFunction MOI or MLTrainingFunction MOI which represents the logical function that conducts the ML model testing.
For the joint testing of a group of ML entities, the ML testing report contains the testing results for every ML model in the group.
The MLTestingReport instance is created by the ML testing MnS producer automatically when creating an MLTestingRequest instance.
7.3a.1.2.7.2	Attributes
Table 7.3a.1.2.7.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	modelPerformanceTesting
	M
	T
	F
	F
	T

	mLTestingResult
	M
	T
	F
	F
	T

	Attribute related to role
	
	
	
	
	

	testingRequestRef
	CM
	T
	F
	F
	T

7.3a.1.2.7.3	Attribute constraints
Table 7.3a.1.2.7.3-1
	Name
	Definition

	testingRequestRef Support Qualifier
	Condition: The MLTestingReport MOI represents the report for the ML model testing that was requested by the MnS consumer (via MLTestingRequest MOI).

7.3a.1.2.7.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

[bookmark: _Toc163137540]7.3a.1b	Information model definitions for ML model testing
7.3a.1b.1	Class diagram
7.3a.1b.1.1	Relationships
This clause depicts the set of classes (e.g. IOCs) that encapsulates the information relevant to ML model testing. For the UML semantics, see TS 32.156 [13].
[image: PlantUML Diagram]
Figure 7.3a.1b.1.1-1: NRM fragment for ML model testing
7.3a.1b.1.2	Inheritance

[image: PlantUML diagram]
Figure 7.3a.1b.1.2-1: Inheritance Hierarchy for ML model testing related NRMs

7.3a.1b.2	Class definitions
7.3a.1b.2.15	MLTestingFunction
[bookmark: _Toc163137541]7.3a.1b.2.5.1.1	Definition
The ML modelentity testing may be conducted by the ML training function, or by a separate function.
This MLTestingFunction instance can be created by the system (ML testing MnS producer) or pre-installed.
In case the ML entity model testing is conducted by a function separate from the ML training function, the IOC MLTestingFunction is instantiated and represents the logical function that undertakes ML modelentity testing.
The modelentity represented by MLTestingFunction MOI supports testing of one or more MLEntityModel(s).
[bookmark: _Toc163137542]7.3xa.1b.2.51.2	Attributes
Table 7.3a.1b.2.51.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLEntityModelRef
	M
	T
	F
	F
	F

[bookmark: _Toc163137543]7.3a.1b.2.51.3	Attribute constraints
None.
[bookmark: _Toc163137544]7.3a.1b.2.51.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc163137545]7.3a.1b.2.62	MLTestingRequest
[bookmark: _Toc163137546]7.3a.1b.2.26.1	Definition
The IOC MLTestingRequest represents the ML modelentity testing request that is created triggered by the ML testing MnS consumer.
To trigger the ML model testing process, ML testing MnS consumer has to create MLTrainingRequest object instances on the ML testing MnS producer.
The MLTestingRequest MOI is contained under one MLTestingFunction MOI or MLTrainingFunction MOI which represents the logical function that conducts the ML modelentity testing. Each MLTestingRequest is associated to at least one MLEntityModel.
In case the request is accepted, the ML testing MnS producer decides when to start the ML testingML model testing. Once the MnS producer decides to start the testing based on the request, the ML testing MnS producer:
-	collects (more) data for testing, if the testing data are not available or the data are available but not sufficient for the testing;
-	prepares and selects the required testing data;
-	tests the MLEntityModel by performing inference using the selected testing data, and
-	reports the performance of the MLEntityModel when it performs on the selected testing data.
The MLTestingRequest may have a requestStatus field to represent the status of the request:
-	The attribute values are "NOT_STARTED", "IN_PROGRESS", "SUSPENDED", "FINISHED", and "CANCELLED".
The ML testing MnS prodcuer shall automatically delete the corresponding MLTestingRequest instance in case of the status value turns to "FINISHED" or "CANCELLED". The MnS producer may notify the status of the request to MnS consumer before deleting MLTestingRequest instance.
[bookmark: _Toc163137547]7.3a.1b.2.26.2	Attributes
Table 7.3a.1b.2.26.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	requestStatus
	M
	T
	F
	F
	T

	cancelRequest
	O
	T
	T
	F
	T

	suspendRequest
	O
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	mLEntityModelToTestRef
	CM
	T
	F
	F
	T

	mLEntityModelCoordinationGroupToTestRef
	CM
	T
	F
	F
	T

7.3a.1b.2.26.3	Attribute constraints
Table 7.3a.1.2.6.3-1
	Name
	Definition

	mLEntityToTestRef Support Qualifier
	Condition: The MLTestingRequest MOI represents the request for testing of a single ML entity.

	mLEntityCoordinationGroupToTestRef Support Qualifier
	Condition: The MLTestingRequest MOI represents the request for joint testing of a group of ML entities.

Void

[bookmark: _Toc163137549]7.3a.1b.2.62.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

[bookmark: _Toc163137550]7.3a.1b.2.73	MLTestingReport
[bookmark: _Toc163137551]7.3a.1b.2.37.1	Definition
The IOC MLTestingReport represents the ML testing report that is provided by the ML testing MnS producer.
The MLTestingReport MOI is contained under one MLTestingFunction MOI or MLTrainingFunction MOI which represents the logical function that conducts the ML modelentity testing.
For the joint testing of a group of ML entitiesmodels, the ML testing report contains the testing results for every ML entity model in the group.
The MLTestingReport instance is created by the ML testing MnS producer automatically when creating an MLTestingRequest instance.
[bookmark: _Toc163137552]7.3a.1b.2.37.2	Attributes
Table 7.3a.1b.2.73.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	modelPerformanceTesting
	M
	T
	F
	F
	T

	mLTestingResult
	M
	T
	F
	F
	T

	Attribute related to role
	
	
	
	
	

	testingRequestRef
	CM
	T
	F
	F
	T

[bookmark: _Toc163137553]7.3a.1b.2.37.3	Attribute constraints
Table 7.3a.1b.2.73.3-1
	Name
	Definition

	testingRequestRef Support Qualifier
	Condition: The MLTestingReport MOI represents the report for the ML model testing that was requested by the MnS consumer (via MLTestingRequest MOI).

[bookmark: _Toc163137554]7.3a.1b.2.37.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

Next change

[bookmark: _Toc106015891][bookmark: _Toc106098530][bookmark: _Toc163137620]7.3a.2	Information model definitions for ML emulation Phase
7.3a.2.1	Class diagram
7.3a.2.1.1	Relationships
[image: Generated by PlantUML]
Figure 7.3a.2.1.1-1: NRM fragment for AI/ML inference emulation Control
7.3a.2.1.2	Inheritance
[image: Generated by PlantUML]
Figure 7.3a.2.1.2-1: AI/ML inference emulation Inheritance Relations
7.3a.2.2	Class definitions
7.3a.2.2.1	AIMLInferenceEmulationFunction
7.3a.2.2.1.1	Definition
This IOC represents the properties of a function that undertakes AI/ML Inference Emulation.
This AIMLInferenceEmulationFunction instance can be created by the system (AI/ML inference emulation MnS producer) or pre-installed.
An AIMLInferenceEmulationFunction may be associated with one or more MLEntityMLModel(s). AIMLInferenceEmulationFunction is name contained with AIMLInferenceEmulationReport(s) that delivers the outcomes of the emulation processes.
NOTE:	The way of triggering of an AI/ML inference emulation and the instantiation of the related AI/ML inference emulation process is not in the scope of the present document.
7.3a.2.2.1.2	Attributes
The AIMLInferenceEmulationFunction IOC includes attributes inherited from ManagedFunction IOC (defined in TS 28.622[30]) and the following attributes:
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	aIMLInferenceEmulationFunctionId
	M
	T
	F
	F
	F

	Attributes related to Role
	
	
	
	
	

	aIMLInferenceEmulationReportRefList
	M
	T
	F
	F
	F

7.3a.2.2.1.3	Attribute constraints
None.
7.3a.2.2.1.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

	Next change

	

[bookmark: _Toc163137565]7.3a.3	Information model definitions for ML model deployment phase
[bookmark: _Toc163137566]7.3a.3.1	Class diagram
[bookmark: _Toc163137567]7.3a.3.1.1	Relationships
This clause depicts the set of classes (e.g. IOCs) that encapsulates the information relevant to ML model deployment phase. For the UML semantics, see TS 32.156 [13].
[image: PlantUML diagram][image: PlantUML diagram]
Figure 7.3a.3.1.1-1: NRM fragment for ML entity model loading
[bookmark: _Toc163137568]7.3a.3.1.2	Inheritance
[image: PlantUML diagram][image: PlantUML diagram]
Figure 7.3a.3.1.2-1: Inheritance Hierarchy for ML entity model loading related NRMs
[bookmark: _Toc163137569]7.3a.3.2	Class definitions
[bookmark: _Toc163137570]7.3a.3.2.1	MLModelEntityLoadingRequest
[bookmark: _Toc163137571]7.3a.3.2.1.1	Definition
This IOC represents the ML entity model loading request that is created by the MnS consumer. Using this IOC, the MnS consumer requests the MnS producer to load an ML entity model to the target inference function.
To trigger the ML model loading process, MnS consumer has to create MLModelLoadingRequest object instances on the MnS producer.
This IOC has a requestStatus field to represent the status of the request:
-	The attribute value is one of "NOT_STARTED", "IN_PROGRESS", "SUSPENDED", "FINISHED_SUCCESS ", FINISHED_FAILED" and "CANCELLED".
[bookmark: MCCQCTEMPBM_00000054]-	When value turns to "IN_PROGRESS", the MnS producer instantiates one or more MLModelEntityLoadingProcess MOI(s) representing the loading process(es) being performed per the request and notifies the MnS consumer(s) who subscribed to the notification.
The MnS prodcuer shall automatically delete the corresponding MLModelLoadingRequest instance in case of the status value turns to "FINISHED" or "CANCELLED".
[bookmark: _Toc163137572]7.3a.3.2.1.2	Attributes
Table 7.3a.3.2.1.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	requestStatus
	M
	T
	T
	F
	T

	cancelRequest
	O
	T
	T
	F
	T

	suspendRequest
	O
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	mLModelEntityToLoadRef
	M
	T
	F
	F
	T

[bookmark: _Toc163137573]7.3a.3.2.1.3	Attribute constraints
None.
[bookmark: _Toc163137574]7.3a.3.2.1.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc163137575]7.3a.3.2.2	MLModelEntityLoadingPolicy
[bookmark: _Toc163137576]7.3a.3.2.2.1	Definition
This IOC represents the ML entity model loading policy set by the MnS consumer to the producer for loading an ML entity model to the target inference function(s).
To specify ML model loading policy for one or muiltiply ML models, MnS consumer has to create MLModelLoadingPolicy object instances on the MnS producer.
To remove ML model loading policy for one or muiltiply ML models, MnS consumer has to delete MLModelLoadingPolicy object instances on the MnS producer.
This IOC is used for the MnS consumer to set the conditions for the producer-initated ML entity model loading. The MnS producer is only allowed to load the ML entity model when all of the conditions are met.
[bookmark: _Toc163137577]7.3a.3.2.2.2	Attributes
Table 7.3a.3.2.2.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	aIMLInferenceNameinferenceType
	CM
	T
	T
	F
	T

	policyForLoading
	M
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	mLModelEntityRef
	CM
	T
	F
	F
	F

[bookmark: _Toc163137578]7.3a.3.2.2.3	Attribute constraints
Table 7.3a.3.2.2.3-1
	Name
	Definition

	aIMLInferenceNameinferenceType Support Qualifier
	Condition: The ML entity model loading policy is related to an initially trained ML entity.

	mLModelEntityRef Support Qualifier
	Condition: The ML entity model loading policy is related to a re-trained ML entitymodel.

