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In RAN #102 meeting, further study objectives on AI CSI compression have been identified in the WID [1]: 
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):	
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· [bookmark: OLE_LINK2]Alleviate/resolve issues related to inter-vendor training collaboration.
[bookmark: OLE_LINK1]while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 



In this contribution, we discuss the key issues involved in the objectives and present our views as well as simulation results.
Improving trade-off between performance and complexity/overhead
In this section, we continue to discuss the trade-off between performance and complexity/overhead.
Localized models 
	Agreement
For the evaluation of AI/ML-based CSI compression using localized models in Release 19, consider the following options as a starting point to model the spatial correlation in the dataset for a local region:
· Option 1: The dataset is derived from UEs dropped within the local region, with spatial consistency modelling as per TR 38.901. 
· E.g., Dropped in a specific cell or within a specific boundary.
· Option 2: By using a scenario/configuration specific to the local region. 
· E.g., Indoor-outdoor ratio, LOS-NLOS ratio, TXRU mapping, etc.
Note: While modelling the spatial correlation, strive to ensure that the dataset distribution also correctly captures the decorrelation due to temporal variations in the channel. To report methods to generate training and testing dataset.

Agreement
· For the results template used to collect evaluation results for AI/ML-based CSI compression using localized models, adopt Table 1 used in Rel-18 as starting point, capturing the generalized model result and the localized model result as separate columns, with the following additions for the localized model:
· Dataset description
· Local region modelling: e.g., Option 1 or Option 2, and further details
· Temporal modelling: e.g., how temporal variation is modelled in train and test sets
· Dataset description for generalized model



Since the beginning of R19 study on CSI compression, localized model has been proposed as one of solution to improve the trade-off between performance and complexity. However, there are still questions on how to evaluate the performance of localized model, especially how to compare the results of localized model and those for generalized model. Therefore, we would like to elaborate our methods in this part. Note that we adopt option 1 as our approach to model the correlation of samples within a region throughout this part.
Methodology for localized model evaluation
In general, the key to evaluate localized model is to build localized dataset. Intuitively, spatial correlations in channels of different UEs within a specific region could help to improve the performance of CSI compression, because effective characteristics to be compressed within the region will be reduced. There are two options given in the agreement to build the localized data, and we believe that option 1 is able to model the correlation between samples within certain region. As localized model is a generic method to potentially improve the performance of CSI compression, both the use case of SF compression and TSF compression can be considered in the evaluation. Towards each use case, the main difference on the EVM table is the on/off of spatial consistency when generating data within certain region. We will provide the simulation parameter table for each case in the corresponding part.
There are several additional issues that need further discussion. The first one is about the “generalized model”, one of the baselines for localized model. Our view is that the model trained on dataset without spatial consistency should be the “generalized model”, as 1) data without spatial consistency does not refer to any specific region and therefore could be considered as applicable for all available scenarios. 2) most companies did not consider spatial consistency in the dataset generation in R18 evaluation. Using the same method as the generalized model could make the results in R19 evaluation consistent with those in R18 evaluation.
Proposal 1: Towards the evaluation of localized model, consider the model trained on dataset without spatial consistency as the “generalized model”.

The second one is about the temporal modelling. In fact, we believe that this issue is more likely to be a generalization issue, i.e., whether a localized model can be generalized to other moment without obvious performance loss. As the time-varying effects on channel has been modelled in TR 38.901 model, we can directly generate datasets on different time slots with sufficient gaps, e.g., time gap of several thousand slots, to test the model. In the following, we will also present our initial results towards the issue. 
The third one is about the potential variations in performance. When we consider UE distribution such as 80% indoor UEs and 20% outdoor UEs, if we consider spatial consistency and collect data within a region (e.g., one sector or 3 sectors), we can observe that the ratio of number of indoor and outdoor UEs does not necessarily follow the pre-defined 8:2 distribution and vary in different regions. The reason is that UEs with similar position are highly probable to be both indoor or outdoor. Since the performance of CSI compression (both SF and TSF case) is significantly affected by the environments of UEs (e.g., different velocity and propagation configuration for indoor and outdoor UEs respectively), different level of performance gain can be observed in different regions, which is inconvenient for drawing observations (because different companies could observe very different performance of localized models on their results). Therefore, we propose that the performance of localized models should be evaluated several times on different regions (better not to overlap with each other) to average the UE distribution to the pre-defined ratio, and the performance to be captured should be the averaged one over all regions, which will make the comparison between localized and generalized model fairer. In the following part, we will also give our initial results on this issue, which shows that stable average performance gain can be observed as long as the number of local regions is large (e.g., 21 cells).
Proposal 2: Localized models should be evaluated on different local regions and the average gain over legacy eType-II can be calculated on these local regions. Results show that stable average performance gain can be observed as long as the number of local regions is large (e.g., 21 cells). 

Initial results on SF compression with localized models 
Following the aforementioned methodology, we provide the detailed parameters in our simulations for SF compression with localized models in Table 1:
[bookmark: _Ref166252408]Simulation parameters for SF compression with localized models
	Parameter
	Value

	Scenario
	Dense Urban (Macro only), Indoor Hotspot

	Frequency Range
	4GHz

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901 with spatial consistency

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH, dV) = (0.5, 0.8)λ for Dense Urban
32 ports : (4,4,2,1,1,4,4), (dH, dV) = (0.5, 0.5)λ for InH

	Antenna setup and port layouts at UE
	2 ports: (1,1,2,1,1,1,1), (dH, dV) = (0.5, 0.5)λ 

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	SCS
	30kHz for 4GHz

	Simulation bandwidth
	20 MHz for 30kHz 

	UE distribution
	Dense Urban:
Configuration 1: 100% outdoor (30km/h)
Configuration 2: 80% indoor (3 km/h), 20% outdoor (30 km/h)
InH:
100% indoor (3km/h)

	Feedback assumption
	ideal

	Channel estimation
	Ideal DL channel estimation

	Baseline for performance evaluation
	Rel-16 Type II Codebook, general model not specific to a region

	Rank number
	1

	Spatial consistency
	not adopted for general model, adopted for cell/site specific model

	Dataset size for training and inference 
	200, 000 randomly dropped UEs per region 




Fig. 1. [bookmark: _Ref166259431]Schematic of cell/site data collection area for UMa scenarios
With each UE following the configurations presented in the above table, we drop 200K UEs in one sector in our simulations for Uma scenario, and the cell specific model is trained and tested on data collected within each sector. 
We first investigate the impact of temporal variations. Specifically, we consider two cases: 1) cell/site specific model trained on data starting from slot0, where influence of doppler shift is not included; 2) cell/site specific model trained on data starting from slot1000 or later, where influence of doppler shift is included. The results are given below:
[bookmark: _Ref166265727]Results for cell specific model trained based on data from slot0 (Dense urban with 100% outdoor UEs considered)
	Scenario: Dense urban with 100% outdoor UEs
	R16 eType II CB (PC1)
	SF compression (64payload)
	R16 eType II CB (PC3)
	SF compression (104payload)

	Cell/site model on sector#1 
	0.627
	0.926
(+47.6%)
	0.699
	0.928
(+34.1%)

	Cell/site model on sector#2
	0.779
	0.972
(+24.7%)
	0.829
	0.978
(+17.9%)


[bookmark: _Ref166265734]Results for cell specific model trained based on data after slot1000 (Dense urban with 100% outdoor UE, PC1)
	Scenario: Dense urban with 100% outdoor UEs
	R16 eType II CB
	SF compression

	General model
	0.718
	0.737(+2.6%)

	Cell/site model on sector#3
	0.679
	0.750(+10.4%)


[bookmark: _Ref166253847]Generalization of cell specific model over time (Dense urban with 100% outdoor UEs considered, PC1)
	Scenario: Dense urban with 100% outdoor UEs
	R16 eType II CB
	Model trained on ~1k slots

	Test on PMI from ~slot1k
	0.679
	0.737(+10.4%)

	Test on PMI from ~slot10k
	0.679
	0.736(+10.3%)



First, we can observe in Table 2 and Table 3 that cell model could offer significant performance gain over generalized model on slot0 data (i.e., when influence of doppler shift is not included), while the gain reduces to a normal level on ~slot1000 data where influence of doppler shift is included. We conjecture one of the potential reasons for such phenomenon is that doppler shifts introduce diversity of data distribution, especially for those samples located in similar positions. Nevertheless, we emphasize that cell specific model is still able to obtain additional gains compared to the general model studied in R18 under the impact of doppler shifts. We then check the generalization capability over different slots for models trained on data from ~1k slots, and the results are provided in Table 4. It can be observed that there is almost no performance degradation when testing the model on data from slot10k, indicating a good generalization of the model over slots with large gaps. Therefore, we will consider to use data from ~slot1k to train localized models in the remaining part of the section.
Observation 1: When TR 38.901 channel model is considered, localised SF compression models trained on data including the impact of Doppler shift generalize well over different slots even with large gaps (e.g., slot1k training vs. slot10k testing).

Next, we demonstrate how to get stable results for localized models. Following the ideas elaborated in the methodology part, we collect data from each of the 21 sectors (as mentioned earlier, data from ~slot1k is considered) and train localized models respectively. Detailed results for each sector are presented in the following Table 5. It can be observed that the performance of localized models does vary obviously in different sectors, ranging as high as 0.9+ to as low as 0.7. However, after averaging over all sectors, the performance has converged to a stable value, which is more insightful for companies to reproduce the results. 
[bookmark: _Ref166262750]More results on scenario with 100% outdoor UEs
	Cell ID
	etype II PC1 SGCS
	SF SGCS

	1
	0.758
	0.800

	2
	0.881
	0.913

	3
	0.899
	0.935

	4
	0.704
	0.749	

	5
	0.820
	0.849

	6
	0.738
	0.802

	7
	0.702
	0.763

	8
	0.789
	0.866

	9
	0.630
	0.682

	10
	0.637
	0.686

	11
	0.666
	0.744

	12
	0.787
	0.839

	13
	0.665
	0.725

	14
	0.791
	0.711

	15
	0.797
	0.822

	16
	0.797
	0.834

	17
	0.770
	0.819

	18
	0.560
	0.614

	19
	0.694
	0.740

	20
	0.805
	0.854

	21
	0.676
	0.726

	All cell
	Mean:0.741
	Mean:0.790(+6.6%)


Observation 2: SF compression with cell/site specific model provides up to 6.6% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution while general model only provides 2.6% SGCS gains.

In addition, we also consider the case of Dense urban Uma with 80% indoor UEs and InH with 100% indoor UEs. While the illustration of Uma scenario has been provided, the illustration of localized model for InH scenario can be found in the following Fig. 2.


Fig. 2. [bookmark: _Ref166265002]Schematic of cell/site data collection area for InH
Towards the case of Uma with 100% outdoor UEs and InH with 100% indoor UEs, we draw other initial observations based on results from three sectors. In the future, we will consider to stabilize them with more results as presented for the case of Uma with 80% indoor UEs.
Results for cell/site specific model trained based on data after slot1000 (Dense urban with 20% outdoor UEs considered)
	Scenario: Dense urban with 20% outdoor UEs
	R16 eType II CB
	SF compression

	General model
	0.681
	0.715(+5.0%)

	Cell/site model on sector#3
	0.596
	0.650(+9.0%)

	Cell/site model on sector#4
	0.613
	0.665(+8.4%)

	Cell/site model on sector#5
	0.670
	0.725(+8.2%)


Results for cell/site specific model trained based on data after slot1000 (InH with 100% indoor UEs considered)
	Scenario: InH with 100% indoor UEs
	R16 eType II CB
	SF compression

	General model
	0.781
	0.832 (+6.5%)

	Cell/site model on region#1
	0.739
	0.811(+9.7%)

	Cell/site model on region#2
	0.746
	0.811(+8.7%)

	Cell/site model on region#3
	0.757
	0.824(+8.9%)


Observation 3: SF compression with cell/site specific model provides up to 9.0% gain in certain case (cell/sector) compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model only provides 5% SGCS gains.
Observation 4: SF compression with cell/site specific model provides up to 9.7% gain in certain case (cell/sector) compared to legacy codebook in InH scenario with 100% indoor UE distribution while general model provides 6.5% SGCS gains.

