

3GPP TSG-SA WG4 Meeting #128		S4-240895
20th – 24th April 2024
Source:	Dolby France SAS
Title:	Coded Multisource Media Format (CMMF) Overview
Agenda Item:	8.9
Document for: 	Discussion

1. Overview
The Coded Multisource Media Format (CMMF) is an extensible container format designed to facilitate the management and interchange of audio-visual media and metadata in one or more coded representations (e.g., encoded with application-layer, linear, network, or channel codes). The coded media representations supported by CMMF enable the efficient use of multisource, multipath, and multi-access connectivity for network-delivered media applications.
CMMF provides a generic container format that supports multimedia (e.g., video and audio streaming, broadcast, XR, video conferencing, and online gaming) delivery through coding the underlying content. This format supports multiple types of codes (currently xCD-1, RaptorQ, and Reed-Solomon) and can be optimized for a range of networks and use cases. Specifically, CMMF supports efficient decentralized multi-source and multi-path content delivery for use cases such as audio and video streaming that require high availability/robustness but also have strict latency and bandwidth constraints. CMMF is designed to operate with existing and future streaming source (e.g., HLS, MPEG-DASH, CMAF, etc.) and network (e.g., HTTP, TCP, UDP, QUIC, WebRTC, etc.) protocols, while remaining protocol-agnostic. A multisource media encoder is envisioned to take an existing packaged media format as a source and generate CMMF bitstreams for delivery over networks to clients for rendering.
This document motivates the use of CMMF, outlines an example implementation, and provides supporting information regarding the benefits CMMF may provide to 3GPP multi-CDN and multi-access deployments.
2. Motivation
2.1 CDN Availability and Robustness
CDNs are generally relatively robust in the sense that outages or sustained and degraded performance is rare. Tools such as [1] indicate that mainstream CDNs have, on average, ping times between 20 ms to 30 ms and an availability greater than 98%. However, these tools do not provide deeper, more meaningful insights into CDN performance and failures.
In order to understand CDN performance at a deeper level, a study was conducted from May 17 to June 23, 2022. 30 geographically separated player emulators were setup in AWS to minimize the impact of degraded performance due to Internet Service Provider (ISP) or player network connectivity issues so that the CDN reliability and performance could be assessed. These media streaming emulators were deployed within the US using different AWS availability and local zones [2]. Each emulator streamed segmented HLS content 24 hours a day throughout the experiment. In order to emulate a streaming player’s network behaviour (at least at steady state), the segmented content was downloaded by each emulator at a frequency of one segment every four seconds from three different tier 1 CDNs in parallel. Each player emulator collected detailed information about CDN performance related to CDN HTTP request failures (either a non-2XX status code or no response at all), HTTP response time-to-first-byte (TTFB), and other information necessary to understand client-CDN performance.
No sustained outages were observed (i.e., outages greater than one minute) during this experiment across all the player emulators. The mean TTFB (averaged over one-hour windows consisting of approximately 900 requests per hour) from each of the CDNs were consistently between 250 ms and 350 ms. Furthermore, the request failure rate was typically less than 10 failures per hour or less than 1%. These results are consistent with those reported by previously cited tools. Examples of the collected CDN measurements are provided in Figure 2.1-1 and Figure 2.1-2. Each column of subfigures in Figure 2.1-1 represents a different tier 1 CDN, and each row of subfigures represent a different location where the emulated player was located. The mean TTFB is shown as a solid line, and the range (i.e., maximum and minimum) of TTFB values measured during each hour is shown by the shaded region. The scale for both is provided on the left y-axis. The request failure rate is shown using the markers where only non-zero failure rates are shown. The failure rate scale is provided on the subfigures' right y-axis. Figure 2.1-2 provides the empirical CDF of the measured TTFB across the same three of the locations.

[image:]
Figure 2.1-1: Measured CDN time-to-first-byte (TTFB) and request failure rate averaged over one hour increments (approximately 900 requests/hour). The mean TTFB is denoted by the solid line and the range (i.e., maximum and minimum) of observed TTFB values are denoted by the shaded area. The markers show the request failure rate where only non-zero values are provided.

[image:]CDF

Figure 2.1-2: Empirical CDF of all measured TTFB for each of the three CDNs. Note that the x-axis is log-scale.
Several important observations about these results should be noted. First, failures and/or excessive TTFBs are relatively random across both location and time making it very difficult to predict future degraded performance. A failure or excessive TTFB observed in one region was typically not observed in another region, nor was a failure or excessive TTFB from one CDN on a player emulator necessarily observed from the other two CDNs. An example is illustrated in Figure 2.1-3. The figure shows the TTFB and request failures for four different player emulators located near each other over the same time period. Second, the duration of sequential request failures and/or excessive TTFB from any of the CDNs on any one player was relatively short. Figure 2.1-4 shows a box plot of the duration of sustained/sequential failures where a failure is considered either a complete request failure (e.g., non-2XX status code or no response) or an excessively long TTFB (e.g., ³ 4 s). In fact, the median duration across all locations was less than 10 seconds. While the root cause of an excessive TTFB or request failure is unknown, several possibilities exist including link congestion, HTTP server congestion, CDN PoP object misses, TCP connection failures, packet loss, etc. The number of possibilities that cause degraded performance makes it extremely difficult to predict future performance. Finally, Figure 2.1-5 shows the empirical CDF of the duration between these failure events. Depending on the location and the CDN, the median time between these short-duration failures ranges from approximately every 100 seconds to 47 hours.
[image:]
Figure 2.1-3: Measured TTFB and request failures measured by four emulators over a period of two minutes. While degraded CDN performance was observed on CDN A at similar times on two of the players, the other two players were unaffected.
[image:]
Figure 2.1-4: Duration of sustained/sequential failures. A failure is considered an excessive TTFB of greater than or equal to four seconds, a non-2XX HTTP status code, or a complete failure of the CDN to respond.
[image:]CDF