[bookmark: _Toc163137579]7.3a.3.2.2.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc106015887][bookmark: _Toc106098525][bookmark: _Toc163137580][bookmark: MCCQCTEMPBM_00000062]7.3a.3.2.3	MLModelEntityLoadingProcess
[bookmark: _Toc106015888][bookmark: _Toc106098526][bookmark: _Toc163137581]7.3a.3.2.3.1	Definition
This IOC represents the ML entity model loading process.
[bookmark: MCCQCTEMPBM_00000065]For the consumer requested ML entity model loading, one or more MLModelEntityLoadingProcess MOI(s) may be instantiated for each ML entity model loading request presented by the MLModelEntityLoadingRequest MOI.
For the producer-initiated ML entity model loading, one or more MLModelEntityLoadingProcess MOI(s) may be instantiated and associated with each MLModelEntityLoadingPolicy MOI.
One MLModelEntityLoadingProcess MOI represent the ML entity model loading process(es) corresponding to one or more target inference function(s).
[bookmark: MCCQCTEMPBM_00000111]The "progressStatus" attribute represents the status of the ML entity model loading process and includes information the MnS consumer can use to monitor the progress and results. The data type of this attribute is "ProcessMonitor" (see 3GPP TS 28.622 [12]). The following specializations are provided for this data type for the ML entity model loading process:
-	The "status" attribute values are "RUNNING", "CANCELLING", "SUSPENDED", "FINISHED", and "CANCELLED". The other values are not used.
[bookmark: MCCQCTEMPBM_00000112]-	The "timer" attribute is not used.
[bookmark: MCCQCTEMPBM_00000113]-	When the "status" is equal to "RUNNING" the "progressStateInfo" attribute shall indicate one of the following state: "LOADING".
[bookmark: MCCQCTEMPBM_00000114]-	No specifications are provided for the "resultStateInfo" attribute. Vendor specific information may be provided though.
[bookmark: MCCQCTEMPBM_00000115]When the loading is completed with "status" equal to "FINISHED", the MnS producer creates the MOI(s) of loaded MLModelEntity under each MOI of the target inference function(s).
When a ML model loading process starts, an instance of the MLModelLoadingProcess is created automatically by the MnS Producer and informed to MnS consumer. The MnS producer can automatically delete the MLModelLoadingProcess instance whose attribute status equals to "FINISHED" or or "CANCELLED" automatically.
[bookmark: _Toc106098527][bookmark: _Toc163137582][bookmark: MCCQCTEMPBM_00000151]7.3a.3.2.3.2	Attributes
Table 7.3a.3.2.3.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	progressStatus
	M
	T
	F
	F
	T

	cancelProcess
	O
	T
	T
	F
	T

	suspendProcess
	O
	T
	T
	F
	T

	resumeProcess
	O
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	MLModelEntityLoadingRequestRef
	CM
	T
	F
	F
	T

	MLModelEntityLoadingPolicyRef
	CM
	T
	F
	F
	T

	LoadedMLModelEntityRef
	M
	T
	F
	F
	T

[bookmark: _Toc106015889][bookmark: _Toc106098528][bookmark: _Toc163137583][bookmark: MCCQCTEMPBM_00000152]7.3a.3.2.3.3	Attribute constraints
Table 7.3a.3.2.3.3-1
	Name
	Definition

	[bookmark: MCCQCTEMPBM_00000117]MLModelEntityLoadingRequestRef Support Qualifier
	Condition: The MLModelEntityLoadingProcess MOI is corresponding to the ML entity model loading requested by the MnS consumer.

	MLModelEntityLoadingPolicyRef Support Qualifier
	Condition: The MLModelEntityLoadingProcess MOI is corresponding to the ML entity model loading initiated by the MnS producer.

[bookmark: _Toc106015890][bookmark: _Toc106098529][bookmark: _Toc163137584]7.3a.3.2.3.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

	Next change

[bookmark: _Toc163137585]7.3a.4	Information model definitions for ML inference phase
[bookmark: _Toc163137586]7.3a.4.1	Class diagram
[bookmark: _Toc163137587]7.3a.4.1.1	Relationships
[image: PlantUML diagram][image: PlantUML Diagram]
Figure 7.3a.4.1.1-1: NRM fragment for ML update
[image: PlantUML Diagram] [image: PlantUML diagram]
NOTE X:	The ManagedEntity and AIMLSupportedFunction shall not represent the same MOI.
NOTE Y: For AnLFFunction, DMROFunction, DLBOFunction, and DESManagementFunction see [18] and for MDAFunction see [2]

Figure 7.3a.4.1.1-2: NRM fragment for AI/ML inference function
[bookmark: _Toc163137588]7.3a.4.1.2	Inheritance
[image: PlantUML diagram]
Figure 7.3a.4.1.2-1: Inheritance Hierarchy for ML update related NRMs
[image: Generated by PlantUML]
Figure 7.3a.4.1.2-2: Inheritance Hierarchy for AI/ML inference function
[bookmark: _Toc163137589]7.3a.4.2	Class definitions
[bookmark: _Toc163137590]7.3a.4.2.1	MLUpdateFunction
[bookmark: _Toc163137591]7.3a.4.2.1.1	Definition
This IOC represents the function responsible for ML update.
This MLUpdateFunction instance can be created by the system (AI/ML inference emulation MnS producer) or pre-installed.
The MOI of MLUpdateFunction is name-contained in an MOI of either a subnetwork, a managedFunction or a managementFunction.
The MLUpdateFunction is be associated with one or more ML entitiesmodels.
The MLUpdateFunction contains one or more MLUpdateRequest(s)as well as one or more MLUpdateProcess(s), where an MLUpdateProcess is instantiated corresponding to one received MLUpdateRequest.
[bookmark: _Toc163137592]7.3a.4.2.1.2	Attributes
The MLUpdateFunction IOC includes attributes inherited from ManagedFunction IOC (defined in TS 28.622 [12]) and the following attributes:
Table 7.3a.4.2.1.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	availMLCapabilityReport
	M
	T
	F
	F
	F

	Attributes related to Role
	
	
	
	
	

	mLEntityModelRef
	M
	T
	F
	F
	F

[bookmark: _Toc163137593]7.3a.4.2.1.3	Attribute constraints
None.
[bookmark: _Toc163137594]7.3a.4.2.1.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

[bookmark: _Toc163137595]7.3a.4.2.2	MLUpdateRequest
[bookmark: _Toc163137596]7.3a.4.2.2.1	Definition
This IOC represents the properties of MLUpdateRequest.
For each request to update the ML capabilities, a consumer creates a new MOI of MLUpdateRequest on the MLUpdateFunction, i.e., MLUpdateRequest is instantiated for each request for updating ML capabilities:
-	Each MLUpdateRequest is associated to at least one MLEntityModel
-	Each MLUpdateRequest may have a RequestStatus field that is used to track the status of the specific MLUpdateRequest or the associated MLUpdateProcess. The RequestStatus is updated by MnS producer when there is a change in status of the update progress. The RequestStatus is an enumeration with the values: NOT_STARTED, IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and CANCELLED
-	Each MLUpdateRequest may contain specific reporting requirements including an mLUpdateReportingPeriod that defines the time duration upon which the MnS consumer expects the ML update is reported. The reporting requirements contained in the MLUpdateRequest are mapped to an existing MLUpdateProcess instance.
-	The MLUpdateRequest may specify a performanceGainThreshold which defines the minimum performance gain that shall be achieved with the capability update. This implies that the difference in the performances between the existing capabilities and the new capabilities needs to be at least performanceGainThreshold, otherwise the new capabilities shall not be applied. A threshold of performanceGainThreshold=0% implies that the capabilities should be applied even if there is no noticeable performance gain.
-	The MLUpdateRequest may indicates the maximum time that should be taken to complete the update.
To trigger the ML update process, MnS consumer has to create MLUpdateRequest instances on the MnS producer.
The MnS prodcuer shall automatically delete the corresponding MLUpdateRequest instance in case of the status value turns to "FINISHED" or "CANCELLED".
[bookmark: _Toc163137597]7.3a.4.2.2.2	Attributes
The MLUpdateRequest IOC includes attributes inherited from Top IOC (defined in TS 28.622 [30]) and the following attributes:
Table 7.3a.4.2.2.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	performanceGainThreshold
	O
	T
	T
	T
	F

	newCapabilityVersionId
	O
	T
	T
	T
	F

	updateTimeDeadline
	O
	T
	T
	T
	F

	requestStatus
	M
	T
	T
	F
	T

	mLUpdateReportingPeriod
	O
	T
	T
	F
	T

	cancelRequest
	O
	T
	T
	F
	T

	suspendRequest
	O
	T
	T
	F
	T

	Attributes related to Role
	
	
	
	
	

	mLUpdateProcessRef
	M
	T
	F
	F
	F

	mLEntityModelRef
	M
	T
	F
	F
	F

[bookmark: _Toc163137598]7.3a.4.2.2.3	Attribute constraints
None.

[bookmark: _Toc163137599]7.3a.4.2.2.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

[bookmark: _Toc163137600]7.3a.4.2.3	MLUpdateProcess
[bookmark: _Toc163137601]7.3a.4.2.3.1	Definition
This IOC represents the ML update process.
For each MLUpdateRequest to update the ML capabilities, the MLUpdateProcess is instantiated for the MLUpdateRequest unless the MLUpdateRequest is associated with an ongoing MLUpdateProcess if the MLUpdateProcess is updating the same MLEntityModel(s) as stated in the MLUpdateRequest i.e., the MLUpdateProcess is associated with at least one MLUpdateRequest. Relatedly, the MLUpdateProcess is associated with at least one MLEntityModel.
-	Each MLUpdateProcess may have a status attribute (i.e., progressStatus) used to indicate progress status of the update process.
-	The MLUpdateProcess has the capability of compiling and delivering reports and notifications relating to the ML update request or process.
-	Each MLUpdateProcess may have attributes specifying the ML capability update reporting characteristics (e.g. periodically, after completion, etc.).
When a ML update process starts, an instance of the MLUpdateProcess is created automatically by the MnS Producer and informed to MnS consumer. The MnS producer can delete the MLUpdateProcess instance whose attribute status equals to "FINISHED" or or "CANCELLED" automatically.
[bookmark: _Toc163137602]7.3a.4.2.3.2	Attributes
The MLUpdateProcess IOC includes attributes inherited from Top IOC (defined in TS 28.622 [30]) and the following attributes:
Table 7.3a.4.2.3.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	
	
	
	
	
	

	cancelProcess
	O
	T
	T
	F
	T

	suspendProcess
	O
	T
	T
	F
	T

	[bookmark: _Hlk146635232]progressStatus
	M
	T
	TF
	F
	T

	Attributes related to Role
	
	
	
	
	

	mLEntityModelRef
	M
	T
	F
	F
	FT

	MLUpdateRequestRefmLUpdateRequestRef
	M
	T
	F
	F
	FT

	MLUpdateReportRefmLUpdateReportRef
	M
	T
	F
	F
	FT

[bookmark: _Toc163137603]7.3a.4.2.3.3	Attribute constraints
None.
[bookmark: _Toc163137604]7.3a.4.2.3.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc163137605]7.3a.4.2.4	MLUpdateReport
[bookmark: _Toc163137606]7.3a.4.2.4.1	Definition
This IOC represents the properties of ML update report.
-	The ML update process may generate one or more MLUpdateReport(s),
-	Each MLUpdateReport is associated to one or more MLEntityModel(s) to indicate ML entitiesmodels that have been updated.
-	The MLUpdateReport may indicate the achieved performance gain for the specific ML capability update, which is the gain in performance of the new capabilities compared with the original capabilities.
-	MLUpdateReport provides reports about MLEntityModel(s) or MLUpdateProcess(s) that themselves are associated with MLEntityModel(s) for which update is requested and/or executed. Correspondingly, both the MLUpdateRequest(s)and the MLUpdateProcess(s) are conditionally mandatory in that at least one of them must be associated with an instance of MLUpdateReport.
The MLUpdateReport instance is created by the MnS producer automatically when creating an MLUpdateRequest instance.
When the MnS producer delete a MLUpdateRequest instance, the corresponding MLUpdateReport instance is also deleted by MnS producer automatically. The MnS consumer cannot request to create nor delete the MLUpdateReport instance.
[bookmark: _Toc163137607]7.3a.4.2.4.2	Attributes
Table 7.3a.4.2.4.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	UpdatedMLCapability
	M
	T
	F
	F
	F