Initial results on TSF compression with localized models 
Following the same methodology, we then discuss TSF compression with localized models. 
We consider TSF compression case2, and the methodology can be generalized to other cases in TSF compression. The detailed simulation parameters are provided in the following Table 8.
[bookmark: _Ref166259529]Simulation parameters for TSF compression with localized models
	Parameters
	Value

	Scenario
	Dense Urban (Macro only)

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	gNB antenna
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	UE antenna
	2 ports: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	SCS
	30kHz for 4GHz

	Simulation bandwidth
	20 MHz for 30kHz 

	CSI feedback
	CSI feedback periodicity (full CSI feedback): 5 ms

	CSI-RS
	CSI-RS periodicity: 5ms

	Site number
	7

	Sector number per site
	3

	UE distribution
	20% indoor (3 km/h), 80% outdoor (30 km/h)

	Channel estimation
	Ideal DL channel estimation

	Baseline 
	Rel-16 Type II Codebook PC1

	Rank number
	1

	Spatial consistency
	not adopted for general model, adopted for cell/site specific model

	random number
	11,23,37



The illustration of cells/sectors has been given in Fig. 1. Similarly, we drop 200K UEs in one sector in our simulations, and the cell specific model is trained and tested on data collected within each sector.
Similar to the discussion of SF compression with localized model, we also first investigate the impact of temporal variations first. As mentioned in the previous part, we consider to collect data after slot 1k to include the influence of doppler shift. Initial results of generalization over different slots are provided below.
[bookmark: _Ref166257353]Results for TSF compression with cell/site specific model (Dense urban considered, 8:2 indicates that the ratio between indoor and outdoor UEs is 8:2, PC1 per slot)
	Dense urban
	R16 eType II CB
	TSF compression with CNN encoder
	TSF compression with transformer encoder

	General model (8:2)
	0.720
	0.683(-5.1%)
	0.745(+3.5%)

	Cell/site model on sector#3 (8:2)
	0.596
	0.720(+20.6%)
	0.758(+26.9%)


[bookmark: _Ref166257361]Generalization of cell specific model over time (Dense urban considered, 8:2 indicates that the ratio between indoor and outdoor UEs is 8:2, PC1 per slot)
	Scenario: Dense urban with 100% outdoor UEs
	R16 eType II CB
	Model trained on ~1k slots

	Test on PMI from ~slot1k
	0.596
	0.758(+26.9%)

	Test on PMI from ~slot10k
	0.596
	0.755(+26.3%)



From results presented in Table 9 and Table 10, it can be first observed that TSF compression with cell/site model has additional gain compared to the general model, and the additional gain in some regions (random seeds) is very promising compared to the general model. For example, in the UMa dense urban scenario with 8:2 indoor&outdoor UE distribution, the gain can be enlarged from 3.5% to 26.9%. We acknowledge that variations in performance gain will occur, and we will discuss the issue in the next part. Meanwhile, we find that the generalization of TSF localized models over different slots is also satisfying, as little performance loss can be observed when model trained on slot ~1k is tested on slot ~10k. In addition to the results under a powerful transformer encoder, we also present the results under a relatively simple CNN encoder. The results in Table 8 suggests that even with an encoder with simpler structure, TSF compression with cell/site specific models can still achieve higher performance than general model with powerful encoder structure (Note that when considering different cells/sectors, the observed performance gain might vary. We will provide the averaged stable results in the following meeting.). On the contrary, if CNN encoder is considered, TSF compression with a general model provide almost no performance gain. That is to say, it is possible to simplify model structure design with cell/site specific models, which is obviously beneficial to inter-vendor collaborations.
Observation 5: When TR 38.901 channel model is considered, localised TSF compression (case2) models trained on data including the impact of Doppler shift generalize well over different slots even with large gaps (e.g., slot1k training vs. slot10k testing).

Then we will discuss how to stabilize the performance of localized model. Following the methodology in 2.1.1, we consider to repeat our experiments on each of the 21sectors in one seed. Our initial results on different seeds can be found in the following table. 
[bookmark: _Ref166258566] TSF compression (case2) with sector specific models under seed11 (indoor UE:ourdoor UE=8:2, PC1 per slot)
	Seed11

	Actual indoor ratio
	Cell ID
	etype II SGCS
	TSF model SGCS

	70% 
	1
	0.708
	0.793

	86%
	2
	0.623
	0.666

	100% 
	3
	0.609
	0.757

	28% 
	4
	0.668
	0.709

	66% 
	5
	0.684
	0.785

	86% 
	6
	0.659
	0.796

	93% 
	7
	0.639
	0.776

	88% 
	8
	0.663
	0.787

	78% 
	9
	0.702
	0.821

	47% 
	10
	0.600
	0.648

	67% 
	11
	0.689
	0.721

	62% 
	12
	0.712
	0.735

	99.9% 
	13
	0.609
	0.737

	98% 
	14
	0.632
	0.778

	86% 
	15
	0.634
	0.744

	99% 
	16
	0.626
	0.770

	100% 
	17
	0.625
	0.765

	100% 
	18
	0.622
	0.761

	90% 
	19
	0.636
	0.760

	73% 
	20
	0.593
	0.637

	100% 
	21
	0.619
	0.762

	Mean:82%
	All cell
	Mean: 0.645
	Mean:0.748(+16.0%)


TSF compression (case2) with sector specific models under seed23 (indoor UE:ourdoor UE=8:2, PC1 per slot)
	Seed23

	Actual indoor ratio
	Cell ID
	etype II SGCS
	TSF model SGCS

	87%
	1
	0.664
	0.802

	81%
	2
	0.657
	0.789

	99%
	3
	0.643
	0.800

	43%
	4
	0.694
	0.733

	87%
	5
	0.666
	0.799

	69%
	6
	0.651
	0.795

	83%
	7
	0.630
	0.773

	83%
	8
	0.609
	0.743

	77%
	9
	0.625
	0.722

	52%
	10
	0.634
	0.670

	100%
	11
	0.617
	0.768

	96%
	12
	0.595
	0.744

	94%
	13
	0.645
	0.774

	100%
	14
	0.614
	0.780

	72%
	15
	0.627
	0.834

	92%
	16
	0.567
	0.777

	59%
	17
	0.651
	0.764

	42%
	18
	0.639
	0.622

	94%
	19
	0.736
	0.784

	90%
	20
	0.623
	0.747

	29%
	21
	0.625
	0.776

	Mean:78%
	All cell
	Mean:0.639
	Mean:0.761(19.1%)


[bookmark: _Ref166258574]TSF compression (case2) with sector specific models under seed37 (indoor UE:ourdoor UE=8:2, PC1 per slot)
	Seed37

	Actual indoor ratio
	Cell ID
	etype II SGCS
	TSF model SGCS

	61%
	1
	0.625
	0.705

	82%
	2
	0.678
	0.790

	100%
	3
	0.618
	0.751

	63%
	4
	0.657
	0.689

	70%
	5
	0.705
	0.805

	61%
	6
	0.700
	0.785

	97%
	7
	0.643
	0.789

	91%
	8
	0.659
	0.777

	89%
	9
	0.644
	0.782

	99%
	10
	0.626
	0.781

	92%
	11
	0.645
	0.774

	92%
	12
	0.647
	0.773

	86%
	13
	0.639
	0.767

	93%
	14
	0.626
	0.756

	66%
	15
	0.658
	0.762

	99%
	16
	0.636
	0.756

	96%
	17
	0.627
	0.759

	98%
	18
	0.630
	0.773

	93%
	19
	0.634
	0.741

	96%
	20
	0.625
	0.752

	100%
	21
	0.678
	0.776

	Mean:87%
	All cell
	Mean:0.648
	Mean:0.766(18.2%)



From Table 11 to Table 13, we can first observe that performance of localized models varies a lot in different cells/sectors, possibly due to the varying ratios of indoor UEs (with 3kmph velocity) and outdoor UEs (with 30 kmph velocity). Intuitively, TSF compression can offer higher additional gain on UEs with low velocity, as the temporal domain correlations in CSIs is larger given the same measurement periodicity. Our understanding is that when collecting data within a region the dropped UEs can also follow very different indoor/outdoor ratios even with the same expected one (Specifically, this is because in the case of spatial consistency modelling, in order to achieve the effect that the channel is slowly changing within a similar space or location, the random number that determines the type of distribution of the UE is affected by the random seed in the simulation as well as by the location of the UE, so that the channels within a similar space and location have a certain degree of similarity.). Nevertheless, we emphasize that if we average the results over all 21 sectors, we can obtain a much stable result which is consistent in different seeds. Therefore, we can make observations based on the averaged results, and it can be foreseen that the results from companies will also follow the similar trend.
Observation 6: TSF compression case2 with cell/site specific model provides up to 19.1% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model only provides 3.5% SGCS gains.

Towards the case of Dense urban Uma with 100% outdoor UEs and InH with 100% indoor UEs, we draw our initial observations based on the following results. Note that there might be potential gaps between the displayed values and the stable averaged ones. In the future, we will complete our simulations and update our observations accordingly.
Results for TSF compression with cell/site specific model (Dense urban with 100% outdoor UEs considered, PC1 per slot)
	Dense urban with 100% indoor UEs
	R16 eType II CB
	TSF compression with transformer encoder

	General model
	0.718
	0.737(+2.3%)

	Cell/site model on sector#3
	0.679
	0.742(+9.0%)

	Cell/site model on sector#4 
	0.732
	0.803(+7.1%)

	Cell/site model on sector#5
	0.701
	0.773(+10.3%)


 Results for TSF compression with cell/site specific model (InH with 100% indoor UEs considered, PC1 per slot)
	InH with 100% indoor UEs
	R16 eType II CB
	TSF compression with transformer encoder

	General model
	0.781
	0.840(+7.5%)

	Cell/site model on sector#3
	0.739
	0.863(+16.8%)

	Cell/site model on sector#4 
	0.746
	0.821(+10.1%)

	Cell/site model on sector#5
	0.757
	0.852(+12.5%)


Observation 7: TSF compression case2 with cell/site specific model in certain case (cell/sector) provides up to 10.3% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution while general model only provides 2.3% SGCS gains.
Observation 8: TSF compression case2 with cell/site specific model in certain case (cell/sector) provides up to 16.8% gain compared to legacy codebook in InH scenario with 100% indoor UE distribution while general model provides 7.5% SGCS gains.