Figure 2.1-5: Empirical CDF of the duration between failures where a failure is considered an excessive TTFB greater than or equal to four seconds, a non-2XX HTTP status code, or a complete failure of the CDN to respond.
HTTP adaptive streaming players are designed to mitigate the impact these observed small-duration disruptions have on QoE through the use of mechanisms such as playback buffering (e.g., Android's ExoPlayer [3] will attempt to download and store approximately 50 seconds of future content) and quality switching (e.g., the streamed video bitrate may be reduced to avoid stalling/rebuffering). In the case of players that are connected to networks with sufficient bandwidth, these mechanisms tend to do a good job ensuring a disruption-free playback experience because there is sufficient time to recover from the network disruption. However, any network disruptions when players are unable to establish a sufficient playback buffer will present a high-risk of reduced QoE. For example, any player that has just started playback, is participating in a live stream, or is connected to a poor network and is struggling to playback the lowest video resolution will have a limited amount of future content buffered and ready for playback. Any unexpected delays (such as a long TTFB), temporary failure to retrieve the content, or temporary reduction in throughput maybe unrecoverable. Especially if the time needed to recover exceeds the amount of content buffered. These situations can all lead to the major degradations in QoE such as stalling/rebuffering, playback failures, etc.
2.2 The Challenges Multi-Source Delivery Solves
Today's networks are massively heterogenous, dynamic systems designed to operate on a best-effort basis. Traffic from many different applications, all with different characteristics and behaviors, traverse the same links and compete for the same limited resources. Providing any level-of-service guarantees is difficult; and changing the network to provide a deterministic level-of-service for any one application is a monumental, if not an impossible, task. Streaming from multiple sources simultaneously uses the existing, in-place network; and it provides the capability to seamlessly and immediately adjust to fluctuations in network performance as they happen by taking advantage of the added diversity.
Media streaming clients currently download content from a single source, or server, and that content typically traverses a single path between the server and client through the network. Any disruptions such as congestion, hardware failures, configuration errors, etc., on the server or the network path has the potential to have a negative impact on the end-users' QoE. Approaches like multi-CDN switching or content steering attempt to mitigate these issues by detecting problems and switching to a different source if warranted; but they do not address the underlying cause: network delivery of content is inherently unreliable and the same issues that caused the degraded performance on the first source may also be present on the second. Furthermore, these approaches are reactive, rather than proactive, meaning that a client switching to a new source happens only after degraded performance has been observed. The approach taken in this paper is to efficiently download individual objects, in parallel, from multiple sources where sources and paths for each individual download can be added until the probability of degraded performance becomes negligible. In doing so, issues related to the network's unreliability (wherever it exists) can be mitigated to a point where disruptions become exceedingly rare without requiring observation or orchestration that result in delayed, outdated, or unnecessary corrective behaviors.
Figure 2.2-1 shows the TTFBs and failure rates for the same locations and times as in Figure 2.1-1; and it provides an example of the benefits multi-source delivery provides. Unlike single-source delivery where the TTFB regularly exceeds 1 second and request failures are relatively common (approximately 1 out of every 800 to 900 requests), the TTFB for multi-source delivery rarely exceeds 500 milliseconds (approximately 1 out of every 20,000 to 21,000 requests) and no request failures were observed over the period shown. This helps demonstrate that multi-source delivery has the potential to efficiently and significantly reduce the network's inherent noise leading to more consistent network conditions and improved end-user experiences.
[image:]
Figure 2.2-1: Measured CDN time-to-first-byte (TTFB) over one hour increments (approximately 900 requests/hour) when downloading content using multiple sources (in this case, the three CDNs listed in Figure 2.1-1). The mean TTFB is denoted by the solid line and the range (i.e., maximum and minimum) of observed TTFB values are denoted by the shaded area. Since no request failures were observed, none are shown.
Multi-source delivery also has benefits beyond reducing the TTFB and request failure rates. Assuming the sources participating in a multi-source download are not co-located, multi-source delivery provides path diversity through the network. This allows the download traffic to seamlessly adjust to congestion on each link with minimal impact to the overall download performance. In addition, using multiple paths through the network allows for path bonding to be performed where the sum throughput of each individual path/server can be realized. Realizing these benefits is generally a challenge; however, the later sections will outline a decentralized approach that enables efficient multi-source delivery so that the benefits described above are achievable.
2.3 Multi-CDN Switching vs Multi-Source Delivery
The current industry standard multi-CDN approach involves switching between CDNs but only downloading from one at a time (referred to as multi-CDN switching). Numerous methods to accomplish this exist ranging from player-initiated switching to service-initiated switching. As an example of the latter, content steering [7, 8] is a standardized solution and is supported by both HLS and MPEG-DASH. Both utilize a steering server that communicates with clients informing them of available CDNs/paths in addition to recommendations on which to use. Whether player-initiated or service-initiated, multi-CDN switching aims to improve client QoS and QoE by detecting and responding to degraded performance by switching the contents’ source from one CDN to another. The performance of these solutions often depends on the quality of data collected and how quickly that data can be acted upon.
Multi-source delivery approaches, such as the example provided below, optimize QoS and QoE introduce the use of linear coding techniques to enable efficient downloads from multiple CDNs simultaneously, effectively allowing each CDN source to continuously provide an amount of data in-line with their relative performance. Intermittent or sustained outages and underperformance on one CDN will be automatically compensated for by downloading more from the remaining CDNs, in most cases leading to a negligible drop in throughput for that request. These approaches require neither performance data to be collected nor active decisioning to take place in order to function.
Simultaneous use of multiple sources provides greater responsiveness and robustness than a traditional switched approach. In a multi-source delivery solution, degraded performance from one source during the download of an object is automatically compensated for by the other sources. In contrast, switching approaches typically cannot switch mid-download resulting in a period of poor network performance before a different source is tried. This could lead to degraded QoE, especially in low-buffer scenarios including live streaming or at video start.
3. An Example Multi-CDN VOD Implementation Using CMMF
Enabling an efficient multi-source, multi-CDN platform is accomplished by inserting an additional, independent layer (referred to as Coded Multi-Source Media Format or CMMF) within the streaming media delivery stack. This layer effectively allows content to be stored/cached and interchanged in a way that utilizes the networks' existing capabilities to their fullest extent by providing a method to efficiently transmit content from multiple sources in parallel. With multi-source transfers, a client can realize real-time benefits (e.g., higher throughput, lower latency, greater robustness, etc.) by seamlessly preferring one source over another without latency or the requirement of making estimations as network conditions change. In streaming applications, this improved quality of service (QoS) is directly correlated with improved quality of experience (QoE) so that clients experience faster start times, higher playback quality, lower stalls/rebuffering, etc.
The following will outline the major components required to enable multi-source delivery and provide an example for how it can be deployed within existing networks to deliver video-on-demand (VOD) content.
3.1 Coded Multi-Source Media Format (CMMF)
CMMF [4] is necessary for enabling efficient multi-source delivery. As previously mentioned, CMMF can be implemented as a new, independent layer within existing streaming media delivery stacks. An example is provided in Figure 3.1-1 where previously packaged media (e.g., HLS or MPEG-DASH packaged content) is encapsulated within CMMF and delivered using existing network protocol stacks (e.g., HTTP/TCP, QUIC, webRTC, etc.). CMMF is agnostic to the layers above and below it. Therefore, it can be used with any type of content (even non-media content), although it does contain optional features to streamline the delivery of media (e.g., audio and video). Furthermore, CMMF can be transported over any set of network protocols whether they are TCP-based, UDP-based, or something else. While aspects of CMMF were designed to simplify content management within networks, its primary focus is to enable the capability to efficiently and effectively deliver content from multiple network sources in parallel. It does this through the application of network coding which effectively transforms content from a string of correlated bits into interchangeable packets of information. These packets can then be distributed and delivered, in any order, throughout a network allowing the original media to be retrieved by a client with minimal overhead.