	Attributes related to Role
	

	mLEntityModelRef
	M
	T
	F
	F
	F

	mLUpdateProcessRef
	M
	T
	F
	F
	F

[bookmark: _Toc163137608]7.3a.4.2.4.3	Attribute constraints
None.
[bookmark: _Toc163137609]7.3a.4.2.4.4	Notifications
The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

[bookmark: _Toc163137610]7.3a.4.2.5	AIMLInferenceFunction
[bookmark: _Toc163137611]7.3a.4.2.5.1	Definition
This IOC represents the common properties of the AI/ML inference function.
This AIMLInferenceFunction instance can be created by the system (AI/ML inference MnS producer) or pre-installed.
The AIMLInferenceFunction MOI may be associated with one or more MOIs that represent the functions/functionalities (Note) provided by the subject AIMLInferenceFunction MOI.
The AIMLInferenceFunction MOI can be only created by the MnS producer but not consumer.
The MOI of AIMLInferenceFunction or the MOI of the IOC inheriting from the AIMLInferenceFunction IOC contains one or more MOI(s) of MLEntityModel .
NOTE: 	The IOCs representing the functions/functionalities (Note) that use the AI/ML inference function include MDAFunction, AnLFFunction, DMROFunction, DLBOFunction, and DESManagementFunction.
The AIMLInferenceFunction MOI may be contained by either a SubNetwork MOI, a ManagedElement MOI, or an MOI of ManagedFunction’s subclass, and it is allowed for an MnS producer to support multiple AIMLInferenceFunction MOIs contained in different superordinated MOIs among SubNetwork, ManagedElement and the ManagedFunction’s subclass.
The generation of inference outputs is based on the configuration of inference, e.g., to start a stated time, or to be executed at all times. The observations of the inference function and information on derived Outputs is registered in the inference report.
[bookmark: _Toc163137612]7.3a.4.2.5.2	Attributes
Table 7.3a.4.2.5.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	activationStatus
	M
	T
	T
	F
	T

	managedActivationScope
	O
	T
	T
	F
	T

	Attributes related to role
	
	
	
	
	

	usedByFunctionRefList
	M
	T
	F
	F
	T

	MLEntityModelRef
	M
	T
	F
	T
	T

[bookmark: _Toc163137613]7.3a.4.2.5.3	Attribute constraints
None.
[bookmark: _Toc163137614]7.3a.4.2.5.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc163137615]7.3a.4.2.6	AIMLInferenceReport
[bookmark: _Toc163137616]7.3a.4.2.6.1	Definition
[bookmark: _Toc163137617]This <<IOC>> represents a report from a AI/ML Inference.
An AIMLInferenceFunction may generate one or more AIMLInferenceReport(s).
Each AIMLInferenceReport provides information about inference outputs from one or more MLEntityModel.
The AIMLInferenceReport also provides historical inference outputs for a series of time stamps.
The AIMLInferenceReport instance is created by the MnS producer automatically when creating an AIMLInferenceFunction instance.
7.3a.4.2.6.2	Attributes
The AIMLInferenceReport includes inherited attributes from Top IOC (defined in TS28.622 [12]) and the following attributes:
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	inferenceOutputs
	M
	T
	F
	F
	T

	Attributes related to role
	
	
	
	
	

	mLEntityModelRef
	M
	T
	F
	F
	T

[bookmark: _Toc163137618]7.3a.4.2.6.3	Attribute constraints
None.
[bookmark: _Toc163137619]7.3a.4.2.6.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
	Next change

7.4	Data type definitions
[bookmark: _Toc106015892][bookmark: _Toc106098531][bookmark: _Toc163137621][bookmark: MCCQCTEMPBM_00000118]7.4.1	ModelPerformance <<dataType>>
[bookmark: _Toc106015893][bookmark: _Toc106098532][bookmark: _Toc163137622]7.4.1.1	Definition
This data type specifies the performance of an ML entity model when performing inference. The performance score is provided for each inference output.
[bookmark: _Toc106015894][bookmark: _Toc106098533][bookmark: _Toc163137623][bookmark: MCCQCTEMPBM_00000153]7.4.1.2	Attributes
Table 7.4.1.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	[bookmark: MCCQCTEMPBM_00000119]inferenceOutputName
	M
	T
	T/F (NOTE)
	F
	T

	performanceScore
	M
	T
	T/F (NOTE)
	F
	T

	performanceMetric
	M
	T
	T/F (NOTE)
	F
	T

	decisionConfidenceScore
	O
	T
	F
	F
	T

	NOTE:	The isWritable qualifier is “T” if the attribute is used in MLTrainingRequest. The isWritable qualifier is "F" otherwise.

[bookmark: _Toc106015895][bookmark: _Toc106098534][bookmark: _Toc163137624]7.4.1.3	Attribute constraints
None.
[bookmark: _Toc106015896][bookmark: _Toc106098535][bookmark: _Toc163137625]7.4.1.4	Notifications
The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.
[bookmark: _Toc106015897][bookmark: _Toc106098536][bookmark: _Toc130202008][bookmark: _Toc163137626][bookmark: _Toc106015902][bookmark: _Toc106098541][bookmark: MCCQCTEMPBM_00000120]7.4.2	Void
[bookmark: _Toc163137627][bookmark: MCCQCTEMPBM_00000128]7.4.3	MLContext <<dataType>>
[bookmark: _Toc106015903][bookmark: _Toc106098542][bookmark: _Toc163137628]7.4.3.1	Definition
[bookmark: MCCQCTEMPBM_00000129][bookmark: MCCQCTEMPBM_00000130][bookmark: MCCQCTEMPBM_00000131][bookmark: MCCQCTEMPBM_00000132][bookmark: MCCQCTEMPBM_00000133]The MLContext represents the status and conditions related to the MLEntityMLModel. There are three types of context - the ExpectedRunTimeContext, the TrainingContext and the RunTimeContext, see clause 7.5.1 for details of each type.
[bookmark: _Toc106015904][bookmark: _Toc106098543][bookmark: _Toc163137629][bookmark: MCCQCTEMPBM_00000156]7.4.3.2	Attributes
Table 7.4.3.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	[bookmark: MCCQCTEMPBM_00000134]inferenceEntityModelRef
	CM
	T
	F
	F
	F

	dataProviderRef
	M
	T
	F
	F
	F

[bookmark: _Toc106015905][bookmark: _Toc106098544][bookmark: _Toc163137630]7.4.3.3	Attribute constraints
Table 7.4.3.3-1
	Name
	Definition

	inferenceEntityModelRef Support Qualifier
	Condition: The MLContext is used for ExpectedRunTimeContext, TrainingContext or RunTimeContext.

[bookmark: _Toc106015906][bookmark: _Toc106098545][bookmark: _Toc163137631]7.4.3.4	Notifications
The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

[bookmark: _Toc163137632]7.4.4	SupportedPerfIndicator <<dataType>>
[bookmark: _Toc163137633]7.4.4.1	Definition
This data type specifies a Performance indicator of an ML entitymodel. The data type may be used to indicate which performance indicators shall be applicable to either of training, testing or inference.
[bookmark: _Toc163137634]7.4.4.2	Attributes
Table 7.4.4.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	performanceIndicatorName
	M
	T
	F
	F
	T

	isSupportedForTraining
	CM
	T
	F
	F
	T

	isSupportedForTesting
	CM
	T
	F
	F
	T

[bookmark: _Toc163137635]7.4.4.3	Attribute constraints
Table 7.4.4.3-1
	Name
	Definition

	isSupportedForTraining Support Qualifier
	Condition: if the performance indicator named performanceIndicatorName is applicable for training, the isSupportedforTraining must be stated

	isSupportedForTesting Support Qualifier
	Condition: if the performance indicator named performanceIndicatorName is applicable for testing, the isSupportedForTesting must be stated

[bookmark: _Toc163137636]7.4.4.4	Notifications
The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.
[bookmark: _Toc163137637]7.4.5	AvailMLCapabilityReport <<dataType>>
[bookmark: _Toc163137638]7.4.5.1	Definition
This dataType represents the the report of available ML capabilities following the update for specific ML capability(es).
-	The ML update process may generate one or more AvailMLCapabilityReport(s), which indicate to the consumer that new ML capability(es) is/are available and can be applied.
-	Each AvailMLCapabilityReport is associated to one or more MLEntityModel(s) and may indicate the one or more MLEntityModel(s) to which it applies.
-	The AvailMLCapabilityReport may include CapabilityVersions which indicate that there are multiple candidate sets of available ML capabilities with a different version number for each set.
-	The AvailMLCapabilityReport may include the expectedPerformanceGains, which provides information on the expected performance gain if/when the ML capabilities of the respective network function are updated with/to the specific set of newly available ML capabilities.
-	associated to one or more MLEntityModel(s) and may indicate the one or more MLEntityModel(s) to which it applies.
[bookmark: _Toc163137639]7.4.5.2	Attributes
The AvailMLCapabilityReport includes the following attributes:
	Table 7.4.5.2-1Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	availMLCapabilityReportID
	M
	T
	F
	F
	F

	mLCapabilityVersionId
	M
	T
	F
	F
	F

	expectedPerformanceGains
	O
	T
	F
	F
	F

	Attributes related to Role
	
	
	
	
	

	mLEntityModelRef
	M
	T
	F
	F
	F

[bookmark: _Toc163137640]7.4.5.3	Attribute constraints
None.
[bookmark: _Toc163137641]7.4.5.4	Notifications
The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

[bookmark: _Toc163137642]7.4.6	AIMLManagementPolicy <<dataType>>
[bookmark: _Toc163137643]7.4.6.1	Definition
This data type represents the properties of a policy for AI/ML management.
[bookmark: _Toc163137644]7.4.6.2	Attributes
Table 7.4.6.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	thresholdList
	M
	T
	T
	F
	T

	managedActivationScope
	M
	T
	T
	F
	T

[bookmark: _Toc163137645]7.4.6.3	Attribute constraints
None.
[bookmark: _Toc163137646]7.4.6.4	Notifications
The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.
[bookmark: _Toc163137647]7.4.7	ManagedActivationScope <<choice>>
[bookmark: _Toc163137648]7.4.7.1	Definition
This <<choice>> defines the scopes for activating or deactivating the ML Inference function. It is a choice between the scopes parameter required for the activation or deactivation.
[bookmark: _Toc163137649]7.4.7.2	Attributes
Table 7.4.7.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	CHOICE_1.1 dNList
	CM
	T
	T
	F
	T

	CHOICE_1.2 timeWindow
	CM
	T
	T
	F
	T

	CHOICE_1.3 geoPolygon
	CM
	T
	T
	F
	T

[bookmark: _Toc163137650]7.4.7.3	Attribute constraints
Table 7.4.7.3-1
	Name
	Definition

	dNList Support Qualifier CM
	Condition: if the sub scope is per list of managed elements (e.g., DN list)

	timeWindow Support Qualifier CM
	Condition: if the sub scope is per list of time window.

	geoPolygon Support Qualifier CM
	Condition: if the sub scope is per list of GeoArea.