We then consider TSF compression case3, and the results are provided in the following table.  
[bookmark: _Ref166266119] Results for TSF compression with cell/site specific model (Dense urban considered)   
	Dense urban
	PMI#0
	PMI#1
	PMI#2
	PMI#3
	Averaged

	R18 DD codebook 
(N4=4, Payload = 284bit)
	0.723
sector#3:0.656
sector#4:0.705
sector#5:0.672
	0.734
sector#3:0.667
sector#4:0.723
sector#5:0.668
	0.728
sector#3:0.661
sector#4:0.717
sector#3:0.664
	0.708
sector#3:0.636
sector#4:0.690
sector#5:0.649
	0.723
sector#3:0.655
sector#4:0.709
sector#5:0.663

	General model with Transformer encoder (ind UE: out UE=8:2)
	0.793
(+9.6%)
	0.814
(+10.9%)
	0.814
(+11.8%)
	0.793
(+12.0%)
	0.804
(+11.2%)

	Joint TSF cell/site model with CNN encoder (sector#3, ind UE: out UE=8:2)
	0.723
(+12.2%)
	0.749
(+12.3%)
	0.750
(+13.4%)
	0.720
(+13.2%)
	0.736
(+12.4%)

	Joint TSF cell/site model with Transformer encoder (sector#3, ind UE: out UE=8:2)
	0.757
(+15.4%)
	0.783
(+17.3%)
	0.783
(+18.4%)
	0.756
(+18.6%)
	0.770
(+17.6%)

	Joint TSF cell/site model with CNN encoder (sector#4, ind UE: out UE=9.9:0.1)
	0.773
(+9.6%)
	0.801
(+10.7%)
	0.799
(+11.4%)
	0.769
(+11.4%)
	0.786
(+10.8%)

	Joint TSF cell/site model with Transformer encoder (sector#4, ind UE: out UE=9.9:0.1)
	0.793
(+12.4%)
	0.823
(+13.8%)
	0.823
(+14.7%)
	0.794
(+15.0%)
	0.808 
(+14.1%)

	Joint TSF cell/site model with CNN encoder (sector#5, ind UE: out UE=4:6)
	0.718
(+6.8%)
	0.736(+10.1%)
	0.744(+12.0%)
	0.720(+10.9%)
	0.730
(+9.9%)

	Joint TSF cell/site model with Transformer encoder (sector#5, ind UE: out UE=4:6)
	0.767
(+14.1%)
	0.780
(+16.7%)
	0.781
(+17.6%)
	0.768
(+18.3%)
	0.774
(+16.7%)


Note that the above results are the initial ones and did not consider averaging over multiple cells/sectors. In the future, we will follow the methodology to give the stabilized results and update our observations accordingly. From Table 16, it can be observed that although the general model already has a considerable gain compared to the baseline, the cell/site model can further improve the gain. Besides, we also find that simpler encoder with CNN structure is also able to achieve satisfying performance gain compared with general model.
Observation 9: TSF compression case3 with cell/site specific model in certain case (cell/sector) provides up to averaged 17.6% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model provides averaged 11.2% SGCS gains.
Observation 10: Even considering a relatively simpler CNN encoder, TSF compression with cell/site specific models in certain case (cell/sector) can still offer an obvious performance (up to 31.3% in our simulation for case2 and up to 12.4% in case3), indicating that it is possible to simplify model design with localized models.

TSF compression 
	Agreement
For the results template used to collect evaluation results for temporal domain compression Case 1/2/5, adopt Table 1 used in Rel-18 as starting point with the following additions:
· Temporal domain CSI setting
· CSI feedback periodicity
· CSI-RS periodicity 
· Description of model input/output and Case
· Compression case, e.g., Case 1/2/5
· Usage of historical CSI at UE/NW side (e.g., number / time distance, eigen-vectors / raw channels, etc)
· Methods to handle UCI loss (if applicable), e.g., CSI buffer reset, CSI retransmission, etc.
· Methods to handle rank adaptation (if applicable)
· UE distribution (Option 1 or Option 2) and UE speed
· CSI feedback overhead rate: X/Y/Z bits per normalized time unit
· Normalized time unit = 5ms and adopt same X/Y/Z values as in Table 1 of Rel-18
· Benchmark scheme
· Rel-16 eT2 and compression Case 0 (i.e., Rel-18 AI/ML based CSI compression)
· Whether/how spatial consistency is modelled
· Whether/how UCI loss is modelled
· The same UCI loss model shall be applied to the benchmark for fair comparison. 
· Whether/how rank adaptation is modelled
· Modelling of channel estimation error
· Whether/how phase discontinuity is modelled (if applicable) 

Agreement
For the results template used to collect evaluation results for temporal domain prediction and compression Case 3/4, adopt Table 1 used in Rel-18 as starting point with the following additions:
· Temporal domain CSI setting
· CSI feedback periodicity
· CSI-RS periodicity 
· Description of model input/output and use case
· Compression case, e.g., case 3 / 4
· Observation window (usage of historical CSI at UE/NW side, e.g., number / time distance, eigen-vectors / raw channels, etc)
· Prediction window (e.g., time distance between 1st prediction instance and last observation instance, number / time distance of predicted CSI)
· Methods to handle UCI loss (if applicable)
· UE distribution (Option 1 or Option 2) and UE speed
· CSI feedback overhead rate: X/Y/Z bits per normalized time unit
· Normalized time unit = 5ms and adopt same X/Y/Z values as in Table 1 of Rel-18
· SGCS values before (if applicable) and after compression
· Assumption on the prediction of future CSI 
· Separate step or jointly with compression
· If separate, description of the AI or non-AI prediction algorithms: ideal prediction, AI-based prediction, non-AI-based prediction (e.g., nearest historical CSI and its location, learning window size / time correlation matrix size for auto-regression based prediction),
· Note: the same prediction algorithm to be used for the benchmark scheme.
· Benchmark schemes
· Description of feedback schemes, i.e., Rel-18 doppler eT2
· Whether/how spatial consistency is modelied
· Whether/how UCI loss is modelled
· The same UCI loss model shall be applied to the benchmark for fair comparison. 
· Modelling of channel estimation error
· Whether/how phase discontinuity is modelled (if applicable) Modelling of phase discontinuity


Agreement
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, for the temporal domain prediction and compression Case 3 and Case 4, adopt the following evaluation assumptions as baseline:
· Observation window (number/distance):
· For periodic CSI-RS with 5ms periodicity: 12/5ms, 10/5ms, 8/5ms, 5/5ms, 4/5ms, unrestricted observation window
· For periodic CSI-RS with 20ms periodicity: up to companies (encouraged)
· For aperiodic CSI-RS: 12/2ms, 8/2ms, 4/2ms
· Others can be additionally submitted
· Prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance):  4/5ms/5ms
· Others can be additionally submitted, e.g. 4/1ms/5ms, 8/1ms/5ms, 4/5ms/10ms, 1/-/5ms

Conclusion
For multi-vendor results table, adopt Rel-18 Table 4 for joint training and Rel-18 Table 5 for separate training as starting point, with the same additions of above 2 agreements.

Conclusion
For model generalization results table, adopt Rel-18 Table 2 and Generalization Case 1 / 2 / 3 as starting point with same additions above. For generalization aspects, adopt the following
· Various UE speed
· UE distribution
· Various CSI-RS periodicity

Conclusion
For model scalability results table, adopt Rel-18 Table 3 and Generalization Case 1 / 2 / 3 as starting point with same additions above. For generalization aspects, adopt the following
· Various numbers of antenna ports
· Various frequency granularity
· Various payload size



Evaluation assumptions for TSF compression have been mostly addressed after RAN1 #116bis, and we continue to discuss our results in the following part.
Evaluations on case 2 
We first focus on evaluating TSF compression case 2. As illustrated in the following figure, historical information accumulates in a fixed buffer in both encoder and decoder in case 2 to help the feedback of CSI on present slot. In this manner, model complexity will not increase as more slots are taken into considerations. Since there is an accumulating procedure in the exploiting of historic information, it is expected that the performance of feedback will also increase gradually. However, when enough information has been provided in previous slots, feedback performance will converge a stable value. In simulations, we are more interested in the converged stable performance, because the system throughput primarily depends on it (system level simulation usually considers a long period). In the following, we update our simulation configurations according to the newly agreed assumptions. 
[image: ]
Fig. 3. [bookmark: _Ref159247577]Illustration of TSF compression case2. 
Simulation parameters for TSF compression case2
	Parameters
	Value

	Scenario
	Dense Urban (Macro only), InH hotspot

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	gNB antenna
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	UE antenna
	2 ports: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	SCS
	30kHz for 4GHz

	Simulation bandwidth
	20 MHz for 30kHz 

	CSI feedback
	CSI feedback periodicity (full CSI feedback): 5 ms

	CSI-RS
	CSI-RS periodicity: 5ms

	UE distribution
	Configuration 1:20% indoor (3 km/h), 80% outdoor (30 km/h)
Configuration 2:100% indoor (3 km/h)

	Channel estimation
	Ideal DL channel estimation

	Baseline 
	Rel-16 Type II Codebook

	Rank number
	1

	Spatial consistency
	not adopted for general model, adopted for cell/site specific model


We consider several scenarios with different UE distributions in our simulation, and specific results are referred in the following table:
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	R16 eType II compression
	TSF compression with transformer encoder

	Dense urban with 20% outdoor UEs
	0.720
	0.745(+3.5%)

	InH with 100% indoor UEs
	0.781
	0.840(+7.6%)


As show in Table 18, we can find some gains in SGCS using TSF compression compared to legacy approach in the scenarios involved in the evaluation. The magnitude of the SGCS gain depends on the complexity of the samples in the scene, where complexity refers to the distribution ratio of UEs as well as the velocity, and the higher the sample complexity the worse the baseline of the scene, but the TSF model is able to use the historical information to overcome the sample complexity to improve the compression quality.
Observation 11: For Dense Urban with 20% outdoor UEs, TSF compression case 2 can improve SGCS gain by ~3.5% compared to R16 eType2 codebook methods.
Observation 12: For InH scenarios, TSF compression case2 can improve SGCS gain by ~7.6% compared to R16 eType2 codebook methods.
Evaluations on case 3 
[bookmark: OLE_LINK24][bookmark: OLE_LINK25]In this part, evaluation for TSF compression case 3 is discussed. We believe that a temporal window is required for case 3 to indicate how many slots are included per feedback. To achieve a trade-off between model complexity and performance, we consider a window of length 4 in our simulation. In addition, we are primarily interested in the gain of jointly compressing CSI on multiple slots, so perfect future CSIs (i.e., ideal prediction is assumed) are considered in our initial simulation. Other simulation parameters can be referred to the following table:
Simulation parameters for TSF compression case 3
	Parameters
	Value

	Scenario
	Dense Urban (Macro only)

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	gNB antenna
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	UE antenna
	2 ports: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	SCS
	30kHz for 4GHz

	Simulation bandwidth
	20 MHz for 30kHz 

	CSI feedback
	CSI feedback periodicity (full CSI feedback): 5 ms

	UE distribution
	80% indoor (3 km/h), 20% outdoor (30 km/h) 

	Channel estimation
	Ideal DL channel estimation

	Baseline 
	Rel-18 doppler domain Codebook

	Rank number
	1

	Spatial consistency
	not adopted for general model, adopted for cell/site specific model

	Prediction method
	ideal

	Length of compression window
	4 



In order to make the gain due to the CSI compression scheme clearer, ideal prediction scheme is considered in our simulation. For the target CSI, we consider four CSIs in the future with a period of 5ms, which are obtained by an ideal prediction method, and then perform a joint compression of the four future CSs according to the evaluation method described in the previous section. The baseline scheme is R18 DD codebook and payload size = 284. To give more insights into the performance trends, we give the SGCS gain on each slot as well as the averaged value compared to the baseline:
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	Scenario: Dense urban
	PMI#0
	PMI#1
	PMI#2
	PMI#3
	Averaged

	R18 DD codebook 
(N4=4, Payload = 284bit)
	0.723
	0.734

	0.728

	0.708

	0.723


	Transformer encoder
	0.793
(+9.6%)
	0.814
(+10.9%)
	0.814
(+11.8%)
	0.793
(+12.0%)
	0.804
(+11.2%)


From Table 20, it can be observed that the compression of 4 slots using the joint TSF performs better than the R18 DD codebook compression under ideal channel prediction. The reason why joint TSF compression is advantageous is that the process of compressing CSI is able to make better use of the correlation between CSI information in multiple slots. 
Observation 13: For dense urban scenarios, TSF compression case 3 can improve SGCS gain by 9.6%~12.0% compared to R18 DD codebook.