[image:]
Figure 3.1-1: CMMF is implemented as an additional, independent layer within the streaming media delivery stack. Its use is independent of the layers above and below. It can be used to deliver any type of packaged content such as MPEG-DASH, HLS, etc.; and it can be transported over the network using whichever network protocol stack that is desired.
Fundamentally, CMMF is a containerized format designed to encapsulate network encoded content and effectively communicate that content across networks. It supports a variety of different code types including general deterministic and random linear codes (RLC), RaptorQ [5], and Reed-Solomon [6]. Content is partitioned and encoded using one of these codes in a manner that supports the intended network architecture and use case. The encoded content is then packaged, along with any metadata required for management and decoding (e.g., block size, symbol size, encoding symbol ID, etc.), within one or more CMMF bitstreams. These CMMF bitstreams are then transmitted through the network, possibly being stored and/or cached, using whatever network protocol stack is available. Once a streaming client has received enough encoded information from any combination of CMMF bitstreams that exist within the network, it can decode and retrieve the original content. Figure 3.1-2 provides an example for how content can be encoded using CMMF. For this use case, each individual segment (e.g., HLS segment, MPEG-DASH segment, etc.) is treated as a single encoding block and encoded using a supported network code. The encoded data is packaged one or more CMMF bitstreams for network transmission and delivery. Each CMMF bitstream is essentially an object similar to the original segment so it can be cached and fetched using existing streaming media network architectures (e.g., CDNs) and protocols (e.g., HTTP/TCP). This will be expanded upon in subsequent sections.
[image:]
Figure 3.1-2: Example of how CMMF bitstreams can be created. A single HLS/MPEG-DASH/etc. segment is encoded using a random linear code and packaged into multiple CMMF bitstreams/objects.
3.2 Provisioning the Network with CMMF Content
Accessing content from multiple sources within the network simultaneously requires that each network source be populated with a unique CMMF bitstream containing the content being requested. A CMMF network source is one that can be individually addressable or reachable (i.e., there should be a one-to-one mapping between the set of individually addressable or reachable sources and the set of CMMF bitstreams for each CMMF encoded piece of content). For example, a single CDN which replicates content across their PoPs and uses DNS or anycast to route traffic to PoPs within their network would be considered one source. Alternatively, a CDN that enables clients to reach individual PoPs within their network may allow for each PoP to be an CMMF source assuming each PoP can be populated with a unique CMMF bitstream. In conclusion, example source types may be entire CDN distributions, single points-of-presence (PoPs) within a single CDN distribution, or standalone servers.
There are many methods for creating unique CMMF bitstreams for each CMMF network source. The necessary CMMF bitstreams can be created offline (e.g., at the time the video/audio is encoded and packaged) and stored on an origin server for later retrieval by the CMMF network sources. They can also be created on demand using a cloud-based or edge-based just-in-time encoder as client requests are received. There is a lot of flexibility in determining when and where to encode CMMF bitstreams; and the specific implementation is heavily dependent on the use case.
3.3 CMMF Client
A CMMF client must have two capabilities: the capability to access and download multiple CMMF bitstreams (each from different sources) in parallel, and the capability to jointly decode those bitstreams. Both capabilities can be implemented as a plug-in or software development kit (SDK) to simplify integration into existing platforms and players. When downloading content (e.g., a segment that is intended to be played), an CMMF client will connect to multiple sources and request the CMMF bitstream associated with that content from each. Any one of these CMMF bitstreams do not need to be obtained in their entirety, nor does any byte-level scheduling needs to occur (e.g., each CMMF bitstream can be transmitted from their beginning to their end). Rather, all that the client needs is to obtain enough information from all of the transmitted CMMF bitstreams so that it can decode the content those bitstreams carry.
4. Real-World Multi-CDN Trial with CMMF
Adaptive streaming is predominately done using a streaming media protocol such as HLS or MPEG-DASH, utilizing CDNs to scale delivery, and HTTP/TCP to retrieve the desired content. Enabling multi-source delivery in this workflow so that its benefits can be realized is relatively straight forward with minimal effort. Perhaps the simplest implementation involves encapsulating the HLS or MPEG-DASH packaged content within CMMF bitstreams at the origin, utilizing multiple CDNs to deliver that content, and enabling multi-source delivery on the streaming client population (see Figure 4-1). This section provides an example implementation used on a commercial content streaming platform.
[image:]
Figure 4-1: Example showing how to implement multi-source delivery with CMMF in a multi-CDN HTTP adaptive streaming scenario.