[bookmark: _Toc163137651]7.4.7.4	Notifications
The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.
[bookmark: _Toc163137652][bookmark: _Hlk109228613]7.4.8.	MLCapabilityInfo <<dataType>>
[bookmark: _Toc163137653]7.4.8.1.	Definition
This dataType represents information about what the ML modelentity can make inference for. The capabilityName inferenceOutputName is used as the identifier for the ML capability.
[bookmark: _Toc163137654]7.4.8.2	Attributes
The MLCapabilityInfo <<dataType>> includes the following attributes:
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	aIMLInferenceNameinferenceType
	M
	T
	F
	F
	T

	capabilityName
	O
	T
	F
	F
	T

	mLCapabilityParameters
	O
	T
	F
	F
	T

[bookmark: _Toc163137657]7.4.9	InferenceOutput <<dataType>>
[bookmark: _Toc163137658]7.4.9.1	Definition
This dataType represents the properties of the content of an inference output.
The inference output contains a time stamp which indicates the time at which the inference output is generated.

[bookmark: _Toc163137659]7.4.9.2	Attributes
The InferenceOutput includes the following attributes:
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	inferenceOutputId
	M
	T
	F
	F
	T

	aIMLInferenceNameinferenceType
	M
	T
	F
	F
	T

	inferenceOutputTime
	M
	T
	F
	F
	T

	inferencePerformance
	O
	T
	F
	F
	T

	outputResult
	M
	T
	F
	F
	T

NOTE: The relation between the Output and Outputs of other instances like MDA is not addressed in the present document
[bookmark: _Toc163137660]7.4.9.3	Attribute constraints
None.
[bookmark: _Toc163137661]7.4.9.4	Notifications
The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

Next change

[bookmark: _Toc106015907][bookmark: _Toc106098546][bookmark: _Toc163137662]7.5	Attribute definitions
[bookmark: _Toc130202019][bookmark: MCCQCTEMPBM_00000157]7.5.1	Attribute properties
Table 7.5.1-1
	Attribute Name
	Documentation and Allowed Values
	Properties

	mLModelEntityId
	It identifies the ML entitymodel.
It is unique in each MnS producer.

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	candidateTrainingDataSource
	It provides the address(es) of the candidate training data source provided by MnS consumer. The detailed training data format is vendor specific.

allowedValues: N/A.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	aIMLInferenceNameinferenceType
	It indicates the type of inference that the ML model supports.

allowedValues: the values of the MDA type (see 3GPP TS 28.104 [2]), Analytics ID(s) of NWDAF (see 3GPP TS 23.288 [3]), types of inference for RAN, and vendor's specific extensions.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	areConsumerTrainingDataUsed
	It indicates whether the consumer provided training data have been used for the ML model training.

allowedValues: ALL, PARTIALLY, NONE.
	type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	usedConsumerTrainingData
	It provides the address(es) where lists of the consumer-provided training data are located, which have been used for the ML model training.

allowedValues: N/A.

	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	trainingRequestRef
	It is the DN(s) of the related MLTrainingRequest MOI(s).

allowedValues: DN.
	type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	trainingProcessRef
	It is the DN(s) of the related MLTrainingProcess MOI(s) that produced the MLTrainingReport.

allowedValues: DN.
	type: DN
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	trainingReportRef
	It is the DN of the MLTrainingReport MOI that represents the reports of the ML model training.

allowedValues: DN.
	Type: DN
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	lastTrainingRef
	It is the DN of the MLTrainingReport MOI that represents the reports for the last training of the ML model.

allowedValues: DN.
	Type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	modelConfidenceIndication
	It indicates the average confidence value (in unit of percentage) that the ML model would perform for inference on the data with the same distribution as training data.
Essentially, this is a measure of degree of the convergence of the trained ML model.

allowedValues: { 0..100 }.
	Type: integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	trainingRequestSource
	It describes the entitymodel that requested to instantiate the MLTrainingRequest MOI.
This attribute can be of type String or DN.
	Type: <<CHOICE>>
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	MLTrainingRequest.requestStatus
	It describes the status of a particular ML model training request.
allowedValues: NOT_STARTED, IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and CANCELLED.
	Type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLTrainingProcessId
	It identifies the training process.
It is unique in each instantiated process in the MnS producer.

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	priority
	It indicates the priority of the training process.
The priority may be used by the ML model training to schedule the training processes. Lower value indicates a higher priority.

allowedValues: { 0..65535 }.
	Type: integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: 0
isNullable: False

	terminationConditions
	It indicates the conditions to be considered by the Mltraining MnS producer to terminate a specific training process.
allowedValues: MODEL UPDATED_IN_INFERENCE_FUNCTION, INFERENCE FUNCTION_TERMINATED, INFERENCE FUNCTION_UPGRADED, INFERENCE_CONTEXT_CHANGED.
	Type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	progressStatus
	It indicates the status of the process.

allowedValues: N/A.
	type: ProcessMonitor
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLUpdateProcess.cancelProcess
	It indicates whether the ML update MnS consumer cancels the ML update process.
Setting this attribute to “TRUE” cancels the ML update process. Default value is set to “FALSE”.

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	mLupdateProcess.suspendProcess
	It indicates whether the ML update MnS consumer suspends the ML update process.
Setting this attribute to “TRUE” suspends the ML update process. The process can be resumed by setting this attribute to “FALSE” when it is suspended. Default value is set to “FALSE”.

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	mLEntityVersionmLModelVersion
	It indicates the version number of the ML entitymodel.

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	performanceRequirements
	It indicates the expected performance for a trained ML entitymodel when performing on the training data.

allowedValues: N/A.
	type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	modelPerformanceTraining
	It indicates the performance score of the ML entitymodel when performing on the training data.

allowedValues: N/A.
	type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLTrainingProcess.progressStatus.progressStateInfo
	It provides the following specialization for the "“progressStateInfo"” attribute of the "“ProcessMonitor"” data type for the "“MLTrainingProcess.progressStatus"”.

When the ML model training is in progress, and the " mLTrainingProcess.progressStatus.status " is equal to "RUNNING", it provides the more detailed progress information.

allowedValues for " mLTrainingProcess.progressStatus.status " = "RUNNING":
-	“COLLECTING_DATA”
-	“PREPARING_TRAINING_DATA”
-	“TRAINING” + DN of the MLEntityModel being trained

The allowed values for " mLTrainingProcess.progressStatus.status " = "CANCELLING" are vendor specific.

The allowed values for " mLTrainingProcess.progressStatus.status " = "NOT_STARTED" are vendor specific.
	Type: String
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	inferenceOutputName
	It indicates the name of an inference output of an ML entitymodel.

allowedValues: the name of the MDA output IEs (see 3GPP TS 28.104 [2]), name of analytics output IEs of NWDAF (see TS 23.288 [3]), RAN inference output IE name(s), and vendor's specific extensions.
	Type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	performanceMetric
	It indicates the performance metric used to evaluate the performance of an ML entitymodel, e.g. "accuracy", "precision", "F1 score", etc.

allowedValues: N/A.
	Type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	performanceScore
	It indicates the performance score (in unit of percentage) of an ML entitymodel when performing inference on a specific data set (Note).

The performance metrics may be different for different kinds of ML models depending on the nature of the model. For instance, for numeric prediction, the metric may be accuracy; for classification, the metric may be a combination of precision and recall, like the "F1 score".

allowedValues: { 0..100 }.
	Type: Real
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	MLTrainingRequest.cancelRequest
	It indicates whether the ML training MnS consumer cancels the ML model training request.
Setting this attribute to "TRUE" cancels the ML model training request. The request can be resumed by setting this attribute to "FALSE" when it is suspended. Cancellation is possible when the requestStatus is the "NOT_STARTED", " IN_PROGRESS", and "SUSPENDED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	MLTrainingRequest.suspendRequest
	It indicates whether the ML training MnS consumer suspends the /ML model training request.
Setting this attribute to "TRUE" suspends the ML model training process. Suspension is possible when the requestStatus is not the "FINISHED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	MLTrainingProcess.cancelProcess
	It indicates whether the ML training MnS consumer cancels the MLmodel training process.
Setting this attribute to "TRUE" cancels the ML model training requestprocess. Cancellation is possible when the " mLTrainingProcess.progressStatus.status" is not the "FINISHED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	MLTrainingProcess.suspendProcess
	It indicates whether the ML training MnS consumer suspends the ML model training process.
Setting this attribute to "TRUE" suspends the ML model training process. The process can be resumed by setting this attribute to “FALSE” when it is suspended. Suspension is possible when the " mLTrainingProcess.progressStatus.status" is not the "FINISHED", "CANCELLING" or "CANCELLED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	inferenceEntityModelRef
	It describes the target entities that will use the ML entitymodel for inference.
	Type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	dataProviderRef
	It describes the entities that have provided or should provide data needed by the ML entitymodel e.g. for training or inference
	Type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	areNewTrainingDataUsed
	It indicates whether the other new training data have been used for the ML model training.

allowedValues: TRUE, FALSE.
	type: Boolean
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	trainingDataQualityScore
	It indicates numerical value that represents the dependability/quality of a given observation and measurement type. The lowest value indicates the lowest level of dependability of the data, i.e. that the data is not usable at all.

 allowedValues: { 0..100 }.
	Type: Real
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	decisionConfidenceScore
	It is the numerical value that represents the dependability/quality of a given decision generated by the AI/ML inference function. The lowest value indicates the lowest level of dependability of the decisions, i.e. that the data is not usable at all.

allowedValues: { 0..100 }.
	Type: Real
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	expectedRuntimeContext
	This describes the context where an MLEntityModel is expected to be applied.

allowedValues: N/A
	Type: MLContext
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	trainingContext
	This specify the context under which the MLEntityModel has been trained.

allowedValues: N/A
	Type: MLContext
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	runTimeContext
	This specifies the context where the MLmodel or entitymodel is being applied.

allowedValues: N/A
	Type: MLContext
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLEntityToTrainRef
	It identifies the DN of the MLEntity requested to be trained.

allowedValues: DN
	Type: DN
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLEnityGeneratedRef
	It identifies the DN of the MLEntity generated by the ML training.

allowedValues: DN
	Type: DN
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLEntityModelRepositoryRef
	It identifies the DN of the MLEntityModelRepository.
	Type: DN
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: False

	mLRepositoryId
	It indicates the unique ID of the ML repository.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	modelPerformanceValidation
	It indicates the performance score of the ML entitymodel when performing on the validation data.

allowedValues: N/A
	type: ModelPerformance
multiplicity: *
isOrdered: N/AFalse
isUnique: TrueN/A
defaultValue: None
isNullable: False

	dataRatioTrainingAndValidation
	It indicates the ratio (in terms of quantity of data samples) of the training data and validation data used during the training and validation process. It is represented by the percentage of the validation data samples in the total training data set (including both training data samples and validation data samples). The value is an integer reflecting the rounded number of percent * 100.

allowedValues: { 0 .. 100 }.
	type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLEntityIdList
	It identifies a list of ML entities.

allowedValues: N/A.
	type: String
multiplicity: *
isOrdered: N/A
isUnique: True
defaultValue: None
isNullable: False

	MLTestingRequest.requestStatus
	It describes the status of a particular ML testing request.
allowedValues: NOT_STARTED, IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and CANCELLED.
	type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	MLTestingRequest.cancelRequest
	It indicates whether the ML testing MnS consumer cancels the ML testing request.
Setting this attribute to "TRUE" cancels the ML testing request. Cancellation is possible when the requestStatus is the "NOT_STARTED", " IN_PROGRESS", and "SUSPENDED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	MLTestingRequest.suspendRequest
	It indicates whether the ML testing MnS consumer suspends the ML testing request.
Setting this attribute to "TRUE" suspends the ML testing request. The request can be resumed by setting this attribute to “FALSE” when it is suspended. Suspension is possible when the requestStatus is not the "FINISHED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	mLEntityToTestRef
	It identifies the DN of the MLEntity requested to be tested.