Issues related to inter-vendor training collaboration 
For the sake of alleviating/resolving issues related to inter-vendor training collaboration of two-sided models, following agreements (including potential options to be studied) were made in RAN1 #116bis on top of the agreements from RAN1 #116:
	Agreement
· For Option 3, further define the two sub-options:
· 3a: Parameters received at the UE or UE-side goes through offline engineering at the UE-side (e.g., UE-side OTT server), e.g., potential re-training, re-development of a different model, and/or offline testing.
· 3b: Parameters received at the UE are directly used for inference at the UE without offline engineering, potentially with on-device operations.
· For Option 5, further define the two sub-options:
· 5a: Model received at the UE or UE-side goes through offline engineering at the UE-side (e.g., UE-side OTT server), e.g., potential re-training, re-development of a different model, and/or offline testing.
· 5b: Model received at the UE are directly used for inference at the UE without offline engineering, potentially with on-device operations.
· For Option 4, it is clarified that:
· Dataset received at the UE or UE-side goes through offline engineering at the UE- side (e.g., UE-side OTT server), e.g., model training or offline testing.
· Note: The descriptions under each option are only for the purpose of simplified discussion and do not mean deprioritizing any other flavors (such as an exchange originating from the UE-side and ending at the NW-side) from potential specification. 


Agreement
· For Option 3/4/5, focus further discussion on the following assumptions:
· Option 3a/5a
· The model(5a)/parameter(3a) exchange originates from the NW-side and ends at the UE-side.
· Model(5a)/parameters(3a) exchanged from the NW-side to UE-side is either CSI generation or reconstruction part or both.
· Option 3a-1/5a-1: Model/Parameters exchanged from the NW-side to UE-side is CSI generation part.
· Option 3a-2/5a-2: Model/Parameters exchanged from the NW-side to UE-side is CSI reconstruction part.
· Option 3a-3/5a-3: Model/Parameters exchanged from the NW-side to UE-side are both CSI generation part and CSI reconstruction part.
· Some additional information, if necessary, may be shared from the NW-side to help UE-side offline engineering and provide performance guidance.
· Performance target 
· Dataset or information related to collecting dataset
· Study different methods of exchanging, e.g., over the air-interface, offline delivery, etc.
· Option 3b
· The method of exchanging is over the air-interface via model transfer/delivery Case z4.
· The parameter exchange is from NW to UE.
· Parameters exchanged from the NW-side to UE-side is CSI generation part.
· Option 5b
· The method of exchanging is over the air-interface via model transfer/delivery Case z4, assuming that the model structure is aligned based on offline inter-vendor collaboration.
· The model exchange is from NW to UE.
· Model exchanged from the NW-side to UE-side is CSI generation part.
· Option 4:
· The dataset exchange originates from the NW-side and ends at the UE-side.
· Option 4-1: Dataset exchanged from the NW-side to UE-side consists of (target CSI,  CSI feedback).
· Option 4-2: Dataset exchanged from the NW-side to UE-side consists of (CSI feedback, reconstructed target CSI).
· Option 4-3: Dataset exchanged from the NW-side to UE-side consists of (target CSI, CSI feedback, reconstructed target CSI).
· Some additional information, if necessary, may be shared from the NW-side to help UE-side offline engineering and provide performance guidance.
· Performance target
· Study different methods of exchanging, e.g., over the air-interface, offline delivery, etc.
· Note: For each option/sub-option of interest, companies to bring discussion on how inter-vendor collaboration complexity, interoperability, and feasibility may be addressed. Companies to strive to provide solution(s) that can address all the following aspects: inter-vendor collaboration complexity, performance, interoperability, and feasibility.
· Note: The descriptions under each option are only for the purpose of simplified discussion and do not mean deprioritizing any other flavors (such as an exchange originating from the UE-side and ending at the NW-side) from potential specification. 




In addition, there are following observations and conclusions from RAN1 #116bis:
	Conclusion:
· Conclude, from RAN1 perspective, that Option 1, if feasible for specification, eliminate the inter-vendor collaboration complexity (e.g., whether bilateral collaboration is required between vendors).
· It is RAN1’s understanding that Option 1 corresponds to RAN4 options, e.g., RAN4-Option3, or RAN4-Option4. Further study and final conclusion on interoperability and RAN4 testing of the RAN4-Option3 and RAN4-Option4 is up to RAN4.

Observation
· Option 1 and 2 may have limited performance in the field compared to Options 3, 4, and 5, further study is needed 
· Option 1 and 2 may require high specification effort from RAN1 perspective.

Conclusion
· Deprioritize Option 2 for inter-vendor training collaboration.
· Note: This deprioritization shall not affect the ongoing discussion in RAN4 on RAN4-Option3 and RAN4-Option4.



Generally, there were initial conclusions towards option 1/2, and the detailed approaches for option 3/4/5 have been clarified with some new sub-options raised for companies to share their views. So, we would like to update our views on training collaboration issues based on the new agreements.
Option 1
In RAN1 #116bis, initial conclusions/observations towards option 1 were agreed on various aspects. While option 1 is promising to address the issues on inter-vendor collaboration complexity and shows good consistency with RAN4 options, there are some open problems left for further study, especially the performance issue. It has been acknowledged that option 1 may have limited performance in the field compared to option 3/4/5, which means that one of the key topics in the following study will be how to further improve the field performance. We notice that option 1 could be combined with option 3 to get additional design flexibility, thus improving the performance. For example, part of the encoder model (e.g., from the input layer to layer before quantization) is specified (both structure and parameter) and the remaining component only needs to follow a specified structure (i.e., parameters can be exchanged from other entities).
Another issue that has not been determined for option 1 is whether the encoder part or the decoder part will be specified. While RAN4 are discussing the same issue, we believe that reference model in RAN1 and RAN4 can be different in several aspects. From RAN1 perspective, we prefer a specified encoder due to the following reasons: 1) a specified encoder benefits the end-to-end performance compared to a specified decoder, as the decoder can be optimized for different data distributions, e.g., localized decoder; 2) specifying an encoder is simpler compared to specifying a decoder, as fewer scalability issues need to be considered (e.g., the specified decoder should be able to match multiple encoders from different vendors).
Proposal 3: For option 1, RAN1 considers specifying CSI generation part.

Option 3b
Option 3b refers to the case where the received parameters at UE side are directly used for inference without offline engineering, potentially with some on-device operations or optimizations, which is consistent with our understanding for option3 in our contribution to RAN1 #116bis. It is easy for NW vendors to develop a common decoder for all served UEs through NW-side type1 training.  If multiple reference model structures are specified, the UE vendor could select a subset of model structures to deploy at UEs considering the UE capability. Note that the quantization methods of the parameters can also be specified as part of the model structure to facilitate the on-device deployment of exchanged parameters.
Observation 14: Methods for the quantization of parameters can also be specified as part of the model structure to facilitate the on-device deployment of transferred parameters.

· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors
As clarified in the agreement, the method of exchanging parameters between NW and UE is over the air-interface with model transfer z4, it is clear that option 3b requires no inter-vendor collaboration. 
Observation 15: Option 3b requires no bi-lateral inter-vendor collaboration as the parameter exchange has been clarified to be in an over-the-air manner. 

· Performance
We have noticed that the performance of an inter-vendor collaboration option can be reflected at least by the following main aspects, i.e., model optimizing flexibility (e.g., whether updated model structure design or scalable parameter scale can be supported, whether model can be trained in an end-to-end manner or in a manner mimicking the target model), and support for approaches potentially beneficial for performance (e.g., cell/site or localized models). Therefore, we would like to analyse each specific option according to the listed factors separately.
On the one hand, encoder structure is specified and constrained in option 3b, and some may argue that the performance of option3b will be limited by the fixed encoder structure. However, we believe that scaling up the parameters of encoder could not unlimitedly boost the end-to-end performance of CSI compression, and the gain provided by powerful models is acceptable based on results from companies. So, the fixed encoder structure will not be a critical problem. On the other hand, the performance of option 3 can be guaranteed by the flexibly-updated model parameters compared with options with fixed model parameters such as option1, i.e., different parameter sets can be trained based on cell/site or configuration-specific data to achieve good performance to fit different real scenarios. In fact, simulation results in R18 show that only updating parameters in a fixed model structure is enough to achieve satisfying performance. 
Observation 16: A fixed encoder structure in option 3b will not be performance limiting for CSI compression if a powerful encoder design is specified in 3GPP.
Observation 17: Performance of option 3b could benefit from a good support for cell/site or localised models.

· Interoperability and RAN4 / testing related aspects
Interoperability, in our understanding, means that for any UE vendor that passes the RAN4 testing, the interoperability between UE and NW can be guaranteed with expected performance target. Towards option 3b, one key issue to be considered is how to guarantee the performance in real deployment via pre-deployment testing, since the complete model can be obtained only after the model parameters for deployment have been transferred to UE.
In our understanding, the interoperability of option 3b could be guaranteed via the testing of model parameter update at UE in RAN4. Specifically, RAN4 could identify (or even specify) several sets of testing model parameters and testing condition together for the standardized model structure. During the test, TE can update the UE side model with the identified testing model parameters. UE can deploy the test parameters with specified model to check whether the output of UE side model approaches the target output given the testing condition (how to generate the testing dataset could be further studied in RAN4). As long as a UE passes the RAN4 testing, it means UE implements the encoder structure in a way that can have flexible parameter update. Thus, for any UE that interoperate with the NW, the expected performance can be guaranteed in a cell/site specific way. Note that on-device self-optimization for the model structure is feasible in option 3, as long as the self-optimized model deployment could pass the corresponding RAN4 test. 
Observation 18: Option 3b guarantees the interoperability between UE and gNB since for any UE that passes the RAN4 test on model performance based on model parameter update, the expected performance of the UE would be predictable and guaranteed.

For the performance requirement definition itself, we believe that it can be defined with specified encoder structure and possible RAN4 agreed testing condition, including concluded reference decoder structure for performance target evaluation. 
Observation 19: The performance requirement in RAN4 testing for option 3b can be defined with specified encoder structure and possible RAN4 agreed testing condition, including concluded reference decoder structure for performance target evaluation.

Another approach to guarantee the performance in real deployment is to design a post-deployment testing framework. The post-deployment testing could guarantee the performance of models through observation of inference results against expected inference outputs, which is somewhat similar to model monitoring in LCM. Dataset for post-deployment testing can be either real-time measurements or predefined. However, with well-designed pre-deployment testing for Option 3b for model parameter update, the necessity of post deployment testing needs to be studied.
Observation 20: Necessity of post deployment testing can be studied for Option 3b. 

· Feasibility
 In Appendix, an initial lab test for model transfer with known model structure is done to test its basic feasibility and obtain the actual latency. For even 10M parameters, the total latency of UE updating the received model parameters is just 12.472ms, which would result in the low latency of model transfer with known model structure. Our result of lab test demonstrated that option 3b with standardized reference model structure and parameter exchange between NW-side and UE-side is also feasible with typical UE implementations and on-device operation. 
Observation 21: Option 3b is feasible with typical UE implementations and on-device operation.

Option 3a/5a
Option 3a/5a were further categorized in RAN1 #116bis, which refers to the case where the exchanged models or parameters will be further processed at UE-side server (e.g., potential re-training, re-development, and/or offline testing can be considered). The difference between option 3a/5a lies in the approach of exchanging model, i.e., parameter exchange with a specified model structure for option 3a or full model exchange with a specified model format for option 5a. One of the key issues for option 3a/5a is which parts of the model will be exchanged from NW side to UE side. As clarified in the agreement, candidate solutions include: 1) exchanging encoder (i.e., option 3a-1/5a-1); 2) exchanging decoder (i.e., option 3a-2/5a-2); 3) exchanging both encoder and decoder (i.e., option 3a-3/5a-3). Apparently, different sub-options will affect the training strategy of UE-side model, and more details will be discussed in the analysis for performance issue.

· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors
First of all, we believe that sub-options within option3a/5a do not affect the observations on inter-vendor collaboration complexity, and the following content holds for all sub-options. As the exchanged model (or parameter) will be processed at UE-side server, we believe the inter-vendor collaboration following three approaches:
1) over-the-air;
2) vendor-vendor specific server-to-server communication; 
3) server-to-server communication via standardized interface, e.g., a central register.
Over-the-air model exchange obviously incurs little inter-vendor collaboration, but vendor-vendor specific model exchange between servers requires large inter-vendor collaboration efforts. A standardized interface for server-to-server model exchange can reduce the inter-vendor collaboration complexity, but more vendors will be included, e.g., gNB vendor, CN vendor, UE vendor etc. 
Observation 22: For inter-vendor collaboration of option 3a/5a,
· if the model (parameter) is exchanged over the air, the inter-vendor collaboration complexity is less than with server to server/vendor to vendor specific way. 
· if the model (parameter) is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery, inter-vendor training complexity would be high and may potentially need to involve more vendors for the collaboration.

· Performance
We follow the similar analysing framework for performance issue as depicted in option 3b part. On the one hand, towards the flexibility in encoder structure option 3a/5a can both enable a device-specific optimized design based on hardware capability and/or targeting scalable performance, and whether the exchanged model is in a specified structure or a flexible format does not matter here. In terms of training, things could be different for each sub-option. For option 3a-1/5a-1, our view is that UE side offline engineering does not significantly affect the performance of encoder, as the processed encoder (e.g., a re-trained one) will still mimic the input-output relationship of the exchanged one from NW side. For option 3a-2/5a-2 and 3a-3/5a-3, UE vendors could train their encoder model based on the decoder in an end-to-end manner using their collected data. However, our view is that more clear results or observations are needed to verify the benefits of such device-specific optimization. At least our results demonstrate that the design of receiving antenna array and insertion loss does not affect the performance of CSI compression models [?]. As the decoder at NW side has not been trained based on device-specific data, the potential gain of device-specific encoder is not clear to us. 
On the other hand, the support for cell/site or localized models in option 3a/5a is generally inferior to that in approach without offline engineering such as option 3b, due to a larger latency in model deployment. If localized models have to be considered, UE vendors need to train and store enormous candidate models in advance and switch to the suitable one according to the indications. 
Observation 23: It is expected that the potential performance gain by offline engineering on encoder in option 3a/5a would not be observable especially when the decoder is fixed.
Observation 24: Due to offline engineering at the server, option 3a/5a could not flexibly update encoder in a small deployment latency, which reduces the potential gain brought by localized model.

· Interoperability and RAN4 / testing related aspects
Conventional RAN4 testing focuses on pre-deployment testing to guarantee the inter-operability of UEs. However, as option 3a/5a requires offline engineering at a server, pre-deployment testing will become much costlier compared with option 3b, since latency of model training is much longer than on-device optimizations or operations. In addition, we doubt whether pre-deployment testing could guarantee the minimum performance of UE, since the training of AI/ML models could be unstable in some cases or sensitive to exchanged model. If the exchanged model in real deployment from NW differs from the one considered in RAN4 testing stage, it is not always guaranteed that the same training algorithm yields a good model (In this sense, we believe that the option 3a will be more robust than option 5a, since a reference model structure in option 3a regularizes the training procedure). Based on the above reasons, we believe that pre-deployment testing for option 3a/5a could be neither efficient nor effective. 
Therefore, option 3a/5a tend to highly rely on post-deployment testing. Once the model is developed/trained, the vendor could test it with some available dataset and check whether the performance meets the requirement. The testing dataset as well as the performance target could either be standardized or provided by the other side (along with model exchanging), and more detailed approaches should be further studied. Meanwhile, we find that post-deployment testing methods may vary in different sub-options. If decoder is exchanged as considered in option 3a-2/5a-2 and 3a-3/5a-3, UE vendor could test UE-side models with end-to-end performance (e.g., end-to-end SGCS). If decoder is not available at UE side as considered in option 3a-1/5a-1, UE vendor could consider the accuracy of latent feature, e.g., how the output of re-trained encoder (i.e., the latent feature) approaches the target latent feature. In our view, both of the above two approaches are feasible and can be considered for post-deployment testing.
Observation 25: Motivation of pre-deployment testing for option 3a/5a is not clear, as 1) the cost of pre-deployment testing for option 3a/5a  is significantly high since the model has to be trained on a UE-side server; 2) Even if pre-deployment has been done for UE, the performance in real-deployment cannot be guaranteed because the exchanged dataset in real deployment could be different from the one considered in pre-deployment testing.
Observation 26: Option 3a/5a can guarantee some level of interoperability between UE and gNB since the performance can be predictable in real deployment with UE-side implementation mimicking the transferred model between NW side and UE side. But it may still suffer interoperability issue since the pre-deployment test cannot guarantee the performance of an optimized model unless post deployment testing is enabled.
Observation 27: For the testing of option 3a/5a, post-deployment testing is always necessary, which incurs additional burden in real deployment.

· Feasibility
Option 3a/5a is not feasible if only on-device optimization and operation is considered, but feasible when a server can help the device to train the model. With UE side server involvement, the typical timescale of model update would be hours/days/weeks
Observation 28: Option 3a/5a is not feasible for short timescale model update.

Option 4
As clarified, option 4 corresponds to the case of “NW-first type 3 training” studied in R18 study with potential extension in the content of exchanged dataset (i.e., option 4-1, 4-2, 4-3). During R18 study, the mainly considered approach is to exchange the dataset of (target CSI, CSI feedback) to UE side (i.e., option 4-1), while the newly-agreed clarifications additionally include the cases that the dataset consists of (CSI feedback, reconstructed target CSI, i.e., option 4-2) or (target CSI, CSI feedback, reconstructed target CSI, i.e., option 4-3). We understand that the extended approaches enable UE side to get information on decoder, which could facilitate the end-to-end performance of trained encoder. In fact, we find that the added sub-options do not affect the characteristics of option 4 obviously, indicating that our analysis on inter-vendor collaboration complexity, performance, inter-operability, and feasibility still mostly holds.

· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors
Inter-vendor collaboration complexity of option 4 mainly depends on the ways of exchanging dataset between NW-side and UE-side. Similar to other options where exchanged models will be processed at a server, we can consider three kinds of procedures:
1) The dataset is exchanged over the air; 
2) The dataset is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery;
3) The dataset is exchanged in server to server manner via standardized interface, e.g., central register (the standardized interface is out of RAN1 scope). 
We believe that exchanging dataset over the air-interface includes little inter-vendor collaboration complexity. However, the inter-vendor training complexity would be high as long as there is offline engineering among vendors, since such offline engineering needs to be done in a vendor-vendor specific manner. If interfaces for dataset exchange can be developed among vendors, it is possible to reduce the complexity of inter-vendor training collaborations. For example, standardized training collaboration interfaces can be built up in a central register, and servers can collaborate with each other during training stage. However, such method can also incur additional (communication) overhead, since more nodes distributed at different NW part (e.g., RAN or CN) are included in the whole training procedure.
Observation 29: For inter-vendor collaboration of option 4, 
· if the dataset is exchanged over the air, inter-vendor collaboration may still require vendor-specific data distribution procedures which increases inter-vendor collaboration complexities;
· if the dataset is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery, inter-vendor training complexity would be high.
Observation 30: It is possible to reduce the complexity of inter-vendor collaborations with standardized interfaces for dataset exchange, but this would also involve complicated inter-vendor collaboration since gNB vendor/CN vendor/UE server/UE device would all be involved. 

· Performance
We follow the similar analysing framework for performance issue as depicted in option 3b part. Ideally, option 4 does not put any constraints on the design of UE-side model. However, the design of encoder at NW (i.e., the first-training entity) will affect the design of encoder at UE through an implicit constraint on the input-output dataset. According to TR 38.843, some performance loss can be observed in cases including: 1) misaligned backbone of encoder model structure at NW-side and UE-side, 2) insufficient samples in the exchanged dataset. In addition, in the case of one common UE-side model corresponding to many NW-side models, severe performance loss might emerge due to diverse NW-side encoder designs. This last issue is especially problematic since UE needs to differentiate different NW vendors in order to categorize data samples from one NW vendor to one set and train the corresponding encoders. Such categorization of NW vendors would introduce global identifier and incurs a lot of concerns from companies.
Due to similar reasons presented in the analysis for option 3a/5a, the support for cell/site or localized models in option 4 is generally inferior to that in approach without offline engineering such as option 3b. If localized models have to be considered, UE vendors need to train and store enormous candidate models in advance and switch to the suitable one according to the indications.
Observation 31: According to TR 38.843, performance loss for option 4 can be observed once backbone of encoder model structure at NW-side and UE-side is misaligned or the samples in the exchanged dataset is insufficient, or there are one to many pairing issues.
Observation 32: Option4 requires global identifier to differentiate NW vendors.
Observation 33: Due to offline engineering at the server, option 4 could not flexibly update encoder in a small deployment latency, which reduces the potential gain brought by localized model.

· Interoperability and RAN4 / testing related aspects
One of the key issues for the testing of option 4 is how to guarantee the performance in real deployment satisfying the minimum requirement, because the performance of real-deployed model highly depends on the transferred dataset from NW-side which could be different from the one considered in testing phase. From our understanding, it is extremely challenging for option 4 to guarantee the performance in real deployment through RAN4 pre-deployment testing, as any dataset considered in testing stage could mismatch the data distribution in real deployment environment. In addition, uncertainty in training phase is much higher than that in deploying a standardized model structure (e.g., a configuration of learning rate/batch size/optimizer/loss function achieving good training performance in RAN4 testing may be sub-optimal in real-deployment). It is difficult to ensure that a training algorithm with good performance on testing dataset performs stably on any dataset in real deployment. Meanwhile, the cost of pre-deployment testing for option 4 is also prohibitively high due to the high latency of training and communication between device and server (e.g., testing of particular devices may take several hours or days). Last but not least, it is also difficult to determine the testing requirement in RAN4 for option 4, if only testing dataset is provided without any alignment on model structure. 
Observation 34: Option 4 cannot guarantee interoperability between UE and gNB since for any UE that passes the RAN4 test, the performance can still not be predictable in real deployment since UE implementation that passes the RAN4 test can be dramatically different.
Observation 35: Motivation of pre-deployment testing for option 4 is not clear, as 1) the cost of pre-deployment testing for option 4 is significantly high since the model has to be trained on a UE-side server; 2) Even if pre-deployment has been done for UE, the performance in real-deployment cannot be guaranteed because the exchanged dataset in real deployment could be different from the one considered in pre-deployment testing.
Observation 36: It is difficult to determine the RAN4 testing requirement for option 4 if only testing dataset is provided without any alignment on model structure.

Therefore, we argue that the testing of option 4 highly relies on the post-deployment testing, which might be a monitoring-like procedure to test the performance of real-deployed models. It could be foreseen that RAN4 needs to discuss a new testing framework to address the above issues. 
Observation 37: For the testing of option 4, post-deployment testing is always necessary, which incurs additional burden in real deployment.

· Feasibility
According to the procedure, option 4 is not feasible with only on-device optimization and operation considered, but feasible with the assumption that a server can help the device to train the model. With UE side server involvement, the typical timescale of model update would be hours/days/weeks. In addition, user-consent issue should be considered when exchanging dataset between UE device and UE-side server. 
Observation 38: Option 4 is not feasible for short timescale model update.

Option 5b
While option 5b has been categorized in RAN1 #116bis, we feel that its implementation methods are not fully clear. Therefore, we believe that it is better to first clarify all implementation approaches for option 5b and then analyse the pros/cons. Specifically, our main question is that whether option 5b contains the following case: UE indicates NW the supported model structure via a standardized procedure?
Proposal 4: Companies supporting option 5b should clarify whether such case is included in option 5b: UE indicates NW the supported model structure via a standardized procedure.