4.1 Content Delivery Setup and Configuration
The only network node that encoded content and created CMMF bitstreams was the origin. The CMMF enabled origin created the necessary CMMF bitstreams for each CDN on-the-fly upon requests generated by the set of CDNs where the CMMF bitstreams sent to each CDN were unique (i.e., the encoded content contained in the CMMF bitstream sent to CDN A was different than the encoded content in the CMMF bitstream sent to CDN B). In this trial, the xCD-1 code as defined in [4] was used to encode all of the content contained in each of these CMMF bitstreams. However, any of the other codes defined in [4] (e.g., RaptorQ, Reed-Solomon, etc.) would have been sufficient and yielded similar results for this specific use case and network configuration.
Traditional CDNs were used to create sources for clients to download content. In this case, three were setup and configured where each had its own set of PoPs. Since content maybe replicated within any one of the CDNs, each CDN was treated as a single source during a multi-source download and responsible for delivering a different CMMF bitstream for the content being streamed. In the example shown in Figure 4-1, CDN A was responsible for delivering the CMMF A bitstream, CDN B was responsible for delivering the CMMF B bitstream, etc. These CDNs obtained their respective CMMF bitstreams from the origin described above. Once these bitstreams were transferred to each CDN from the origin, the CDNs cached and treated them like any other object.
The location (or URLs) for these CDNs were communicated to the population of clients using a configuration file that was downloaded by each client prior to streaming content. This file contained the URL for each CDN along with additional settings necessary for proper operation. Finally, the HLS/MPEG-DASH manifests that described the content are untouched, but they used relative URLs instead of absolute URLs. This simplified the processing that the CMMF client had to perform: relative URLs pointing to a specific segment could simply be appended to the CDN host URLs provided when the CMMF client was initialized.
4.2 CMMF Client Operation
Each media streaming client used a simple SDK to download CMMF bitstreams from multiple CDNs and decode them back to the original HLS/MPEG-DASH/CMAF/etc. content prior to playback. The SDK contained five major components with their functionality described in Figure 4.2-1. These components provided the functionality necessary to perform multi-source downloads and seamlessly playback the downloaded content. As indicated in the figure, the CMMF client interfaces with an existing media player (e.g., Android's ExoPlayer, Apple's AVPlayer, etc.). The client was configured so that the SDK intercepted requests for content made by the media player, downloaded the necessary CMMF bitstream(s) to satisfy those requests, and returned the decoded HLS/MPEG-DASH content the media player expects.
[image:]
Figure 4.2-1: CMMF client SDK components. The SDK integrates with existing media players to enable efficient multi-source download capabilities.
Depending on the media player's design, an additional component was needed to adjust or replace the media player's adaptive bitrate (ABR) algorithms so that the proper content bitrates were accessed given the quality of the network. Existing ABR algorithms expect content to be delivered as a stream where bytes of information are obtained in-order and continuously over a period of time. However, the multi-source download and decode operations performed by the SDK present the player with a network profile where bytes are more likely to be delivered in bursts. Depending on the media player, this altered behavior can have negative QoE impacts (e.g., lower content bitrates, more switches in quality, etc.) even though multi-source delivery provides improved QoS (e.g., higher throughput, better reliability, etc.). To account for this, the SDK also provided a plugin that adjusted or replaced the player's ABR algorithm. For example, only the ABR’s bandwidth estimator was changed when using Android's ExoPlayer. However, Apple's AVPlayer's design/restrictions required that the ABR plugin completely replace the player's ABR algorithm so that the proper content bitrates were selected and downloaded.
Clients followed the same steps as normal when streaming content. They first downloaded and processed the HLS/MPEG-DASH manifest describing the stream. This manifest contains relative URLs for every segment and representation of the content available. The clients' player then selected the rendition desired and passed the relative URL for the segment selected to the SDK. The SDK appended this URL to the multiple host URLs for the CDNs being used and requested the CMMF bitstreams, via HTTP\1.1 or HTTP\2, from each CDN in parallel. The SDK then downloaded enough encoded symbols from the set of received CMMF bitstreams to decode, decoded the requested segment, and finally sent this segment to the player. An example is provided in Figure 4.2-2. It is important to highlight that each CMMF client only needed to download around k encoded symbols (see Figure 3.1-2). Once the client obtained enough encoded symbols to decode, it prematurely terminated each of the CMMF bitstream downloads from the set of the CDNs.
Premature termination of these CMMF bitstreams presents a challenge for any multi-source client. Clients have to balance when to terminate so that the amount of excess data sent from each source is minimized while also attempting to maximize throughput and robustness. Clients in this trial utilized a flow control algorithm that limited outstanding data from each link by downloading data via a series of sequential byte range requests for the same CMMF bitstream where each request was sized according to the CDN’s observed performance. While the algorithm used in this trial was effective, it has since been improved. The latest versions limit, on average, excess data egressed by the set of sources to between 1-3% per video segment (it should be highlighted that this is roughly on-par with player ABR induced overhead related to downloading multiple bitrates of the same segment and (obviously) rendering only one during playback). An approach to achieve the same result while making only one request per segment, as well as the capability to tune the trade-off between excess egress and performance, is currently in development.
[image:]
Figure 4.2-2: Example multi-source download process. The media player selects the appropriate segment to download, passes the respective URL to the SDK so that the SDK can request the CMMF bitstreams/objects containing that content from each of the three CDNs used. Upon receiving enough encoded content to decode, the SDK terminates each CDN download, decodes the collected CMMF bitstreams/objects, and returns the original segment to the player.

4.3 Trial Performance Results
As mentioned previously, CMMF was implemented and trialed on a commercial streaming platform. This platform offers a large content library, streamed to a world-wide customer base where the majority of the content had a maximum bitrate of 5 Mbps. Approximately 5% - 50% of the traffic on selected device types was streamed using CMMF while the remainder of the traffic was streamed using a popular traditional multi-CDN implementation. Both the multi-source and the traditional multi-CDN approach used Akamai, Cloudfront, and Fastly. CMMF clients downloaded content from each CDN in parallel, while the "traditional" clients switched between the three based on input from Cedexis. Performance measurements for all traffic was collected using Conviva. This data includes session-level information about relevant QoE key performance indicators (KPIs). In addition, supplemental QoS information was collected by the CMMF SDK for only those sessions using multi-source as a delivery method.
A summary of the amount of traffic measured for each delivery method during this trial is provided in Table 4.3-1. This and subsequent tables only show traffic measured for Android clients streaming over cellular networks from January 1 through July 26, 2023. Furthermore, only those sessions where the mean edge cache hit rate is greater than 50% are considered. For CMMF traffic, this was determined using the supplemental QoS information collected by the CMMF SDK for each session. For traditional traffic, no information was available on a session-by-session basis since this traffic bypassed the SDK. Rather, it was confirmed via querying each utilized CDN that the mean edge cache hit rates for all traditional traffic was greater than 95%. This estimate of the edge cache hit rate was also validated in a separate experiment where traditional traffic was routed through the CMMF SDK so that QoS metrics (including cache hit status) could be collected. Unfortunately, the volume of CMMF traffic and the diversity of the content streamed during the trial made it very difficult to keep CDN caches warm with CMMF encoded content. Trying to match multi-source and traditional edge cache hit rates on a one-to-one basis was not possible. As a result, the threshold established above provides sufficient data to provide statistically significant results; but it also implicitly favors traditional delivery since those sessions were more often served by the CDNs’ edge.
	Delivery Method
	Hours Watched
	Number of Playback Sessions
	Number of Unique Devices
	Number of Unique Countries
	Minutes Watched Per Unique Device

	Traditional
	25,026.92
	120,269
	23,752
	178
	63.22

	CMMF
	14,013.76
	44,081
	12,534
	141
	67.08

Table 4.3-1: CMMF real-world multi-CDN trial summary. Only sessions measured on cellular networks and running Android are shown.

An overview of the performance improvements multi-source delivery provided over traditional multi-CDN switching for various QoE KPI’s is shown in Table 4.3-2. The table provides the mean value of the relevant KPI plus/minus one standard deviation. In general, double-digit gains were observed across all key QoE performance indicators showing that CMMF enabled multi-source delivery can drastically improve the quality of streamed media.

	Delivery Method
	Normalized Average Session Bitrate1
(% of Max Session Bitrate)
	Startup Time2
(s)
	Connection-Induced Rebuffering Ratio3
(%)
	Startup Failure Rate
(%)
	Video Playback Failure Rate
(%)

	Traditional
	83.70 ± 28.08
	3.40 ± 10.08
	0.28 ± 1.78
	0.51
	1.22

	CMMF
	94.31 ± 16.23
	1.83 ± 9.34
	0.19 ± 1.17
	0.07
	0.59

	
Notes:
1 The normalized average session bitrate is defined as the average bitrate measured during a session divided by the
 maximum bitrate listed in the session’s content manifest. Only sessions without a startup or video playback failure, a
 playing time greater than or equal to 60 seconds, playback completed at least 10% of the content, and the maximum bitrate
 as defined by the sessions’ corresponding manifest was available. These statistics are weighted using the sessions’
 duration.
2 Only sessions without a startup or video playback failure and a startup time greater than 0 seconds.
3 Only sessions without a startup or video playback failure, a playing time greater than or equal to 60 seconds, and playback
 completed at least 10% of the content. These statistics are weighted using the sessions’ duration.

Table 4.3-2: Real-world multi-CDN QoE performance results.