allowedValues: DN
	Type: DN
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	modelPerformanceTesting
	It indicates the performance score of the ML entitymodel when performing on the testing data.

allowedValues: N/A.
	type: ModelPerformance
multiplicity: *
isOrdered: FalseN/A
isUnique: TrueN/A
defaultValue: None
isNullable: False

	mLTestingResult
	It provides the address where the testing result (including the inference result for each testing data example) is provided.
The detailed testing result format is vendor specific.

allowedValues: N/A.

	type: String
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: True

	testingRequestRef
	It identifies the DN of the MLTestingRequest MOI.

allowedValues: DN
	Type: DN
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: True

	supportedPerformanceIndicators
	This parameter lists specific PerformanceIndicator(s) of an ML entitymodel.

allowedValues: N/A.
	type: SupportedPerfIndicator
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	performanceIndicatorName
	It indicates the identifier of the specific performance indicator.
allowedValues: N/A
	type: string
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	isSupportedForTraining
	It indicates whether the specific performance indicator is supported a performance metric of ML model training for the ML entitymodel Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	type: Boolean
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: FALSE
isNullable: False

	isSupportedForTesting
	It indicates whether the specific performance indicator is supported a performance metric of ML model testing for the ML entitymodel.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	type: Boolean
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: FALSE
isNullable: False

	mLUpdateProcessRef
	It is the DN of the mLUpdateProcess MOI that represents the process of updating an ML entitymodel.

allowedValues: DN.
	Type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLUpdateRequestRef
	It is the DN of the MLUpdateRequest MOI that represents an
 ML update request.

allowedValues: DN.
	Type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLUpdateReportRef
	It is the DN of the MLUpdateReport MOI that represents an ML update report.

allowedValues: DN.
	Type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLUpdateReportingPeriod
	It specifies the time duration upon which the MnS consumer expects the ML update is reported.
	Type: TimeWindow
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: False

	availMLCapabilityReport
	It represents the available ML capabilities.

allowedValues: N/A.
	Type: AvailMLCapabilityReport multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	UpdatedMLCapability
	It represents the updated ML capabilities.

allowedValues: N/A.
	Type: AvailMLCapabilityReport multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	newCapabilityVersionId
	It indicates the specific version of AI/ML capabilities to be applied for the update. It is typically the one indicated by the MLCapabilityVersionID in a newCapabilityVersion
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mlCapabilityVersionId
	It indicates the version of ML capabilities that is available for the update.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	performanceGainThreshold
	It defines the minimum performance gain as a percentage that shall be achieved with the capability update, i.e., the difference in the performances between the existing capabilities and the new capabilities should be at least performanceGainThreshold otherwise the new capabilities should not be applied.
Allowed value: float between 0.0 and 100.0
	type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	expectedPerformanceGains
	It indicates the expected performance gain if/when the AI/ML capabilities of the respective network function are updated with/to the specific set of newly available AI/ML capabilities.
	Type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	updateTimeDeadline
	It indicates the maximum as stated in the MLUpdate request that should be taken to complete the update
	Type: TimeWindow
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: False

	mLEntityModelRef
	It indicates the list DN of references to MLEntityModel instances that can be updated.
	Type: DN
multiplicity: 1 .. *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	MLUpdateRequest.requestStatus
	It describes the status of a particular ML update request.
allowedValues: NOT_STARTED, IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and CANCELLED.
	Type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	MLUpdateRequest.cancelRequest
	It indicates whether the MnS consumer cancels the ML update request.
Setting this attribute to "TRUE" cancels the ML update request. Cancellation is possible when the requestStatus is the "NOT_STARTED", " IN_PROGRESS", and "SUSPENDED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	MLUpdateRequest.suspendRequest
	It indicates whether the MnS consumer suspends the ML update request.
Setting this attribute to "TRUE" suspends the ML update request. The request can be resumed by setting this attribute to “FALSE” when it is suspended. Suspension is possible when the requestStatus is not the "FINISHED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	memberMLEntityModelRefList
	It identifies the list of member ML entities models within a level of an ML entitymodel coordination group.

allowedValues: DN list
	Type: DN
multiplicity: 2..*
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

	mLEntityModelCoordinationGroupToTrainRef
	It identifies the DN of the MLlEntityModelCoordinationGroup requested to be trained.

allowedValues: DN
	Type: DN
multiplicity: 0..1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: False

	mLEnityCoordinationGroupGeneratedRef
	It identifies the DN of the MlEntityCoordinationGroup generated by the ML training.
allowedValues: DN
	Type: DN
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLEntityCoordinationGroupToTestRef
	It identifies the DN of the MlEntityCoordinationGroup requested to be tested.

allowedValues: DN
	Type: DN
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	retrainingEventsMonitorRef
	It indicates the DN of the ThresholdMonitor MOI that indicates the performance measurements and its corresponding thresholds to be used by MnS producer to initiate the re-training of the MLEntityModel.
	Type: DN
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	sourceTrainedMLEntityModelRef
	It identifies the DN of the source trained MLEntityModel whose copy has been loaded from the ML entitymodel repository to the inference function.

allowedValues: DN
	Type: DN
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: True

	MLEntityModelLoadingRequest.requestStatus
	It describes the status of a particular ML entitymodel loading request.
allowedValues: NOT_STARTED, IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and CANCELLED.
	type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	MLEntityModelLoadingRequest.cancelRequest
	It indicates whether the MnS consumer cancels the ML entitymodel loading request.
Setting this attribute to "TRUE" cancels the ML entitymodel loading. Cancellation is possible when the requestStatus is the "NOT_STARTED", " IN_PROGRESS", and "SUSPENDED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	MLEntityModelLoadingRequest.suspendRequest
	It indicates whether the MnS consumer suspends the ML entity lmodel oading request.
Setting this attribute to "TRUE" suspends the ML entity model loading request. The request can be resumed by setting this attribute to “FALSE” when it is suspended. Suspension is possible when the requestStatus is not the "FINISHED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	mLEntityModelToLoadRef
	It identifies the DN of a trained MLModelEntity requested to be loaded to the target inference function(s).
	Type: DN
multiplicity: 0..1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: True

	policyForLoading

	It provides the policy for controlling ML entitymodel loading triggered by the MnS producer.

This policy contains two thresholds in the thresholdList attribute. The first threshold is related to the ML entity to be loaded, and the second threshold is related to the existing ML entitymodel being used for inference.
	Type: AIMLManagementPolicy
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: True

	thresholdList
	It provides the list of threshold.
	Type: ThresholdInfo
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: FalseTrue

	MLModelEntityLoadingProcess.progressStatus.progressStateInfo
	t provides the following specialization for the "progressStateInfo" attribute of the "ProcessMonitor" data type for the "MLModelEntityLoadingProcess.progressStatus".

When the ML model loading is in progress, and the " MLModelEntityLoadingProcess.progressStatus.status " is equal to "RUNNING", it provides the more detailed progress information.

allowedValues for " MLModelEntityLoadingProcess.progressStatus.status " = "RUNNING":
The allowed values for " MLModelEntityLoadingProcess.progressStatus.status " = "CANCELLING" are vendor specific.
The allowed values for " MLModelEntityLoadingProcess.progressStatus.status " = "NOT_STARTED" are vendor specific.

	Type: String
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	MLModelEntityLoadingProcess.cancelProcess
	It indicates whether the MnS consumer cancels the ML entity model loading process.
Setting this attribute to "TRUE" cancels the process. Cancellation is possible when the "MLModelEntityLoadingProcess.progressStatus.status" is not the "FINISHED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	MLModelEntityLoadingProcess.suspendProcess
	It indicates whether the MnS consumer suspends the ML entity model loading process.
Setting this attribute to "TRUE" suspends the process. The process can be resumed by setting this attribute to "FALSE" when it is suspended. Suspension is possible when the "MLModelEntityLoadingProcess.progressStatus.status" is not the "FINISHED", "CANCELLING" or "CANCELLED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	MLModelEntityLoadingRequestRef
	It identifies the DN of the associated MLModelEntityLoadingRequest.

allowedValues: DN.
	Type: DN
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: True

	MLModelEntityLoadingPolicyRef
	It identifies the DN of the associated MLModelEntityLoadingPolicyRef.

allowedValues: DN.
	Type: DN
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: True

	LoadedMLModelEntityRef
	It identifies the DN of the MLModelEntity that has been loaded to the inference function.

allowedValues: DN
	Type: DN
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: True

	activationStatus
	It describes the activation status.

allowedValues: ACTIVATED, DEACTIVATED.
	Type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	AIMLManagementPolicy
.managedActivationScope
	It provides a list of sub scopes for which ML inference is activated as triggered by a policy on the MnS producer. For example, the sub scopes may be a list of cells or of geographical areas. The list is an ordered list indicating the inference is activated for the first sub scope and gradually extended to the next sub scope if the policy evaluates to true.

allowedValues: N/A

	Type: ManagedActivationScope
multiplicity: 1
isOrdered: N/AFalse
isUnique: N/ATrue
defaultValue: None
isNullable: False

	AIMLInferenceFunction.managedActivationScope
	It provides a list of sub scopes for which ML inference is activated as triggered by a policy on the MnS producer. For example, the sub scopes may be a list of cells or of geographical areas. The list is an ordered list indicating the inference is activated for the first sub scope and gradually extended to the next sub scope if the policy evaluates to true.

allowedValues: N/A

	Type: AIMLManagementPolicy
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	ManagedActivationScope.dNList
	It indicates the list of DN, the list is an ordered list indicating the inference is activated for the first sub scope and gradually extended to the next sub scope.

allowedValues: N/A

	Type: DN
multiplicity: *
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

	ManagedActivationScope.timeWindow
	It indicates the list of time window; the list is an ordered list indicating the inference is activated for the first sub scope and gradually extended to the next sub scope.

allowedValues: N/A

	Type: TimeWindow
multiplicity: *
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

	ManagedActivationScope.geoPolygon
	It indicates the list of GeoArea, the list is an ordered list indicating the inference is activated for the first sub scope and gradually extended to the next sub scope.

allowedValues: N/A

	Type: GeoArea
multiplicity: *
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

	usedByFunctionRefList
	It provides the DNs of the functions supported by the AIMLInferenceFunction.

allowedValues: N/A

	Type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	inferenceOutputId
	It identifies an inference output within an AIMLinferenceReport.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	inferenceOutputs
	It indicates the Outputs that have been derived by the AIMLInferenceFunction instance from a specific ML modelentity.

Each ML entitymodel, inferenceOutputs may be a set of values.

allowedValues: N/A.
	type: InferenceOutput
multiplicity:f 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	inferencePerformance
	It indicates the performance score of the ML modelentity during Inference.

allowedValues: N/A.
	type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	inferenceOutputTime
	It indicates the time at which the inference output is generated.

allowedValues: N/A
	Type: DateTime
multiplicity: *
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

	outputResult
	It indicates the result of an inference.
	type: AttributeValuePair
multiplicity: *
isOrdered: FALSEalse
isUnique: TRUErue
defaultValue: Null
isNullable: False

	AIMLInferenceEmulationReportRefs
	It indicates the DNs of set of reports generated on AIMLInferenceEmulationFunction. The AIMLInferenceEmulationReport has the same structure as the AIMLInferenceReport.

allowedValues: N/A.

	type: DN of AIMLInferenceReport
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLCapabilitiesInfoList
	It indicates information about what an ML entity model can generate inference for.

allowedValues: N/A.
	type: MLCapabilityInfo
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	capabilityName
	It indicates the name of a capability for which an ML entitymodel can generate inference. The capability is defined by Mns producer which can be of traffic analysis capability, coverage analises capability,mobility analises capability or vendor specific extensions.