Additional aspects when comparing different options: timescale of deploying a model for inference
Besides the given aspects in the agreement, we believe that the timescale of deployment should be also taken into consideration when comparing different options. In fact, the timescale of deployment determines the deployment “flexibility”, i.e., if the timescale of deployment is short, the models are more capable of adapting to various scenarios/configurations such. Our simulation results demonstrate that cell/site specific models could offer obvious additional gains compared with the general model, indicating that deployment flexibility is a key issue for inter-vendor training collaboration. 
Proposal 5: For the study of inter-vendor collaboration issue, consider the timescale of deployment when comparing different options.

Among the given options, timescale of deployment for option 1 and 2 with either a standardized model or dataset is the shortest, as the complete model can be developed in advance. However, whether the developed models in option 1 and 2 could achieve the performance of cell/site specific model is another issue. Timescale of deployment for option 3b is moderate, e.g., minutes or hours for on-device operation to deploy the transmitted parameters on UE. Timescale of deployment of option 4 and 3a/5a is long since they both require a server to train or compile the model, where the processing and communication delay between device and UE-side server could be large, e.g., half or even several days. 
Observation 39: Timescale of deployment for deployment a model for inference option 3b is short as only on-device operation is required; Timescale of deploying a model for inference for option 4 and 3a/5a is long as the model has to be trained/processed at a server.

Summary and proposal for options
[bookmark: _GoBack]Based on the above discussion, we summarize our views on the above options in the following table:     
Observation 40: Characteristics of options to alleviate / resolve the issues related to inter-vendor training collaboration of AI/ML-based CSI compression can be summarized as:
	
	Inter-vendor collaboration complexity
	Performance
	Interoperability and RAN4 / testing related aspects
	Feasibility
	Deployment timescale

	Option 1
	Minimum complexity
	Restricted
	Solved
	feasible
	\

	Option 3b
	Minimum complexity with over the air signalling; 
	Optimum 
	Solved
	Feasible
	Short

	Option 3a/5a

	High complexity in server to server manner; Medium complexity with over the air signalling; 
	Optimum
	Not solved
	Infeasible with only short time scale model update 
	Long

	Option 4

	High complexity in server to server manner; Medium complexity with over the air signalling; 
	Better than Option 1, but worse than Option3 and Option5
	Not solved
	Infeasible with short time scale model update 
	Long

	Option 5b
	Need clarification


Based on the summary, we propose to support option 3b to address inter-vendor training collaborations.
Proposal 6: RAN1 concludes that it is recommended to support option 3b to address inter-vendor training collaboration for CSI compression

Furthermore, it is also noticed that there are concerns on feasibility of the specifying model structure/parameters procedure itself. Generally, the specification of a reference model can be further split into the specification of reference model structure and the corresponding parameters. We believe that once the reference model structure is determined, the parameters will be easier to discuss. So, we can focus on aligning the model structures as a starting point. While it is acknowledged that some efforts in 3GPP are needed to define the reference model structure, we believe that this issue could be addressed in the end. One possible method of aligning the reference model structure could be:
· Step 0: Aligning evaluation assumptions. Previous aligned simulation assumptions could be used as a starting point. Take a step further, it would be useful to align the dataset containing only channel information. Companies could bring their own generated dataset and multiple datasets from different companies can be merged into one dataset, which is the aligned dataset. This dataset can be generated through 3GPP synthetic channel models. For CSI compression, this dataset only needs the channel information, i.e. the input for the encoder or the output for the decoder.
· Step 1: Determine the model backbone based on consensus and evaluation results on complexity and performance. Model complexity may include Flops or model storage size, which can be restricted to avoid exceeding hardware capabilities and also serve as KPI of model quality. When evaluating model quality, it is important to consider not only its performance but also its implementation complexity. During this process, some restrictions may be aligned directly related to model complexity, e.g., model backbone and some important hyperparameters.
· Step 2: Determine the model hyperparameters that need to be aligned. Below are some important hyperparameters that need to be aligned for the model:
· Number of layers in the neural network.
· Number of neurons in each layer.
· Activation function(s) for each layer.
· Configuration of normalization layers.
· Special connection relationships between layers:
· Residual connections
· Merges or branches 
· Special hyperparameters for CNN:
· Parameters for the convolutional layers such as kernel size, stride, padding, activation function, bias, and channel number.
· Special hyperparameters for Transformer:
· Implementation method for multi-head attention, parameters for multi-head attention such as number of heads and dimensions of heads.
· Step 3: Align the hyperparameters of the model. Based on the aligned model backbone, detailed hyperparameters would be further aligned based on consensus and evaluation results on complexity and performance. If the dataset with only channel information is aligned in Step 1, each company could provide their own model trained by the aligned dataset, and then the best model structure may be selected from these models. 
Then we have the following proposal 
Proposal 7: RAN1 considers specifying the reference model structure as a starting point for the specification of a reference model.
Proposal 8: Towards the specification of reference model structure, following procedures can be considered in RAN1:
· Step 0: Aligning evaluation assumptions
· Step 1: Determine the model backbone based on consensus and evaluation results on complexity and performance. 
· Step 2: Determine the model hyperparameters that need to be aligned. 
· Step 3: Align the hyperparameters of the model.

Other specification aspects regarding inference, data collection, and monitoring
In the closing remarks for RAN1 #116bis meeting, the FL encouraged companies to bring discussions in the next meeting (i.e., RAN1 # 117) on other specification aspects: 
“There are other specification aspects regarding inference, data collection, and monitoring, for which we did not find time for discussion in this meeting. Please bring discussions in the next meeting and I hope we can find discussion time for them. Let’s focus on aspects that are important for drawing conclusion at the September checkpoint, as captured in the conclusions section of the TR 38.843. I will give low priority on aspects that are not critical toward the study conclusion.”
	CSI compression sub use case: 
The performance benefit and potential specification impact were studied for AI/ML based CSI compression sub use case. 
Evaluation has been performed to assess AI/ML based CSI compression from various aspects, including performance gain over non-AI/ML benchmark, model input/output type, CSI feedback quantization methods, ground-truth CSI format, monitoring, generalization, training collaboration types, etc. Some aspects were studied but not fully investigated, including the options of CQI/RI calculation, the options of rank>1 solution.
Performance gain over baseline and computational complexity in FLOPs are summarized in clause 6.2.2.8. 
Potential specification impact on NW side/UE side data collection, dataset delivery, quantization alignment between CSI generation part at the UE and CSI reconstruction part at the NW, CSI report configuration, CSI report format, pairing information/procedure and monitoring approach were investigated but not all aspects were identified. 
The pros and cons are analysed for each training collaboration types, and each training collaboration type has its own benefits and limitations in different aspects. The study has investigated the feasibility of the studied training collaboration types and necessity of corresponding potential RAN1 specification impact. However, not all aspects have been concluded.
Both NW side and UE side performance monitoring were studied, some but not all aspects were concluded.
From RAN1 perspective, there is no consensus on the recommendation of CSI compression for normative work.
At least the following aspects are the reasons for the lack of RAN1 consensus on the recommendation of CSI compression for normative work:
· Trade-off between performance and complexity/overhead.
· Issues related to inter-vendor training collaboration.
Other aspects that require further study/conclusion are captured in the summary above.


According to the conclusions for CSI compression given in TR 38.843, which is given above, we find that while a series of issues have been simulated and/or investigated (e.g., NW side/UE side data collection, dataset delivery, quantization alignment between CSI generation part at the UE and CSI reconstruction part at the NW, CSI report configuration, CSI report format, pairing information/procedure and monitoring approach) only a very small portion of these issues has been clearly identified. Meanwhile, as mentioned in the closing remarks, higher priorities will be assigned to items that are important for drawing conclusion. Given the debate on inter-vendor collaborations, we feel that if a specification issue is closely related to inter-vendor collaboration (e.g., different solutions for different inter-vendor options) it is challenging to achieve a consensus on it before the checkpoint. Therefore, our view is that we could start discussion on topics with agreed observations and less concerns from companies to get more progress towards conclusion, and we believe that the following issues could be considered.
NW-side data collection
	
NW side data collection:
-	Enhancement of SRS and/or CSI-RS measurement and/or CSI reporting to enable higher accuracy measurement. 
-	Contents of the ground-truth CSI including:  
-	Data sample type, e.g., precoding matrix, channel matrix etc.
-	Data sample format: scaler quantization and/or codebook-based quantization (e.g., e-type II like). 
-	Assistance information (e.g., time stamps, and/or cell ID, Assistance information for Network data collection for categorizing the data in forms of ID for the purpose of differentiating characteristics of data due to specific configuration, scenarios, site etc., and data quality indicator)
-	Latency requirement for data collection
-	Signalling for triggering the data collection
-	Ground-truth CSI report for NW side data collection for model performance monitoring, including: 
-	Scalar quantization for ground-truth CSI
-	Codebook-based quantization for ground-truth CSI
-	RRC signalling and/or L1 signalling procedure to enable fast identification of AI/ML model performance
	Aperiodic/semi-persistent or periodic ground-truth CSI report
-	Ground-truth CSI format for model training, including scalar or codebook-based quantization for ground-truth CSI. The number of layers for which the ground-truth data is collected, and whether UE or NW determine the number of layers for ground-truth CSI data collection, are considered
… [text omitted]
High resolution ground-truth CSI for training
For the evaluation of high-resolution quantization of the ground-truth CSI for the training of CSI compression, compared to the upper-bound of Float32, quantized high resolution ground-truth CSI can achieve significant overhead reduction with minor performance loss if the parameters are appropriately selected.
-	For high resolution scalar quantization,
-	Float16 achieves 50% overhead reduction and -0.6% or less performance loss from 2 sources 
-	8 bits scalar quantization achieves 75% overhead reduction and -0.14%~-0.9% performance loss from 2 sources  
-	For high resolution R16 eType II-like quantization, 
-	R16 eType II CB with legacy parameters can achieve significant overhead reduction while with performance loss compared to Float32, wherein:
-	PC#6 achieves around 99% overhead reduction with -1.4% ~-1.7% performance loss from 2 sources, and -3%~-9.5% performance loss from 4 sources.
-	PC#8 achieves around 98% overhead reduction with 0% ~-1.7% performance loss from 3 sources, and -2.9%~-5.5% performance loss from 5 sources.
-	For R16 eType II CB with new parameters:
-	R16 eType II CB with new parameter of 1000-1400bits CSI payload size achieves 95%~97.5% overhead reduction (3~4.1 times overhead compared to PC8) with performance gain of 0.7%~4.3% over PC#8 from 4 sources.
-	R16 eType II CB with new parameter of 1500-2100bits CSI payload size achieves 94%~96.2% overhead reduction (4.8~6.1 times overhead compared to PC8) with performance gain of 1.3%~5.4% over PC#8 from 3 sources.
-	Note: it is observed by 1 source that using R16 eType II-like quantization with legacy PC may achieve close performance to Float32 by dataset dithering.
-	Note: the new parameters include at least one from the follows:
-	L= 8, 10, 12;
-	pv = 0.8, 0.9, 0.95;
-	reference amplitude = 6 bits, 8 bits; differential amplitude = 4bits; phase = 5 bits, 6 bits;
The above results are based on the following assumptions besides the assumptions of the agreed EVM table
-	Precoding matrix is used as the model input.
-	1-on-1 joint training is assumed.
-	The performance metric is SGCS for Layer 1.
-	Note: Results refer to Table 5.18 of R1-2308342.