The empirical CDFs for the content normalized average session bitrate, startup time, and connection-induced rebuffing ratio are provided in Figures 4.3-1, 4.3-2, and 4.3-3 respectively. Figure 4.3-1 shows that 60% of the sessions, regardless of delivery method, experienced an average session playback bitrate close to the maximum possible based on the content being played. However, CMMF multi-source delivery was able to lift more of those clients that could not reach the highest bitrate further up the bitrate ladder than traditional delivery. Figure 4.3-2 shows that CMMF multi-source delivery was able to significantly reduce the video startup time as well. For example, only 10.4% of the CMMF sessions experienced a startup time greater than 3 seconds compared to 29.0% of the traditional sessions. Finally, Figure 4.3-3 shows that CMMF multi-source delivery reduced the number of sessions that experienced a connection-induced rebuffering event from 22.4% to 14.9% in addition to reducing the total duration of rebuffering given a rebuffering event occurred.
[image:]
Figure 4.3-1: Empirical CDF of the content normalized average session bitrate.
[image:]
Figure 4.3-2: Empirical CDF of the video startup time.
[image:]
Figure 4.3-3: Empirical CDF of the connection-induced rebuffering ratio (CIRR).
5. Summary
The Coded Multisource Media Format (CMMF) is an extensible container format designed to facilitate the management and interchange of audio-visual media and metadata in one or more coded representations (e.g., encoded with application-layer, linear, network, or channel codes). The coded media representations supported by CMMF enable the efficient use of multisource, multipath, and multi-access connectivity for network-delivered media applications.
CMMF provides a generic container format that supports multimedia (e.g., video and audio streaming, broadcast, XR, video conferencing, and online gaming) delivery through coding the underlying content. This format supports multiple types of codes (currently xCD-1, RaptorQ, and Reed-Solomon) and can be optimized for a range of networks and use cases. Specifically, CMMF supports efficient decentralized multi-source and multi-path content delivery for use cases such as audio and video streaming that require high availability/robustness but also have strict latency and bandwidth constraints. CMMF is designed to operate with existing and future streaming source (e.g., HLS, MPEG-DASH, CMAF, etc.) and network (e.g., HTTP, TCP, UDP, QUIC, WebRTC, etc.) protocols, while remaining protocol-agnostic. A multisource media encoder is envisioned to take an existing packaged media format as a source and generate CMMF bitstreams for delivery over networks to clients for rendering.
This document motivated the use of CMMF enabled multi-source delivery by illustrating some of the network-related challenges that need to be overcome to provide high QoE. Specifically, it was highlighted that degraded network QoS can be random, short-lived, and inconsistent across streaming clients. Conditions that present significant challenges to more traditional multi-CDN switching approaches. Next, an example implementation was provided showing how existing OTT media delivery platforms can be augmented with CMMF to enable efficient and performant multi-source delivery. Finally, real-world performance results collected during a world-wide trial on a commercial content distribution platform were presented. These results show that CMMF enabled multi-source delivery was able to significantly improve client QoE across all relevant KPIs for the service’s content when compared to a widely adopted multi-CDN switching platform. CMMF-enabled clients experienced a 46.2% reduction in the video startup time, a 32% reduction in the connection-induced rebuffering ratio, a 12.7% improvement in the content normalized average session playback bitrate, an 86.3% reduction in the video startup failure rate, and a 51.6% reduction in the video playback failure rate.

6. References
[1]	CDN Perf. www.cdnperf.com (accessed May 9, 2024).
[2]	Regions and availability zones, Amazon AWS. aws.amazon.com/about-aws/global-infrastructure/regions_az/ (accessed May 9, 2024).
[3]	Media3 ExoPlayer, Google for Developers. exoplayer.dev (accessed May 9, 2024).
[4]	Coded multisource media format (CMMF) for content distribution and delivery, ETSI TS 103 973, June 2023.
[5]	RaptorQ forward error correction scheme for object delivery, IETF RFC 6330, M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder, August 2011.
[6]	Reed-Solomon forward error correction (FEC) schemes, IETF RFC 5110, J. Lacan, V. Roca, J. Peltotalo, and S. Peltotalo, April 2009.
[7]	DASH-IF: Content steering for DASH, ETSI TS 103 998 V1.1.1, January 2024.
[8]	HTTP live streaming 2nd edition, IETF draft-pantos-hls-rfc8216bis-14, R. Pantos, November 2023.

	
	
	

image5.emf

Las Vegas, NV

Philadelphia, PA

Chicago, IL

Minneapolis, MN

Phoenix, AZ

Portland, OR

New York, NY

Houston, TX

Denver, CO

Seattle, WA

Miami, FL

Dallas, TX

Los Angeles, CA

Boston, MA

Kansas City, MO

0

10k

20k

30k

40k

50k

60k

70k

80k CDN A
CDN B
CDN C

Location

Fa
ilu

re
 D

ur
at

io
n

(m
s)

L

a

s

V

e

g

a

s

,

N

V

P

h

i

l

a

d

e

l

p

h

i

a

,

P

A

C

h

i

c

a

g

o

,

I

L

M

i

n

n

e

a

p

o

l

i

s

,

M

N

P

h

o

e

n

i

x

,

A

Z

P

o

r

t

l

a

n

d

,

O

R

N

e

w

Y

o

r

k

,

N

Y

H

o

u

s

t

o

n

,

T

X

D

e

n

v

e

r

,

C

O

S

e

a

t

t

l

e

,

W

A

M

i

a

m

i

,

F

L

D

a

l

l

a

s

,

T

X

L

o

s

A

n

g

e

l

e

s

,

C

A

B

o

s

t

o

n

,

M

A

K

a

n

s

a

s

C

i

t

y

,

M

O

0

10k

20k

30k

40k

50k

60k

70k

80k

CDN A

CDN B

CDN C

Location

F

a

i

l

u

r

e

D

u

r

a

t

i

o

n

(

m

s

)

image6.emf

1 100 10k 1M
0

0.5

1

1 100 10k 1M
0

0.5

1

100 10k 1M
0

0.5

1

CDN A CDN B CDN C

Time Between Failures (s) Time Between Failures (s) Time Between Failures (s)

Pr
ob

ab
ili

ty
Las Vegas, NV Philadelphia, PA Minneapolis, MN

Loading [MathJax]/extensions/MathMenu.js

110010k1M

0

0.5

1

110010k1M

0

0.5

1

10010k1M

0

0.5

1

CDN ACDN BCDN C

Time Between Failures (s) Time Between Failures (s) Time Between Failures (s)

P

r

o

b

a

b

i

l

i

t

y

Las Vegas, NV Philadelphia, PA Minneapolis, MN

Loading [MathJax]/extensions/MathMenu.js

image7.emf

Jun 11
2022

Jun 14 Jun 17 Jun 20 Jun 23
2

5

1000

2

5

Jun 11
2022

Jun 14 Jun 17 Jun 20 Jun 23
2

5

1000

2

5

Jun 11
2022

Jun 14 Jun 17 Jun 20 Jun 23
2

5

1000

2

5

Jun 11
2022

Jun 14 Jun 17 Jun 20 Jun 23
2

5

1000

2

5

Jun 11
2022

Jun 14 Jun 17 Jun 20 Jun 23
2

5

1000

2

5

Jun 11
2022

Jun 14 Jun 17 Jun 20 Jun 23
2

5

1000

2

5

Jun 11
2022

Jun 14 Jun 17 Jun 20 Jun 23
2

5

1000

2

5

Jun 11
2022

Jun 14 Jun 17 Jun 20 Jun 23
2

5

1000

2

5

Jun 11
2022

Jun 14 Jun 17 Jun 20 Jun 23
2

5

1000

2

5

TTFB

TT
FB

 (
m

s)
TT

FB
 (

m
s)