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLCapabilityParameters
	It indicates a set of optional parameters that apply for an aIMLInferenceNameinferenceType and capabilityName.

allowedValues: N/A
	Type: AttributeValuePair
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	NOTE:	When the performanceScore is to indicate the performance score for ML model training, the data set is the training data set. When the performanceScore is to indicate the performance score for ML validation, the data set is the validation data set. When the performanceScore is to indicate the performance score for ML model testing, the data set is the testing data set.

[bookmark: _Toc106015910][bookmark: _Toc106098549][bookmark: _Toc163137665]
Next change
[bookmark: _Toc106015917][bookmark: _Toc106098556][bookmark: _Toc163137672][bookmark: _Toc106015919]A.2	PlantUML code for Figure 7.3a.1.1.1-1: NRM fragment for ML model training
[bookmark: _Toc106015918][bookmark: _Toc106098557][bookmark: _Toc163137673]@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class ManagedEntity <<ProxyClass>>
class MLEntity <<InformationObjectClass>>
class MLEntityCoordinationGroup <<InformationObjectClass>>
class MLTrainingFunction <<InformationObjectClass>>
class MLTrainingRequest <<InformationObjectClass>>
class MLTrainingReport <<InformationObjectClass>>
class MLTrainingProcess <<InformationObjectClass>>
class MLEntityRepository <<InformationObjectClass>>
class ThresholdMonitor <<InformationObjectClass>>

ManagedEntity "1" *-- "*" MLTrainingFunction: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingProcess: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingRequest: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingReport: <<names>>
'SubNetwork "1" *-- "*" MLEntityRepository: <<names>>
MLEntityRepository "1" *-- "*" MLEntity : <<names>>
MLTrainingFunction "1" *-- "*" ThresholdMonitor : <<names>>

MLTrainingFunction "*" -l-> "*" MLEntityRepository
MLTrainingProcess "1" <-r-> "1" MLTrainingReport
MLTrainingReport "1" --> "1" MLTrainingReport
MLTrainingProcess "*" -l-> "*" MLTrainingRequest
MLTrainingRequest "*" --> "0..1" MLEntity
MLTrainingRequest "*" --> "0..1" MLEntityCoordinationGroup
MLTrainingReport "*" --> "1" MLEntity
MLTrainingReport "*" --> "1" MLEntityCoordinationGroup
MLEntityCoordinationGroup "*" --> "2..*" MLEntity
MLEntity"*" -u-> "1" ThresholdMonitor

(MLTrainingReport, MLEntity) ... (MLTrainingReport, MLEntityCoordinationGroup) : {xor}
(MLTrainingRequest, MLEntity) ... (MLTrainingRequest, MLEntityCoordinationGroup) : {xor}

note left of ManagedEntity
 This represents the following IOCs:
 SubNetwork or
 ManagedFunction or
 ManagedElement
 end note

@enduml

@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class ManagedEntity <<ProxyClass>>
class MLModel <<InformationObjectClass>>
class MLModelCoordinationGroup <<InformationObjectClass>>
class MLTrainingFunction <<InformationObjectClass>>
class MLTrainingRequest <<InformationObjectClass>>
class MLTrainingReport <<InformationObjectClass>>
class MLTrainingProcess <<InformationObjectClass>>
class MLModelRepository <<InformationObjectClass>>

ManagedEntity "1" *-- "*" MLTrainingFunction: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingProcess: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingRequest: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingReport: <<names>>
MLTrainingFunction "1" *-- "*" ThresholdMonitor : <<names>>

MLTrainingFunction "*" --> "1" MLModelRepository
MLTrainingProcess "1" -r-> "1" MLTrainingReport
MLTrainingProcess "*" <-l- "*" MLTrainingRequest
MLTrainingRequest "1" --> "0..1" MLModel
MLTrainingRequest "1" -r-> "0..1" MLModelCoordinationGroup
MLTrainingReport "1" --> "0..1" MLModel
MLTrainingReport "1" --> "0..1" MLModelCoordinationGroup
MLTrainingProcess "1" --> "0..1" MLModel
MLTrainingProcess "1" --> "0..1" MLModelCoordinationGroup
MLModel"*" -l-> "1" ThresholdMonitor
MLTrainingReport "1" -r-> "1" MLTrainingReport

note left of ManagedEntity
 This represents the following IOCs:
 SubNetwork or
 ManagedFunction or
 ManagedElement
 end note

@enduml
A.3	PlantUML code for Figure 7.3a.1.1.2-1: Inheritance Hierarchy for ML model training related NRMs
@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class ManagedFunction <<InformationObjectClass>>
class MLTrainingFunction <<InformationObjectClass>>
class MLTrainingRequest <<InformationObjectClass>>
class MLTrainingProcess <<InformationObjectClass>>
class MLTrainingReport <<InformationObjectClass>>

ManagedFunction <|-- MLTrainingFunction
Top <|-- MLTrainingRequest
Top <|-- MLTrainingProcess
Top <|-- MLTrainingReport

@enduml

[bookmark: _Toc163137674]A.4	PlantUML code for Figure 7.2a.1.2-1: Inheritance Hierarchy for common information models for AI/ML management
@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class MLEntityRepository <<InformationObjectClass>>
class MLEntity <<InformationObjectClass>>
class MLEntityCoordinationGroup <<InformationObjectClass>>

Top <|-- MLEntityRepository
Top <|-- MLEntity
Top <|-- MLEntityCoordinationGroup

@enduml

@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class MLModelRepository <<InformationObjectClass>>
class MLModel <<InformationObjectClass>>
class MLModelCoordinationGroup <<InformationObjectClass>>

Top <|-- MLModelRepository
Top <|-- MLModel
Top <|-- MLModelCoordinationGroup

@enduml

[bookmark: _Toc163137675]A.5	PlantUML code for Figure 7.2a.1.1-1: Relationships for common information models for AI/ML management
[bookmark: _Toc163137676]@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class ManagedEntity <<ProxyClass>>
class MLModelRepository <<InformationObjectClass>>
class MLModel <<InformationObjectClass>>
class MLModelCoordinationGroup <<InformationObjectClass>>

ManagedEntity "1" *-- "*" MLModelRepository : <<names>>
MLModelRepository "1" *-- "*" MLModel: <<names>>
MLModelRepository "1" *-- "*" MLModelCoordinationGroup: <<names>>

MLModelCoordinationGroup "*" -r-> "2..*" MLModel

note left of ManagedEntity
 This represents the following IOCs:
 ManagedElement or
 SubNetwork
 end note

@enduml@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class MLEntityRepository <<InformationObjectClass>>
class MLEntity <<InformationObjectClass>>
class MLEntityCoordinationGroup <<InformationObjectClass>>
class SubNetwork <<InformationObjectClass>>

MLEntityRepository "1" *-- "*" MLEntity: <<names>>
MLEntityRepository "1" *-- "*" MLEntityCoordinationGroup: <<names>>
SubNetwork"1" *-- "*" MLEntityRepository : <<names>>

MLEntityCoordinationGroup "*" -r-> "2..*" MLEntity

@enduml
A.6	PlantUML code for Figure 7.3a.1.1.1-2: NRM fragment for ML entity model testing
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class MLTestingEntity <<ProxyClass>>
class TestingFunction <<ProxyClass>>
class MLEntity <<InformationObjectClass>>
class MLEntityCoordinationGroup <<InformationObjectClass>>
class MLTestingFunction <<InformationObjectClass>>
class MLTestingRequest <<InformationObjectClass>>
class MLTestingReport <<InformationObjectClass>>

MLTestingEntity "1" *-- "*" MLTestingFunction: <<names>>

TestingFunction "1" *-- "*" MLTestingRequest : <<names>>
TestingFunction "1" *-- "*" MLTestingReport : <<names>>

MLTestingRequest "*" --> "0..1" MLEntity
MLTestingRequest "*" --> "0..1" MLEntityCoordinationGroup
MLTestingReport "*" -l-> "1" MLTestingRequest

(MLTestingRequest, MLEntity) ... (MLTestingRequest, MLEntityCoordinationGroup) : {xor}

note left of MLTestingEntity
 Represents the following IOCs:
 Subnetwork or
 ManagedFunction or
 ManagedElement
 end note

note left of TestingFunction
 Represents the following IOCs:
 MLTestingFunction or
 MLTrainingFunction
 end note

@enduml
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class MLTestingEntity <<ProxyClass>>
class TestingFunction <<ProxyClass>>
class MLModel <<InformationObjectClass>>
class MLModelCoordinationGroup <<InformationObjectClass>>
class MLTestingFunction <<InformationObjectClass>>
class MLTestingRequest <<InformationObjectClass>>
class MLTestingReport <<InformationObjectClass>>

MLTestingEntity "1" *-- "*" MLTestingFunction: <<names>>

TestingFunction "1" *-- "*" MLTestingRequest : <<names>>
TestingFunction "1" *-- "*" MLTestingReport : <<names>>

MLTestingRequest "*" --> "0..1" MLModel
MLTestingRequest "*" --> "0..1" MLModelCoordinationGroup
MLTestingReport "*" -l-> "1" MLTestingRequest

(MLTestingRequest, MLModel) ... (MLTestingRequest, MLModelCoordinationGroup) : {xor}

note left of MLTestingEntity
 Represents the following IOCs:
 Subnetwork or
 ManagedFunction or
 ManagedElement
 end note

note left of TestingFunction
 Represents the following IOCs:
 MLTestingFunction or
 MLTrainingFunction
 end note

@enduml

	Next change

[bookmark: _Toc163137678]A.8	PlantUML code for Figure 7.3a.4.1.1-1: NRM fragment for ML update
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class MLUpdateEntity <<ProxyClass>>
class MLUpdateFunction <<InformationObjectClass>>
class MLUpdateRequest <<InformationObjectClass>>
class MLUpdateProcess <<InformationObjectClass>>
class MLUpdateReport <<InformationObjectClass>>
class MLEntity MLModel <<InformationObjectClass>>

MLUpdateEntity "1" *-- "*" MLUpdateFunction:<<names>>
MLUpdateFunction "1" *-- "*" MLUpdateRequest:<<names>>
MLUpdateFunction "1" *-- "*" MLUpdateProcess:<<names>>
MLUpdateFunction "1" *-- "*" MLUpdateReport:<<names>>

MLUpdateFunction "1" --> "*" "MLEntityMLModel"
MLUpdateRequest "*" <-r-> "1" "MLUpdateProcess"
MLUpdateProcess "1" <-r-> "1" "MLUpdateReport"
MLUpdateProcess "*" --> "*" "MLEntityMLModel"
MLUpdateReport "*" --> "*" "MLEntityMLModel"
MLUpdateRequest "*" --> "*" "MLEntityMLModel"

note left of MLUpdateEntity
 Represents the IOCs:
 SubNetwork or
 ManagedFunction or
 ManagementFunction
 end note

@enduml

[bookmark: _Toc163137680]A.10	PlantUML code for Figure 7.3a.3.1.1-1: NRM fragment for ML entity loading
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class AIMLInferenceFunction <<InformationObjectClass>>
class MLModel <<InformationObjectClass>>
class MLModelLoadingRequest <<InformationObjectClass>>
class MLModelLoadingPolicy <<InformationObjectClass>>
class MLModelLoadingProcess <<InformationObjectClass>>

AIMLInferenceFunction"1" *-- "*" MLModelLoadingRequest : <<names>>
AIMLInferenceFunction "1" *-- "*" MLModelLoadingPolicy : <<names>>
AIMLInferenceFunction "1" *-- "*" MLModelLoadingProcess : <<names>>

MLModelLoadingRequest "1" <-r- "*" MLModelLoadingProcess
MLModelLoadingProcess "*" -r-> "1" MLModelLoadingPolicy

MLModelLoadingRequest "1" --> "1" MLModel
MLModelLoadingProcess "1" --> "1" MLModel