Performance monitoring:
-	Model performance monitoring related assistance signalling and procedure. 
-	Metrics/methods including: 
-	Intermediate KPIs (e.g., SGCS)
-	Eventual KPIs (e.g., Throughput, hypothetical BLER, BLER, NACK/ACK).
-	Legacy CSI based monitoring: schemes using additional legacy CSI reporting
-	Other monitoring solutions, at least including the following option:
-	Input or Output data based monitoring: such as data drift between training dataset and observed dataset and out-of-distribution detection
-	NW-side performance monitoring:  NW monitors the performance and make decisions of model/functionality activation/ deactivation/updating/switching. Impact to enable performance monitoring using an existing CSI feedback scheme as the reference, including the association between AI/ML scheme and existing CSI feedback scheme for monitoring, are considered. Note: The metric for monitoring and comparison includes intermediate KPI and eventual KPI.    
-	UE-side performance monitoring: UE monitors the performance and reports to Network, NW makes decisions of model/functionality activation/deactivation/updating/switching. Impact on triggering and means for reporting the monitoring metrics, including periodic/semi-persistent and aperiodic reporting, and other reporting initiated from UE, are not precluded.

Intermediate KPI based model monitoring:
The following intermediate KPI-based model monitoring options were proposed by companies: 
-	NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side. 
-	UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW or obtained from the network side.
-	Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
-	UE-side monitoring based on the output of the CSI reconstruction model at the UE-side
-	Note: CSI reconstruction model at the UE-side can be the same or different comparing to the actual CSI reconstruction model used at the NW-side. Network may configure a threshold criterion to facilitate UE to perform model monitoring. 

Monitoring for intermediate KPI, NW side monitoring
For the evaluation of intermediate KPI based monitoring mechanism for CSI compression, for monitoring Case 1, in terms of monitoring accuracy with Option 1,
-	For ground-truth CSI format of R16 eType II CB, monitoring accuracy is increased with the increase of the resolution for the ground-truth CSI (number of bits for each sample of ground-truth CSI) in general, with the impact of increased overhead, wherein
-	for ground-truth CSI format of R16 eType II CB with PC#6, 4 sources observe KPIDiff as 13.2%~71.6%/ 28.5%~100%/ 68.4%~100% for KPIth_1=0.02/0.05/0.1, respectively.
-	Note: two sources observed averaging on the test samples improves the monitoring accuracy.
-	for ground-truth CSI format of R16 eType II CB with PC#8, 5 sources observe KPIDiff as 21%~43.0%/ 48.1%~79.1%/ 79.8%~97.1% for KPIth_1=0.02/0.05/0.1, respectively.
-	for ground-truth CSI format of R16 eType II CB with new parameter of 580-750bits CSI payload size, 2 sources observe KPIDiff as 35.4%~63%/ 77.9%~93.0%/ 99.5%~99.9% for KPIth_1=0.02/0.05/0.1, respectively, which have 12.7%~20%/ 13.9%~29.8%/ 8%~31.1% gain over PC#8.
-	for ground-truth CSI format of R16 eType II CB with new parameter of around 1000bits CSI payload size, 4 sources observe KPIDiff as 34.9%~89%/ 82.9%~100%/ 99.9%~100% for KPIth_1=0.02/0.05/0.1, respectively, which have 12.2%~68%/ 18%~43.62%/ 2.9%~31% gain over PC#8 from 3 sources and 4.67%~10.6%/ 0%~5.88%/ 0%~0.49% gain over PC#6 from 1 source.
-	for ground-truth CSI format of R16 eType II CB with new parameter of around 1600bits CSI payload size, 2 sources observe KPIDiff as 89.1%~97%/ 99.9%~100%/ 100% for KPIth_1=0.02/0.05/0.1, respectively, which have 76%/33%/3% gain over PC#8 from 1 source.
-	For ground-truth CSI format of 4 bits scalar quantization, 2 sources observe KPIDiff as 9.4%~47%/ 96.3%~100%/ 100% for KPIth_1=0.02/0.05/0.1, respectively.
The above results are based on the following assumptions besides the assumptions of the agreed EVM table:
-	Time independency is assumed over the test samples for monitoring
-	Precoding matrix is used as the model input.
-	1-on-1 joint training is assumed.
-	The performance metric is monitoring accuracy for Layer 1.
-	Note: Results refer to Table 5.21 of R1-2308343.




During R18 study phase, NW-side data collection for both NW-side training and monitoring has been simulated and investigated. Towards data sample type, while both precoding matrix and channel matrix are included in the observation, most companies reported their simulation results assuming precoding matrix as their model input. For data collection sample format, two compression methods were studied, i.e., scaler quantization and/or codebook-based quantization. According to the results, codebook-based quantization based on etype-II codebook generally could achieve a better trade-off between overhead and accuracy with extended configurations. For detailed parameter configurations, our view is that not all combinations have been tried, and there could be other parameters which achieve better trade-off than the captured ones. So, it is suitable to conclude that RAN1 recommends to use e-type II-like codebook-based quantization with extended parameter combinations for NW-side data collection of precoding matrix. 
Proposal 9: RAN1 concludes that it is recommended to use e-type II-like codebook-based quantization with potential extended parameter combinations for NW-side data collection of precoding matrix. 

Monitoring
	In CSI compression using two-sided model use case:
Performance monitoring:
-	Model performance monitoring related assistance signalling and procedure. 
-	Metrics/methods including: 
-	Intermediate KPIs (e.g., SGCS)
-	Eventual KPIs (e.g., Throughput, hypothetical BLER, BLER, NACK/ACK).
-	Legacy CSI based monitoring: schemes using additional legacy CSI reporting
-	Other monitoring solutions, at least including the following option:
-	Input or Output data based monitoring: such as data drift between training dataset and observed dataset and out-of-distribution detection
-	NW-side performance monitoring:  NW monitors the performance and make decisions of model/functionality activation/ deactivation/updating/switching. Impact to enable performance monitoring using an existing CSI feedback scheme as the reference, including the association between AI/ML scheme and existing CSI feedback scheme for monitoring, are considered. Note: The metric for monitoring and comparison includes intermediate KPI and eventual KPI.    
-	UE-side performance monitoring: UE monitors the performance and reports to Network, NW makes decisions of model/functionality activation/deactivation/updating/switching. Impact on triggering and means for reporting the monitoring metrics, including periodic/semi-persistent and aperiodic reporting, and other reporting initiated from UE, are not precluded.
Intermediate KPI based model monitoring:
The following intermediate KPI-based model monitoring options were proposed by companies: -	NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side. 
-	UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW or obtained from the network side.
-	Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
-	UE-side monitoring based on the output of the CSI reconstruction model at the UE-side
-	Note: CSI reconstruction model at the UE-side can be the same or different comparing to the actual CSI reconstruction model used at the NW-side. Network may configure a threshold criterion to facilitate UE to perform model monitoring. 



For NW-side monitoring, the real-time CSI measurement is always missing and the complete model can be available if joint training at NW or separate training with NW-side first training are considered. Given the superior computation and storage capability at NW, we can assume model training happens at NW side, enabling complete models available at NW. To acquire real-time CSI measurement at NW side, a data collection procedure can be considered. According to the evaluation in the Rel-18, it is efficient to use enhanced legacy codebook to report ground-truth CSI measurement for monitoring. The disadvantage of above method is that the overhead of CSI measurement can be large, e.g., ~1000 bits per sample to achieve enough reporting accuracy. Since different legacy codebook configurations can achieve different trade-offs between monitoring accuracy and reporting overhead, we may need to study which codebook configuration is the best for monitoring CSI measurement reporting in the future. And then, NW side monitoring via ground-truth reporting can be evaluated the KPIDiff between genie KPI computed based on real CSI and actual KPI computed based on reported CSI. Rel-18 evaluation results show that ground-truth CSI reporting via legacy codebook (with potential configuration enhancement) provides a good trade-off between monitoring accuracy and reporting overhead. 
For UE-side monitoring based on indication of NW side output CSI, the critical question from our opinion is whether the output CSI at NW side could be efficiently compressed via legacy codebook or some other simple method, since the overhead of transferring uncompressed output CSI (e.g., in Float32 format) over-the-air is generally unacceptable. In addition, the latency of the overall monitoring procedure may be enlarged when it is done at UE side, since additional signalling is required to report the monitoring results to NW.
Towards UE-side monitoring based on the output of CSI reconstruction model at UE side, we believe that proxy model will be a promising solution, because the transferring of an extremely complicated CSI reconstruction model either offline or over-the-air is a challenging task, and there could also be proprietary concerns. The principle of proxy model is to utilize a model (usually replacing CSI reconstruction part) different with the one used at NW side (usually simpler to avoid proprietary issues) for monitoring purpose. Note that we do not expect the proxy model to have the same capability as the actual one in use. In fact, it is enough for a proxy model to well approximate the output distribution (or SGCS distribution) with a potential constant bias in performance monitoring. Therefore, Proxy model at UE side can be obtained by model transferring from NW (i.e., NW trains the proxy model and transfers it to UE), or just trained at UE side (in such case, NW may need to share some information of its CSI reconstruction model to UE to facilitate the training of proxy model). With proxy model, the large overhead in CSI measurement reporting (or output CSI indication) could be significantly reduced, since only the SGCS results or model switching decisions are required to reported over-the-air.
Proposal 10: RAN1 concludes that both NW side monitoring and UE side monitoring should be supported for CSI compression. 
Proposal 11: RAN1 concludes that it is recommended to specify ground-truth CSI reporting via legacy codebook with potential configuration enhancement for NW side monitoring 
Proposal 12:  RAN1 concludes that it is recommended to specify procedures for exchanging proxy model for approximating the quality of reconstructed model at UE side for UE-side monitoring. 