TT
FB

 (
m

s)
Las Vegas, NV Philadelphia, PA Minneapolis, MN

Cloud, Jason

Jun 11

2022

Jun 14Jun 17Jun 20Jun 23

2

5

1000

2

5

Jun 11

2022

Jun 14Jun 17Jun 20Jun 23

2

5

1000

2

5

Jun 11

2022

Jun 14Jun 17Jun 20Jun 23

2

5

1000

2

5

Jun 11

2022

Jun 14Jun 17Jun 20Jun 23

2

5

1000

2

5

Jun 11

2022

Jun 14Jun 17Jun 20Jun 23

2

5

1000

2

5

Jun 11

2022

Jun 14Jun 17Jun 20Jun 23

2

5

1000

2

5

Jun 11

2022

Jun 14Jun 17Jun 20Jun 23

2

5

1000

2

5

Jun 11

2022

Jun 14Jun 17Jun 20Jun 23

2

5

1000

2

5

Jun 11

2022

Jun 14Jun 17Jun 20Jun 23

2

5

1000

2

5

TTFB

T

T

F

B

(

m

s

)

T

T

F

B

(

m

s

)

T

T

F

B

(

m

s

)

Las Vegas, NV Philadelphia, PA Minneapolis, MN

image8.emf

Source Encoded Content
(e.g., A/V Elemental Streams)

Streaming Media Protocol
(e.g., HLS, MPEG-DASH, CMAF, ISOBMFF, etc.)

CMMF

Network Application/Transport-Layer Protocol
(e.g., HTTP, QUIC, webRTC, etc.)

Source Encoded Content

(e.g., A/V Elemental Streams)

Streaming Media Protocol

(e.g., HLS, MPEG-DASH, CMAF, ISOBMFF, etc.)

CMMF

Network Application/Transport-Layer Protocol

(e.g., HTTP, QUIC, webRTC, etc.)

image9.emf

HLS or MPEG-DASH Packaged Segment
(500,000 B)

HLS or MPEG-DASH Packaged Segment
(500,000 B)

Padding
(4 B)

(83,334 B) (83,334 B) (83,334 B) (83,334 B) (83,334 B) (83,334 B)

<latexit sha1_base64="Qa5AnfW8zSJeA48J+FnF746ZdZU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV3xkWPAi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3HlFpHssHM07Qj+hA8pAzaqx0/9TzeqWyW3FnIMvEy0kZctR7pa9uP2ZphNIwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyVNELtZ7NTJ+TUKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5OasOpnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrnFe+qcnl3Ua5V8zgKcAwncAYeXEMNbqEODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8wcL7o2g</latexit>x1
<latexit sha1_base64="TKxbQfbI6c8eYjbhWXfpbyC+H8s=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJD44kXjxilEcCGzI79MKE2dnNzKyRED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm5nfekSleSwfzDhBP6IDyUPOqLHS/VOv0iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7Kl/eXZRq1SyOPJzAKZyDB9dQg1uoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4ADXKNoQ==</latexit>x2

<latexit sha1_base64="bqr+LGDpuM7WGYmc4T9bF8FORUw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9ciTx4hGjPBLYkNmhgQmzs5uZWSPZ8AlePGiMV7/Im3/jAHtQsJJOKlXd6e4KYsG1cd1vJ7eyura+kd8sbG3v7O4V9w8aOkoUwzqLRKRaAdUouMS64UZgK1ZIw0BgMxjdTP3mIyrNI/lgxjH6IR1I3ueMGivdP3XPu8WSW3ZnIMvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nASaGTaIwpG9EBti2VNETtp7NTJ+TEKj3Sj5QtachM/T2R0lDrcRjYzpCaoV70puJ/Xjsx/YqfchknBiWbL+ongpiITP8mPa6QGTG2hDLF7a2EDamizNh0CjYEb/HlZdI4K3tX5cu7i1K1ksWRhyM4hlPw4BqqcAs1qAODATzDK7w5wnlx3p2PeWvOyWYO4Q+czx8O9o2i</latexit>x3
<latexit sha1_base64="G+nFVzP9OhUD9iwQ6fzqhWc3F/0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNKkcSLx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE1b9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5LmRdm7Kl/eVUq1ahZHHk7gFM7Bg2uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEHqNow==</latexit>x4

<latexit sha1_base64="AKGDM4ART86CyLLThXGwv9/UFpc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaNKEcSLx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE1b9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5LmRdm7KlfuLku1ahZHHk7gFM7Bg2uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEf6NpA==</latexit>x5
<latexit sha1_base64="T5V/MTaNhOLw7h6fkQY37Ve8IlI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaNIkcSLx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE1b9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5LmRdmrlK/uLku1ahZHHk7gFM7Bg2uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AE4KNpQ==</latexit>x6

Network Encoder

(83,334 B) (83,334 B) (83,334 B) (83,334 B) (83,334 B) (83,334 B)

<latexit sha1_base64="wuoBbfx2Y4AUpMfuH8iYe932wXw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEa48FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSPevX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5uasO5nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Sh4vql6tenV3WWnU8ziKcAKncA4eXEMDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPzdY2Q</latexit>c6
<latexit sha1_base64="M3ClzQ773rVEWBJxKhAliIL0TIA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEao8FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSPevX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5uasO5nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Sh4vqt5VtXZ3WWnU8ziKcAKncA4eXEMDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPx8Y2P</latexit>c5

<latexit sha1_base64="s7p/+BwQSWmhOKSYwBq7Ncb5s7A=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSA+tf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc1Yc3PuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqt519er+slKv5XEU4QRO4Rw8uIE63EEDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wfwbY2O</latexit>c4
<latexit sha1_base64="ZwGtBUaa/DEH2gYsCv9C5VzFznI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6zDHgxWNE84BkCbOT2WTI7Owy0yuEJZ/gxYMiXv0ib/6Nk2QPGi1oKKq66e4KEikMuu6XU1hZXVvfKG6WtrZ3dvfK+wctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4Zua3H7k2IlYPOEm4H9GhEqFgFK10z/rn/XLFrbpzkL/Ey0kFcjT65c/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZITqwxIGGtbCslc/TmR0ciYSRTYzojiyCx7M/E/r5tiWPMzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85Zf/ktZZ1buqXt5dVOq1PI4iHMExnIIH11CHW2hAExgM4Qle4NWRzrPz5rwvWgtOPnMIv+B8fAPu6Y2N</latexit>c3