AIMLInferenceFunction "1" *-- "*" MLModel : <<names>>

(MLModelLoadingProcess, MLModelLoadingRequest) ... (MLModelLoadingProcess, MLModelLoadingPolicy) : {xor}

@enduml@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class AiMlInferenceFunction <<InformationObjectClass>>
class MLEntity <<InformationObjectClass>>
class MLEntityLoadingRequest <<InformationObjectClass>>
class MLEntityLoadingPolicy <<InformationObjectClass>>
class MLEntityLoadingProcess <<InformationObjectClass>>

AiMlInferenceFunction "1" *-- "*" MLEntityLoadingRequest : <<names>>
AiMlInferenceFunction "1" *-- "*" MLEntityLoadingPolicy : <<names>>
AiMlInferenceFunction "1" *-- "*" MLEntityLoadingProcess : <<names>>

MLEntityLoadingRequest "1" <-r- "*" MLEntityLoadingProcess
MLEntityLoadingProcess "*" -r-> "1" MLEntityLoadingPolicy

MLEntityLoadingRequest "1" --> "1" MLEntity
MLEntityLoadingProcess "1" --> "1" MLEntity

AiMlInferenceFunction "1" *-- "*" MLEntity : <<names>>

(MLEntityLoadingProcess, MLEntityLoadingRequest) ... (MLEntityLoadingProcess, MLEntityLoadingPolicy) : {xor}

@enduml
[bookmark: _Toc163137681]A.11	PlantUML code for Figure 7.3a.3.1.2-1: Inheritance Hierarchy for ML entity loading related NRMs
@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>

class MLModelLoadingRequest <<InformationObjectClass>>
class MLModelLoadingPolicy <<InformationObjectClass>>
class MLModelLoadingProcess <<InformationObjectClass>>

Top <|-- MLModelLoadingRequest
Top <|-- MLModelLoadingPolicy
Top <|-- MLModelLoadingProcess

@enduml@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>

class MLEntityLoadingRequest <<InformationObjectClass>>
class MLEntityLoadingPolicy <<InformationObjectClass>>
class MLEntityLoadingProcess <<InformationObjectClass>>

Top <|-- MLEntityLoadingRequest
Top <|-- MLEntityLoadingPolicy
Top <|-- MLEntityLoadingProcess

@enduml

[bookmark: _Toc163137682]A.12	PlantUML code for Figure 7.3a.4.1.1-2: NRM fragment for AI/ML inference function
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class AIMLInferenceFunction <<InformationObjectClass>>
class AIMLInferenceReport <<InformationObjectClass>>
class MLEntity MLModel <<InformationObjectClass>>
class ManagedEntity <<ProxyClass>>
class AIMLSupportedFunction <<ProxyClass>>

ManagedEntity "1" *-- "*" AIMLInferenceFunction : <<names>>
AIMLInferenceFunction "*" <-l-> "*" AIMLSupportedFunction
MLEntity MLModel "*" <-r-> "*" AIMLSupportedFunction
MLEntity MLModel "*" <-r-> "*" AIMLInferenceFunction
AIMLInferenceFunction "1" *-- "*" AIMLInferenceReport: <<names>>
MLEntity MLModel "1..*" <--> "*" AIMLInferenceReport

note right of ManagedEntity #white
 Represents the IOCs:
 ManagedElement or
 SubNetwork or
 ManagedFunction
 end note

note top of AIMLSupportedFunction #white
 Represents the IOCs:
 DMROFunction or
 DLBOFunction or
 DESManagementFunction or
 MDAFunction or
 AnLFFunction
 end note

@enduml

	Next change

[bookmark: _Toc106015922][bookmark: _Toc106098561][bookmark: _Toc163137689]B.2.1	OpenAPI document "TS28105_AiMlNrm.yaml"
*** OpenAPI/TS28105_AiMlNrm.yaml ***
<CODE BEGINS>
openapi: 3.0.1
info:
 title: AI/ML NRM
 version: 18.3.0
 description: >-
 OAS 3.0.1 specification of the AI/ML NRM
 © 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
 All rights reserved.
externalDocs:
 description: 3GPP TS 28.105; AI/ML Management
 url: http://www.3gpp.org/ftp/Specs/archive/28_series/28.105/
paths: {}
components:
 schemas:

#-------- Definition of types---

 MLContext:
 type: object
 properties:
 inferenceEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 dataProviderRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'

 RequestStatus:
 type: string
 enum:
 - NOT_STARTED
 - IN_PROGRESS
 - SUSPENDED
 - FINISHED
 - CANCELLED
 - CANCELLING

 ModelPerformance:
 type: object
 properties:
 inferenceOutputName:
 type: string
 performanceMetric:
 type: string
 performanceScore:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Float'
 decisionConfidenceScore:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Float'

 ProcessMonitor:
 description: >-
 This data type is the "ProcessMonitor" data type defined in “genericNrm.yaml”
 with specialisations for usage in TS 28.105.
 type: object
 properties:
 status:
 type: string
 progressPercentage:
 type: integer
 minimum: 0
 maximum: 100
 progressStateInfo:
 type: string
 resultStateInfo:
 type: string

 AIMLManagementPolicy:
 description: >-
 This data type represents the properties of a policy for AI/ML management.
 type: object
 properties:
 thresholdList:
 type: array
 items:
 $ref: 'TS28623_ThresholdMonitorNrm.yaml#/components/schemas/ThresholdInfo'
 managedActivationScope:
 $ref: '#/components/schemas/ManagedActivationScope'

 SupportedPerfIndicator:
 type: object
 properties:
 performanceIndicatorName:
 type: string
 isSupportedForTraining:
 type: boolean
 isSupportedForTesting:
 type: boolean

 ManagedActivationScope:
 oneOf:
 - type: object
 properties:
 dNList:
 type: array
 items:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 - type: object
 properties:
 timeWindow:
 type: array
 items:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/TimeWindow'
 - type: object
 properties:
 geoPolygon:
 type: array
 items:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/GeoArea'

 MLCapabilityInfo:
 type: object
 properties:
 aIMLInferenceName:
 inferenceType:
 type: string
 capabilityName:
 type: string
 mLCapabilityParameters:
 description: A map (list of key-value pairs) for an aIMLInferenceName and capabilityName
 description: A map (list of key-value pairs) for an inferenceType and capabilityName
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/AttributeNameValuePairSet'
 AvailMLCapabilityReport:
 type: object
 properties:
 mLCapabilityVersionId:
 type: array
 items:
 type: string
 expectedPerformanceGains:
 type: array
 items:
 $ref: '#/components/schemas/ModelPerformance'
 mLModelEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'

 InferenceOutput:
 type: object
 properties:
 inferenceOutputId:
 type: array
 items:
 type: string
 aIMLInferenceName:
 inferenceType:
 type: string
 inferenceOutputTime:
 type: array
 items:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DateTime'
 # FIXME, isOrder/isUnique both as True
 inferencePerformance:
 $ref: '#/components/schemas/ModelPerformance'
 outputResult:
 description: A map (list of key-value pairs) for Inference result name and it's value
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/AttributeNameValuePairSet'

#-------- Definition of types for name-containments ------
 SubNetwork-ncO-AiMlNrm:
 type: object
 properties:
 MLTrainingFunction:
 $ref: '#/components/schemas/MLTrainingFunction-Multiple'
 MLTestingFunction:
 $ref: '#/components/schemas/MLTestingFunction-Multiple'
 MLEntityRepository:
 $ref: '#/components/schemas/MLEntityRepository-Multiple'
 MLUpdateFunction:
 $ref: '#/components/schemas/MLUpdateFunction-Multiple'
 AIMLInferenceFunction:
 $ref: '#/components/schemas/AIMLInferenceFunction-Multiple'
 AIMLInferenceEmulationFunction:
 $ref: '#/components/schemas/AIMLInferenceEmulationFunction-Multiple'
 $ref: '#/components/schemas/AIMLInferenceFunction-Multiple'

 ManagedElement-ncO-AiMlNrm:
 type: object
 properties:
 MLTrainingFunction:
 $ref: '#/components/schemas/MLTrainingFunction-Multiple'
 MLTestingFunction:
 $ref: '#/components/schemas/MLTestingFunction-Multiple'
 MLEntityModelRepository:
 $ref: '#/components/schemas/MLEntityRepository-Multiple'
 MLUpdateFunction:
 $ref: '#/components/schemas/MLUpdateFunction-Multiple'
 AIMLInferenceFunction:
 $ref: '#/components/schemas/AIMLInferenceFunction-Multiple'
 AIMLInferenceEmulationFunction:
 $ref: '#/components/schemas/AIMLInferenceEmulationFunction-Multiple'

#-------- Definition of concrete IOCs --

 MLTrainingFunction-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-Attr'
 - type: object
 properties:
 mLEntityRepositoryRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-ncO'
 - type: object
 properties:
 MLTrainingRequest:
 $ref: '#/components/schemas/MLTrainingRequest-Multiple'
 MLTrainingProcess:
 $ref: '#/components/schemas/MLTrainingProcess-Multiple'
 MLTrainingReport:
 $ref: '#/components/schemas/MLTrainingReport-Multiple'
 ThresholdMonitors:
 $ref: 'TS28623_ThresholdMonitorNrm.yaml#/components/schemas/ThresholdMonitor-Multiple'

 MLTrainingRequest-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - type: object
 properties:
 aIMLInferenceName:
 inferenceType:
 type: string
 candidateTrainingDataSource:
 type: array
 items:
 type: string
 trainingDataQualityScore:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Float'
 trainingRequestSource:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 requestStatus:
 $ref: '#/components/schemas/RequestStatus'
 expectedRuntimeContext:
 $ref: '#/components/schemas/MLContext'
 performanceRequirements:
 type: array
 items:
 $ref: '#/components/schemas/ModelPerformance'
 cancelRequest:
 type: boolean
 suspendRequest:
 type: boolean
 mLEntityRef:
 mLEntityToTrainRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 mLEntityCoordinationGroupRef:
 mLEntityCoordinationGroupToTrainRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'

 MLTrainingProcess-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - type: object
 properties:
 priority:
 type: integer
 terminationConditions:
 type: string
 enum:
 - UPDATED_IN_INFERENCE_FUNCTION
 - INFERENCE FUNCTION_TERMINATED
 - INFERENCE FUNCTION_UPGRADED
 - INFERENCE_CONTEXT_CHANGED
 progressStatus:
 $ref: '#/components/schemas/ProcessMonitor'
 cancelProcess:
 type: boolean
 suspendProcess:
 type: boolean
 trainingRequestRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 trainingReportRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 mLEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'

 MLTrainingReport-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - type: object
 properties:
 areConsumerTrainingDataUsed:
 type: string
 enum:
 - ALL
 - PARTIALLY
 - NONE
 usedConsumerTrainingData:
 type: array
 items:
 type: string
 modelconfidenceIndication:
 type: integer
 modelPerformanceTraining:
 type: array
 items:
 $ref: '#/components/schemas/ModelPerformance'
 modelPerformanceValidation:
 type: array
 items:
 $ref: '#/components/schemas/ModelPerformance'
 dataRatioTrainingAndValidation:
 type: integer
 areNewTrainingDataUsed:
 type: boolean
 trainingRequestRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 trainingProcessRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 lastTrainingRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 mLEnityRef:
 mLEnityGeneratedRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 mLEntityCoordinationGroupRef:
 mLEntityCoordinationGroupGeneratedRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 mLEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'

 MLTestingFunction-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-Attr'
 - type: object
 properties:
 mLEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-ncO'
 - type: object
 properties:
 MLTestingRequest:
 $ref: '#/components/schemas/MLTestingRequest-Multiple'
 MLTestingReport:
 $ref: '#/components/schemas/MLTestingReport-Multiple'