Conclusion
In this contribution, we have the following observations:
Observation 1: When TR 38.901 channel model is considered, localised SF compression models trained on data including the impact of Doppler shift generalize well over different slots even with large gaps (e.g., slot1k training vs. slot10k testing).
Observation 2: SF compression with cell/site specific model provides up to 6.6% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution while general model only provides 2.6% SGCS gains.
Observation 3: SF compression with cell/site specific model provides up to 9.0% gain in certain case (cell/sector) compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model only provides 5% SGCS gains.
Observation 4: SF compression with cell/site specific model provides up to 9.7% gain in certain case (cell/sector) compared to legacy codebook in InH scenario with 100% indoor UE distribution while general model provides 6.5% SGCS gains.
Observation 5: When TR 38.901 channel model is considered, localised TSF compression (case2) models trained on data including the impact of Doppler shift generalize well over different slots even with large gaps (e.g., slot1k training vs. slot10k testing).
Observation 6: TSF compression case2 with cell/site specific model provides up to 19.1% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model only provides 3.5% SGCS gains.
Observation 7: TSF compression case2 with cell/site specific model in certain case (cell/sector) provides up to 10.3% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution while general model only provides 2.3% SGCS gains.
Observation 8: TSF compression case2 with cell/site specific model in certain case (cell/sector) provides up to 16.8% gain compared to legacy codebook in InH scenario with 100% indoor UE distribution while general model provides 7.5% SGCS gains.
Observation 9: TSF compression case3 with cell/site specific model in certain case (cell/sector) provides up to averaged 17.6% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model provides averaged 11.2% SGCS gains.
Observation 10: Even considering a relatively simpler CNN encoder, TSF compression with cell/site specific models in certain case (cell/sector) can still offer an obvious performance (up to 31.3% in our simulation for case2 and up to 12.4% in case3), indicating that it is possible to simplify model design with localized models.
Observation 11: For Dense Urban with 20% outdoor UEs, TSF compression case 2 can improve SGCS gain by ~3.5% compared to R16 eType2 codebook methods.
Observation 12: For InH scenarios, TSF compression case2 can improve SGCS gain by ~7.6% compared to R16 eType2 codebook methods.
Observation 13: For dense urban scenarios, TSF compression case 3 can improve SGCS gain by 9.6%~12.0% compared to R18 DD codebook.
Observation 14: Methods for the quantization of parameters can also be specified as part of the model structure to facilitate the on-device deployment of transferred parameters.
Observation 15: Option 3b requires no bi-lateral inter-vendor collaboration as the parameter exchange has been clarified to be in an over-the-air manner. 
Observation 16: A fixed encoder structure in option 3b will not be performance limiting for CSI compression if a powerful encoder design is specified in 3GPP.
Observation 17: Performance of option 3b could benefit from a good support for cell/site or localised models.
Observation 18: Option 3b guarantees the interoperability between UE and gNB since for any UE that passes the RAN4 test on model performance based on model parameter update, the expected performance of the UE would be predictable and guaranteed.
Observation 19: The performance requirement in RAN4 testing for option 3b can be defined with specified encoder structure and possible RAN4 agreed testing condition, including concluded reference decoder structure for performance target evaluation.
Observation 20: Necessity of post deployment testing can be studied for Option 3b. 
Observation 21: Option 3b is feasible with typical UE implementations and on-device operation.
Observation 22: For inter-vendor collaboration of option 3a/5a,
· if the model (parameter) is exchanged over the air, the inter-vendor collaboration complexity is less than with server to server/vendor to vendor specific way. 
· if the model (parameter) is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery, inter-vendor training complexity would be high and may potentially need to involve more vendors for the collaboration.
Observation 23: It is expected that the potential performance gain by offline engineering on encoder in option 3a/5a would not be observable especially when the decoder is fixed.
Observation 24: Due to offline engineering at the server, option 3a/5a could not flexibly update encoder in a small deployment latency, which reduces the potential gain brought by localized model.
Observation 25: Motivation of pre-deployment testing for option 3a/5a is not clear, as 1) the cost of pre-deployment testing for option 3a/5a  is significantly high since the model has to be trained on a UE-side server; 2) Even if pre-deployment has been done for UE, the performance in real-deployment cannot be guaranteed because the exchanged dataset in real deployment could be different from the one considered in pre-deployment testing.
Observation 26: Option 3a/5a can guarantee some level of interoperability between UE and gNB since the performance can be predictable in real deployment with UE-side implementation mimicking the transferred model between NW side and UE side. But it may still suffer interoperability issue since the pre-deployment test cannot guarantee the performance of an optimized model unless post deployment testing is enabled.
Observation 27: For the testing of option 3a/5a, post-deployment testing is always necessary, which incurs additional burden in real deployment.
Observation 28: Option 3a/5a is not feasible for short timescale model update.
Observation 29: For inter-vendor collaboration of option 4, 
· if the dataset is exchanged over the air, inter-vendor collaboration may still require vendor-specific data distribution procedures which increases inter-vendor collaboration complexities;
· if the dataset is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery, inter-vendor training complexity would be high.
Observation 30: It is possible to reduce the complexity of inter-vendor collaborations with standardized interfaces for dataset exchange, but this would also involve complicated inter-vendor collaboration since gNB vendor/CN vendor/UE server/UE device would all be involved. 
Observation 31: According to TR 38.843, performance loss for option 4 can be observed once backbone of encoder model structure at NW-side and UE-side is misaligned or the samples in the exchanged dataset is insufficient, or there are one to many pairing issues.
Observation 32: Option4 requires global identifier to differentiate NW vendors.
Observation 33: Due to offline engineering at the server, option 4 could not flexibly update encoder in a small deployment latency, which reduces the potential gain brought by localized model.
Observation 34: Option 4 cannot guarantee interoperability between UE and gNB since for any UE that passes the RAN4 test, the performance can still not be predictable in real deployment since UE implementation that passes the RAN4 test can be dramatically different.
Observation 35: Motivation of pre-deployment testing for option 4 is not clear, as 1) the cost of pre-deployment testing for option 4 is significantly high since the model has to be trained on a UE-side server; 2) Even if pre-deployment has been done for UE, the performance in real-deployment cannot be guaranteed because the exchanged dataset in real deployment could be different from the one considered in pre-deployment testing.
Observation 36: It is difficult to determine the RAN4 testing requirement for option 4 if only testing dataset is provided without any alignment on model structure.
Observation 37: For the testing of option 4, post-deployment testing is always necessary, which incurs additional burden in real deployment.
Observation 38: Option 4 is not feasible for short timescale model update.
Observation 39: Timescale of deployment for deployment a model for inference option 3b is short as only on-device operation is required; Timescale of deploying a model for inference for option 4 and 3a/5a is long as the model has to be trained/processed at a server.
Observation 40: Characteristics of options to alleviate / resolve the issues related to inter-vendor training collaboration of AI/ML-based CSI compression can be summarized as:
	
	Inter-vendor collaboration complexity
	Performance
	Interoperability and RAN4 / testing related aspects
	Feasibility
	Deployment timescale

	Option 1
	Minimum complexity
	Restricted
	Solved
	feasible
	\

	Option 3b
	Minimum complexity with over the air signalling; 
	Optimum 
	Solved
	Feasible
	Short

	Option 3a/5a

	High complexity in server to server manner; Medium complexity with over the air signalling; 
	Optimum
	Not solved
	Infeasible with only short time scale model update 
	Long

	Option 4

	High complexity in server to server manner; Medium complexity with over the air signalling; 
	Better than Option 1, but worse than Option3 and Option5
	Not solved
	Infeasible with short time scale model update 
	Long

	Option 5b
	Need clarification



and the following proposals:
Proposal 1: Towards the evaluation of localized model, consider the model trained on dataset without spatial consistency as the “generalized model”.
Proposal 2: Localized models should be evaluated on different local regions and the average gain over legacy eType-II can be calculated on these local regions. Results show that stable average performance gain can be observed as long as the number of local regions is large (e.g., 21 cells). 
Proposal 3: For option 1, RAN1 considers specifying CSI generation part.
Proposal 4: Companies supporting option 5b should clarify whether such case is included in option 5b: UE indicates NW the supported model structure via a standardized procedure.
Proposal 5: For the study of inter-vendor collaboration issue, consider the timescale of deployment when comparing different options.
Proposal 6: RAN1 concludes that it is recommended to support option 3b to address inter-vendor training collaboration for CSI compression
Proposal 7: RAN1 considers specifying the reference model structure as a starting point for the specification of a reference model.
Proposal 8: Towards the specification of reference model structure, following procedures can be considered in RAN1:
· Step 0: Aligning evaluation assumptions
· Step 1: Determine the model backbone based on consensus and evaluation results on complexity and performance. 
· Step 2: Determine the model hyperparameters that need to be aligned. 
· Step 3: Align the hyperparameters of the model.
Proposal 9: RAN1 concludes that it is recommended to use e-type II-like codebook-based quantization with potential extended parameter combinations for NW-side data collection of precoding matrix. 
Proposal 10: RAN1 concludes that both NW side monitoring and UE side monitoring should be supported for CSI compression. 
Proposal 11: RAN1 concludes that it is recommended to specify ground-truth CSI reporting via legacy codebook with potential configuration enhancement for NW side monitoring 
Proposal 12:  RAN1 concludes that it is recommended to specify procedures for exchanging proxy model for approximating the quality of reconstructed model at UE side for UE-side monitoring. 
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Appendix A: Initial lab test for model transfer with known model structure
An initial lab test for model transfer with known model structure is done to find the main aspects in this procedure and obtain the actual latency. For even 10M parameters, the total latency of UE updating the received model parameters is just 12.472ms, which would result in the low latency of model transfer with known model structure.
From the lab test, it is found that the model parameters updating with known model structure can be listed in 4 steps.
· Step1: UE generates one certain format of model executable file (e.g., engine file for TensorRT), where the model parameters and model structure related part are stored separately. Each model parameter group could be updated separately with very low latency. The results of a lab test would be provided later to show the detailed latency. The input data processing operations would be stored in model structure related part, e. g., matrix multiplications and additions. 
· Step2: UE extracts the target model parameters from the received new model file (e.g., ONNX or other open formats) from NW. The extracted parameters would be stored in buffer area temporarily. Simple quantization may be used and details will be discussed in the following.
· Step3: New model parameters would replace the previous model parameters directly.
· Step4: After the replacement of target model parameters, the model is available to run.
[image: ]
Figure A-1. The procedure of model parameters updating with known model structure.
The following is the detailed latency test of model parameter updating for different number of parameters. A full connected model with 5 full connected layers is adopted in this lab test. The number of parameters of 5 layers are 1K, 10K, 100K, 1M and 10M respectively. The new model parameters are stored in ONNX format. The latency of parameter extraction from ONNX in Step 2 and the latency of parameter replacement in Step 3 are both provided. As the number of parameters increases, the latency of Step 2 and Step 3 both increases for more than 10K parameters. For the case with less than 10K parameters, the basic latency of hardware interaction may be the majority, which would have low correlation with the number of parameters. For even 10M parameters, the total latency of Step 2 and Step 3 is just 12.472ms, which would result in the low latency of model transfer with known model structure.
Table A-1. Initial lab test for model parameter updating with known model structure
	Number of parameters in one group
	Latency of parameter extraction from ONNX in Step 2 (ms)
	Latency of parameter replacement in Step 3 (ms)

	1K
	0.212
	0.793

	10K
	0.223
	0.704

	100K
	0.344
	2.520

	1M
	1.342
	4.893

	10M
	6.740
	5.732



The feasibility of model transfer with known model structure were discussed by companies in Rel-18, where the major issues lie in necessity and feasibility of on device compilation. From our observation, the main issue based on previous discussion for on device compilation is how to quantize the trained models. There are two ways to handle this: post training quantization or quantization aware training. On device quantization is one kind of posting training quantization.
The alignment of quantization before model transfer could avoid the on device quantization, e.g., the transferred model parameters have been quantized by NW, using post training quantization or quantization-aware training.
On the other hand, if the quantization is not aligned beforehand, on device quantization would be needed. There are several aspects that need to be considered for on device quantization: the performance of on device quantization and involved complexities.
Since on device quantization is a kind of post training quantization, we did an experiment to compare the performance loss of post training quantization and quantization aware training. The loss would be small. The following tables shows the impact of different quantization levels for different use cases. The INT8 quantization is directly mapping Float32/16 values to INT8/16, which would be worst performance of post training quantization. For positioning, since the model inference may be not in UE modem, there may be no strict requirement on quantization.
Table A-2. An example of the impact of different quantization levels for CSI compression, where the INT8 quantization is directly mapping Float32/16 values to INT8/16.
	
	MLP model
	CNN model
	Transformer model

	SGCS of FP32 quantized model
	0.9421
	0.9493
	0.9581

	SGCS of FP16 quantized model
	0.9421
	0.9493
	0.9581

	SGCS of INT8 quantized model
	0.9413
	0.9486
	0.9573



Table A-3. An example of the impact of different quantization levels for AI/ML assisted positioning.
	 
	90% positioning accuracy of AI/ML assisted positioning (m)

	FP32 quantized model
	0.970

	FP16 quantized model
	0.973



Table A-4. An example of the impact of different quantization levels for beam spatial prediction, where the INT8 quantization is directly mapping Float32/16 values to INT8/16.
	 
	Top-1 (%)
	Top-1 (%) with 1dB margin

	FP32 quantized model
	77.4
	96.6

	FP16 quantized model
	75.5
	96.3

	INT8 quantized model
	71.3
	94.9



On device quantization is also feasible at least for some operations with low complexity. For example, regular quantization from Float32/16 to INT8/16 by directly mapping Float32/16 values to INT8/16, or with minor adjustment based on parameter distribution. More advance quantization, e.g., non-uniform quantization, finetuning after quantization, does not seem to provide additional gains at least for current use cases.
Performance monitoring/assessment could monitor the performance of quantization and may provide some data samples for quantization calibration. UE could get some data samples through the measurement or from the data delivery from NW.
·
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