<latexit sha1_base64="wMNm2j8X+IYBsNL1FS73Y9RwmJ8=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd3gI8eAF48RzQOSJcxOepMhs7PLzKwQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpgfWr/VLZrbhzkFXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgtNhLNSaUjekQu5ZKGqH2s/mpU3JulQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NWPMzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuuXN1fluu1PI4CnMIZXIAHN1CHO2hAExgM4Rle4c0Rzovz7nwsWtecfOYE/sD5/AHtZY2M</latexit>c2
<latexit sha1_base64="qUqATbLlA80c3BuscVyV1imHmFU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHljf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6KYc3PhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2Lqnddvbq/rNRreRxFOIFTOAcPbqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHr4Y2L</latexit>c1

(83,334 B) (83,334 B)

<latexit sha1_base64="15fT9DXakdnOdlUtlQEmrELkkQ0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEbY8FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSPevX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5uasO5nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Sh4vqt519erustKo53EU4QRO4Rw8qEEDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QP0+Y2R</latexit>c7
<latexit sha1_base64="R9DoUot3PUXV0ll/kArfOKNqAig=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHli/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw5qfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+6enV/WanX8jiKcAKncA4e3EAd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QP2fY2S</latexit>c8

CMMF
Bitstream/
Object A

CMMF
Bitstream/
Object B

CMMF
Bitstream/
Object C

Previously packaged media is partitioned into blocks.
In this case, the entire segment represents 1 block.

Padding is added so that the total length of the block is
 bytes long.
<latexit sha1_base64="MQ53amMLosQd5HRmc9Mr+6GWmR0=">AAACKnicbZDLSsNAFIYn9VbrrerSzWARXEhJxNuy6MZlBXuBJpTJ9KQdOpmEmYlQQl7C5/AB3OojuCtuBV/DaRvBth4Y+Pn/czhnPj/mTGnbHluFldW19Y3iZmlre2d3r7x/0FRRIik0aMQj2faJAs4ENDTTHNqxBBL6HFr+8G6St55AKhaJRz2KwQtJX7CAUaKN1S2fuRwCjV1OgXHsCkYhkISmt1k6zLArWX9gUjlNh91yxa7a08LLwslFBeVV75a/3V5EkxCEppwo1XHsWHspkZpRDlnJTRTEhA5JHzpGChKC8tLprzJ8YpweDiJpntB46v6dSEmo1Cj0TWdI9EAtZhPzv6yT6ODGS5mIEw2CzhYFCcc6whNEuMckUM1HRhAqmbkV0wExVLQBObflF1dmyDiLHJZF87zqXFUvHy4qNTtnVERH6BidIgddoxq6R3XUQBQ9o1f0ht6tF+vDGlufs9aClc8cormyvn4AtOSoEQ==</latexit>

dB/ke k

Block is partitioned into equal size information symbols.
<latexit sha1_base64="Mh8p4FEaCMgeuCHKFQl82TCdVT0=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cEzAOSJcxOepMhs7PLzKwQluAHeNVP8CZe/Ra/wN9wkuzBRAsaiqpuuruCRHBtXPfLKaytb2xuFbdLO7t7+wflw6OWjlPFsMliEatOQDUKLrFpuBHYSRTSKBDYDsZ3M7/9iErzWD6YSYJ+RIeSh5xRY6XGuF+uuFV3DvKXeDmpQI56v/zdG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6JScWWVAwljZkobM1d8TGY20nkSB7YyoGelVbyb+53VTE976GZdJalCyxaIwFcTEZPY1GXCFzIiJJZQpbm8lbEQVZcZms7RFcoahNaY2GW81h7+kdVH1rqtXjctKzc0zKsIJnMI5eHADNbiHOjSBAcIzvMCr8+S8Oe/Ox6K14OQzx7AE5/MHx6CWDQ==</latexit>

k

 Information symbols are encoded into
 coded symbols

<latexit sha1_base64="Mh8p4FEaCMgeuCHKFQl82TCdVT0=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cEzAOSJcxOepMhs7PLzKwQluAHeNVP8CZe/Ra/wN9wkuzBRAsaiqpuuruCRHBtXPfLKaytb2xuFbdLO7t7+wflw6OWjlPFsMliEatOQDUKLrFpuBHYSRTSKBDYDsZ3M7/9iErzWD6YSYJ+RIeSh5xRY6XGuF+uuFV3DvKXeDmpQI56v/zdG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6JScWWVAwljZkobM1d8TGY20nkSB7YyoGelVbyb+53VTE976GZdJalCyxaIwFcTEZPY1GXCFzIiJJZQpbm8lbEQVZcZms7RFcoahNaY2GW81h7+kdVH1rqtXjctKzc0zKsIJnMI5eHADNbiHOjSBAcIzvMCr8+S8Oe/Ox6K14OQzx7AE5/MHx6CWDQ==</latexit>

k
<latexit sha1_base64="XuoE+mlCyCENdJyLODnOR1dG1eg=">AAACBHicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx48RjBPCBZwuykNxkyO7vOzAphydUP8Kqf4E28+h9+gb/hJNmDSSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dJwqhnUWi1i1AqpRcIl1w43AVqKQRoHAZjC8nfjNJ1Sax/LBjBL0I9qXPOSMGiu1JOn08ZEMu6WyW3GnIMvEy0kZctS6pZ9OL2ZphNIwQbVue25i/Iwqw5nAcbGTakwoG9I+ti2VNELtZ9N7x+TUKj0SxsqWNGSq/p3IaKT1KApsZ0TNQC96E/E/r52a8MbPuExSg5LNFoWpICYmk+dJjytkRowsoUxxeythA6ooMzaiuS2SMwytMbbJeIs5LJPGecW7qlzeX5Srbp5RAY7hBM7Ag2uowh3UoA4MBLzAK7w5z8678+F8zlpXnHzmCObgfP0Cd66Ymg==</latexit>

n � k

Coded symbols are packaged within CMMF Bitstreams/Objects
(along with all necessary metadata required to decode)
based on the network architecture and use case.

CMMF Bitstreams/Objects are stored/cached and/or transmitted
within the network. Once streaming clients retrieve at least
 coded symbols from any combination of existing CMMF
bitstreams/objects, they can decode to retrieve the original HLS or
MPEG-DASH segment.