 MLTestingRequest-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - type: object
 properties:
 requestStatus:
 $ref: '#/components/schemas/RequestStatus'
 cancelRequest:
 type: boolean
 suspendRequest:
 type: boolean
 mLEntityRef:
 mLEntityToTestRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 mLEntityCoordinationGroupRef:
 mLEntityCoordinationGroupToTestRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'

 MLTestingReport-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - type: object
 properties:
 modelPerformanceTesting:
 type: array
 items:
 $ref: '#/components/schemas/ModelPerformance'
 mLTestingResult:
 type: string
 testingRequestRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'

 MLModelEntityLoadingRequest-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - type: object
 properties:
 requestStatus:
 $ref: '#/components/schemas/RequestStatus'
 cancelRequest:
 type: boolean
 suspendRequest:
 type: boolean
 mLModelEntityToLoadRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'

 MLEntityModelLoadingPolicy-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - type: object
 properties:
 aIMLInferenceName:
 inferenceType:
 type: string
 policyForLoading:
 $ref: '#/components/schemas/AIMLManagementPolicy'
 mLModelEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'

 MLModelEntityLoadingProcess-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - type: object
 properties:
 progressStatus:
 $ref: '#/components/schemas/ProcessMonitor'
 cancelProcess:
 type: boolean
 suspendProcess:
 type: boolean
 resumeProcess:
 type: boolean
 MLModelEntityLoadingRequestRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 MLModelEntityLoadingPolicyRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 LoadedMLModelEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'

 MLModelEntity-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 type: object
 properties:
 mLModelEntityId:
 type: string
 aIMLInferenceName:
 inferenceType:
 type: string
 mLModelEntityVersion:
 type: string
 expectedRunTimeContext:
 $ref: '#/components/schemas/MLContext'
 trainingContext:
 $ref: '#/components/schemas/MLContext'
 runTimeContext:
 $ref: '#/components/schemas/MLContext'
 supportedPerformanceIndicators:
 $ref: '#/components/schemas/SupportedPerfIndicator'
 mLCapabilitiesInfoList:
 type: array
 items:
 $ref: '#/components/schemas/MLCapabilityInfo'
 retrainingEventsMonitorRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 sourceTrainedMLModelEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'

 MLModelEntityRepository-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 type: object
 properties:
 mLEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 - type: object
 properties:
 MLModelEntity:
 $ref: '#/components/schemas/MLModelEntity-Multiple'
 MLModelEntityCoordinationGroup:
 $ref: '#/components/schemas/MLModelEntityCoordinationGroup-Multiple'

 MLModelEntityCoordinationGroup-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 type: object
 properties:
 memberMLModelEntityRefList:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'

 ## 7.3a.4.1 IOC
 MLUpdateFunction-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-Attr'
 - type: object
 properties:
 availMLCapabilityReport:
 $ref: '#/components/schemas/AvailMLCapabilityReport'
 mLModelEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-ncO'
 - type: object
 properties:
 MLUpdateRequest:
 $ref: '#/components/schemas/MLUpdateRequest-Multiple'
 MLUpdateProcess:
 $ref: '#/components/schemas/MLUpdateProcess-Multiple'
 MLUpdateReport:
 $ref: '#/components/schemas/MLUpdateReport-Multiple'

 MLUpdateRequest-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 type: object
 properties:
 performanceGainThreshold:
 type: array
 items:
 $ref: '#/components/schemas/ModelPerformance'
 newCapabilityVersionId:
 type: array
 items:
 type: string
 updateTimeDeadline:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/TimeWindow'
 requestStatus:
 $ref: '#/components/schemas/RequestStatus'
 mLUpdateReportingPeriod:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/TimeWindow'
 cancelRequest:
 type: boolean
 suspendRequest:
 type: boolean
 mLUpdateProcessRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'
 mLModelEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'

 MLUpdateProcess-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 type: object
 properties:
 cancelProcess:
 type: boolean
 suspendProcess:
 type: boolean
 progressStatus:
 $ref: '#/components/schemas/ProcessMonitor'
 mLModelEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 mLUpdateRequestRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 mLUpdateReportRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'

 MLUpdateReport-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 type: object
 properties:
 updatedMLCapability:
 $ref: '#/components/schemas/AvailMLCapabilityReport'
 mLModelEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 mLUpdateProcessRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Dn'

 AIMLInferenceFunction-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-Attr'
 - type: object
 properties:
 activationStatus:
 type: string
 enum:
 - ACTIVATED
 - DEACTIVATED
 managedActivationScope:
 $ref: '#/components/schemas/AIMLManagementPolicyManagedActivationScope'
 usedByFunctionRefList:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 mLModelEntityRef: # FIXME S5-240805,S5-240917 both define here
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-ncO'
 - type: object
 properties:
 AIMLInferenceReport:
 $ref: '#/components/schemas/AIMLInferenceReport-Multiple'

 AIMLInferenceReport-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - type: object
 properties:
 inferenceOutputs: #stage 2: attribute table name as: aimlInferenceOutputs FIXME
 type: array
 items:
 $ref: '#/components/schemas/InferenceOutput'
 minItems: 1
 mLModelEntityRef:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'

 AIMLInferenceEmulationFunction-Single:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/Top'
 - type: object
 properties:
 attributes:
 allOf:
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-Attr'
 - type: object
 properties:
 AIMLInferenceEmulationReportRefs: # FIXME stage 2 of IOC AIMLInferenceEmulationReport missing
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/DnList'
 - $ref: 'TS28623_GenericNrm.yaml#/components/schemas/ManagedFunction-ncO'

#-------- Definition of JSON arrays for name-contained IOCs ----------------------

 MLTrainingFunction-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLTrainingFunction-Single'
 MLTrainingRequest-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLTrainingRequest-Single'
 MLTrainingProcess-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLTrainingProcess-Single'
 MLTrainingReport-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLTrainingReport-Single'
 MLModelEntity-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLModelEntity-Single'
 MLModelEntityRepository-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLModelEntityRepository-Single'
 MLModelEntityCoordinationGroup-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLModelEntityCoordinationGroup-Single'
 MLTestingFunction-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLTestingFunction-Single'
 MLTestingRequest-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLTestingRequest-Single'
 MLTestingReport-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLTestingRequest-Single'
 MLModelEntityLoadingRequest-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLModelEntityLoadingRequest-Single'
 MLModelEntityLoadingProcess-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLModelEntityLoadingProcess-Single'
 MLModelEntityLoadingPolicy-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLModelEntityLoadingPolicy-Single'
 MLUpdateFunction-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLUpdateFunction-Single'
 MLUpdateRequest-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLUpdateRequest-Single'
 MLUpdateProcess-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLUpdateProcess-Single'
 MLUpdateReport-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/MLUpdateReport-Single'
 AIMLInferenceFunction-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/AIMLInferenceFunction-Single'
 AIMLInferenceReport-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/AIMLInferenceReport-Single'
 AIMLInferenceEmulationFunction-Multiple:
 type: array
 items:
 $ref: '#/components/schemas/AIMLInferenceEmulationFunction-Single'
#-------- Definitions in TS 28.104 for TS 28.532 ---------------------------------

 resources-AiMlNrm:
 oneOf:
 - $ref: '#/components/schemas/MLTrainingFunction-Single'
 - $ref: '#/components/schemas/MLTrainingRequest-Single'
 - $ref: '#/components/schemas/MLTrainingProcess-Single'
 - $ref: '#/components/schemas/MLTrainingReport-Single'
 - $ref: '#/components/schemas/MLEntityModel-Single'
 - $ref: '#/components/schemas/MLEntityModelRepository-Single'
 - $ref: '#/components/schemas/MLEntityModelCoordinationGroup-Single'
 - $ref: '#/components/schemas/MLTestingFunction-Single'
 - $ref: '#/components/schemas/MLTestingRequest-Single'
 - $ref: '#/components/schemas/MLTestingReport-Single'
 - $ref: '#/components/schemas/MLEntityModelLoadingRequest-Single'
 - $ref: '#/components/schemas/MLEntityModelLoadingProcess-Single'
 - $ref: '#/components/schemas/MLEntityModelLoadingPolicy-Single'

 - $ref: '#/components/schemas/MLUpdateFunction-Single'
 - $ref: '#/components/schemas/MLUpdateRequest-Single'
 - $ref: '#/components/schemas/MLUpdateProcess-Single'
 - $ref: '#/components/schemas/MLUpdateReport-Single'
 - $ref: '#/components/schemas/AIMLInferenceFunction-Single'
 - $ref: '#/components/schemas/AIMLInferenceReport-Single'
 - $ref: '#/components/schemas/AIMLInferenceEmulationFunction-Single'

<CODE ENDS>

End of changes

3GPP
image1.png

image2.emf
Sequence of the flowTraining phaseML trainingML entity loadingML testingDeployment phaseInference phaseAI/ML inferenceML emulationEmulationphase

Microsoft_Visio_Drawing.vsdx
Sequence of the flow
Training  phase
ML training
ML entity loading
ML testing
Deployment  phase
Inference  phase
AI/ML inference
ML emulation
Emulation
phase

image3.png

image4.emf
ML Training Function: ML Training MnS producerML Training (Internal business logic)ML Training MnS ConsumerML Training MnSDataDataData

Microsoft_Visio_Drawing1.vsdx
ML Training Function: ML Training MnS producer
ML Training
(Internal business logic)
ML Training MnS Consumer
ML Training MnS
Data
Data
Data

image5.emf
RAN domain MnS consumerAIML inference functionRAN domain management function (MDAF)gNBgNBRAN domain MnSML training function

Microsoft_Visio_Drawing2.vsdx
RAN domain MnS consumer

AIML inference function
RAN domain management function (MDAF)
gNB
gNB
RAN domain
MnS
ML training function

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.emf

ML entity

1

ML entity

2

Network

Resources

ML Consumer

p

KPIs

Error

p

Microsoft_Word_97_-_2003_Document.doc

AIML Eentity1

AIML Eentity2

Network Resources

ML Consumer

p

KPIs

Error

p

[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]
Microsoft_Word_97_-_2003_Document1.doc

AIML Eentity1

AIML Eentity2

Network Resources

ML Consumer

p

KPIs

Error

p

[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]
image13.emf

ML Model

1

ML Model

2

Network

Resources

ML Consumer

p

KPIs

Error

p

image14.emf
AI/ML MnS Consumer AI/ML Inference ProducerRequest AI/ML CapabilitiesReport on AI/ML CapabilitiesML entity

Microsoft_Visio_Drawing3.vsdx
AI/ML MnS Consumer

AI/ML Inference Producer
Request AI/ML Capabilities
Report on AI/ML Capabilities

ML entity

image15.wmf
AI/ML MnS

Consumer

AI/ML

Inference

Producer

Request AI/ML

Capabilities

Report on AI/ML

Capabilities

ML

model

Microsoft_Visio_Drawing4.vsdx
AI/ML MnS Consumer

AI/ML Inference Producer
Request AI/ML Capabilities
Report on AI/ML Capabilities

ML model

image16.png

image17.svg

image18.png

image19.svg

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.emf

Microsoft_Word_97_-_2003_Document2.doc
[image: image1.png]

image32.png

image33.png

image34.png

image35.svg
 «ProxyClass» ManagedEntity «InformationObjectClass» AIMLInferenceEmulationFunction «InformationObjectClass» AIMLInferenceEmulationReport Represents the following IOCs: SubNetwork or ManagedFunction or Managed Element «names» 1 * «names» 1 *

image36.png

image37.svg
 «InformationObjectClass» Top «InformationObjectClass» ManagedFunction «InformationObjectClass» AIMLInferenceEmulationFunction «InformationObjectClass» AIMLInferenceEmulationReport

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.svg
 «InformationObjectClass» Top «InformationObjectClass» AIMLInferenceFunction «InformationObjectClass» AIMLInferenceReport ManagedFunction