<latexit sha1_base64="Mh8p4FEaCMgeuCHKFQl82TCdVT0=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8cEzAOSJcxOepMhs7PLzKwQluAHeNVP8CZe/Ra/wN9wkuzBRAsaiqpuuruCRHBtXPfLKaytb2xuFbdLO7t7+wflw6OWjlPFsMliEatOQDUKLrFpuBHYSRTSKBDYDsZ3M7/9iErzWD6YSYJ+RIeSh5xRY6XGuF+uuFV3DvKXeDmpQI56v/zdG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6JScWWVAwljZkobM1d8TGY20nkSB7YyoGelVbyb+53VTE976GZdJalCyxaIwFcTEZPY1GXCFzIiJJZQpbm8lbEQVZcZms7RFcoahNaY2GW81h7+kdVH1rqtXjctKzc0zKsIJnMI5eHADNbiHOjSBAcIzvMCr8+S8Oe/Ox6K14OQzx7AE5/MHx6CWDQ==</latexit>

k

HLS or MPEG-DASH Packaged Segment

(500,000 B)

HLS or MPEG-DASH Packaged Segment

(500,000 B)

Padding

(4 B)

(83,334 B) (83,334 B) (83,334 B) (83,334 B) (83,334 B) (83,334 B)

x

1

x

2

x

3

x

4

x

5

x

6

Network Encoder

(83,334 B) (83,334 B) (83,334 B) (83,334 B) (83,334 B) (83,334 B)

c

6

c

5

c

4

c

3

c

2

c

1

(83,334 B) (83,334 B)

c

7

c

8

CMMF

Bitstream/

Object A

CMMF

Bitstream/

Object B

CMMF

Bitstream/

Object C

Previously packaged media is partitioned into blocks.

In this case, the entir e segment r epresents 1 block.

Padding is added so that the total length of the block is

 bytes long.

d

B

/kek

Block is partitioned into equal size information symbols.

k

 Information symbols ar e encoded into

 coded symbols

k

n≥k

Coded symbols ar e packaged within CMMF Bitstr eams/Objects

(along with all necessary metadata r equired to decode)

based on the network ar chitecture and use case.

CMMF Bitstr eams/Objects ar e stored/cached and/or transmitted

within the network. Once str eaming clients r etrieve at least

 coded symbols fr om any combination of existing CMMF

bitstreams/objects, they can decode to r etrieve the original HLS or

MPEG-DASH segment.

k

image10.emf

CDN A

Origin CDN B

CDN C

HLS/
MPEG-
DASH

CMMF
A

CMMF
C

CMMF
B

CMMF
Encoder

CMMF
Client

CMMF
Client

CDN A

Origin

CDN B

CDN C

HLS/

MPEG-

DASH

CMMF

A

CMMF

C

CMMF

B

CMMF

Encoder

CMMF

Client

CMMF

Client

image11.emf

CDN Flow
Control

CMMF
Decoder

ABR
Plugin

Plugin

QoE & QoS
Metrics

Media
Player

Decodes CMMF bitstreams/objects
to regular DASH/HLS/CMAF

Collects CDN link performance
& playback QoE

Establishes connections with multiple CDNs
and controls how much to request from each

Corrects the player’s bandwidth estimate or
replaces the player’s ABR in order to

support multi-source delivery

Abstracts core SDK from
player dependencies

CDN C

CDN B

CDN A

CDN Flow

Control

CMMF

Decoder

ABR

Plugin

Plugin

QoE & QoS

Metrics

Media

Player

Decodes CMMF bitstr eams/objects

to regular DASH/HLS/CMAF

Collects CDN link performance

& playback QoE

Establishes connections with multiple CDNs

and controls how much to r equest from each

Corrects the player’ s bandwidth estimate or

replaces the player’ s ABR in or der to

support multi-sour ce delivery

Abstracts cor e SDK from

player dependencies

CDN C

CDN B

CDN A

image12.emf

Media
Player

CMMF
Client CDN A/B/C

GET seg_1.mp4
GET seg_1.mp4 (CMMF A)GET seg_1.mp4 (CMMF B)GET seg_1.mp4 (CMMF C)

x from
seg_1.mp4 (CMMF A)

y from seg_1.mp4 (CMMF B)

z from seg_1.mp4 (CMMF C)

x + y + z = 100%
CMMF Decode

seg_1.mp4

image13.png

image14.png

image15.png

image1.png

image2.svg
 2 5 1000 2 5 0.1 0.2 0.3 2 5 1000 2 5 0.1 0.2 0.3 2 5 1000 2 5 0.1 0.2 0.3 2 5 1000 2 5 0 2 4 2 5 1000 2 5 0.1 0.2 0.3 2 5 1000 2 5 0.1 0.2 0.3 Jun 12 2022 Jun 19 2 5 1000 2 5 0 1 2 3 Jun 12 2022 Jun 19 2 5 1000 2 5 0.1 0.2 0.3 Jun 12 2022 Jun 19 2 5 1000 2 5 0.1 0.2 0.3 TTFB Failure Rate TTFB (ms) Failure Rate (%) TTFB (ms) Failure Rate (%) TTFB (ms) Failure Rate (%) CDN A CDN B CDN C Las Vegas, NV Philadelphia, PA Minneapolis, MN

image3.emf

2 5 1000 2 5
0

0.5

1

2 5 1000 2 5
0

0.5

1

2 5 1000 2 5
0

0.5

1

CDN A CDN B CDN C

TTFB (ms) TTFB (ms) TTFB (ms)

Pr
ob

ab
ili

ty
Las Vegas, NV Philadelphia, PA Minneapolis, MN

25

1000

25

0

0.5

1

25

1000

25

0

0.5

1

25

1000

25

0

0.5

1

CDN ACDN BCDN C

TTFB (ms) TTFB (ms) TTFB (ms)

P

r

o

b

a

b

i

l

i

t

y

Las Vegas, NV Philadelphia, PA Minneapolis, MN

image4.emf

2

5

1000

2

5

0

0.5

1

1.5

2

2

5

1000

2

5

0

0.5

1

1.5

2

07:24:00
Jun 22, 2022

07:24:30

07:25:00

07:25:30

2

5

1000

2

5

0

0.5

1

1.5

2

07:24:00
Jun 22, 2022

07:24:30

07:25:00

07:25:30

2

5

1000

2

5

0

0.5

1

1.5

2

TTFB (CDN A) Failure Rate (CDN A) TTFB (CDN B) TTFB (CDN C)

TT
FB

 (
m

s)

Fa
ilu

re

TT
FB

 (
m

s)

Fa
ilu

re

N. Virginia (Zone a) N. Virginia (Zone c)

N. Virginia (Zone d) N. Virginia (Zone f)

2

5

1000

2

5

0

0.5

1

1.5

2

2

5

1000

2

5

0

0.5

1

1.5

2

0

7

:

2

4

:

0

0

J

u

n

2

2

,

2

0

2

2

0

7

:

2

4

:

3

0

0

7

:

2

5

:

0

0

0

7

:

2

5

:

3

0

2

5

1000

2

5

0

0.5

1

1.5

2

0

7

:

2

4

:

0

0

J

u

n

2

2

,

2

0

2

2

0

7

:

2

4

:

3

0

0

7

:

2

5

:

0

0

0

7

:

2

5

:

3

0

2

5

1000

2

5

0

0.5

1

1.5

2

TTFB (CDN A)Failure Rate (CDN A)TTFB (CDN B)TTFB (CDN C)

T

T

F

B

(

m

s

)

F

a

i

l

u

r

e

T

T

F

B

(

m

s

)

F

a

i

l

u

r

e

N. Virginia (Zone a) N. Virginia (Zone c)

N. Virginia (Zone d) N. Virginia (Zone f)

