3GPP TSG-SA3 Meeting #119	S3-245172-r1	
Orlando, US 11 – 15 November 2024													 revision of S3-244862

Source:	Nokia
Title:	Solution to KI#3, KI#4 and KI#5
Document for:	Approval
Agenda Item:	5.9
1	Decision/action requested
Solution to KI#3, KI#4 and KI#5
2	References

3	Rationale
This pCR proposes a solution to KI#3, KI#4 and KI#5. It utilises the 3-step random access procedure described in the discussion paper S3-244861 to establish a security context which further can be utilised to send commands if required.
4	Detailed proposal

********** START OF CHANGES
[bookmark: _Toc167405423][bookmark: _Toc167405576]6.Y	Solution #Y: Configurable device/network authentication, data confidentiality, integrity and id privacy protection
[bookmark: _Toc513475453][bookmark: _Toc48930870][bookmark: _Toc49376119][bookmark: _Toc56501633][bookmark: _Toc95076618][bookmark: _Toc106618437][bookmark: _Toc167405424][bookmark: _Toc167405577]6.Y.1	Introduction
The solution proposes a solution to KI#3, KI#4 and KI#5. It gives a proposal to how a AIoT device can establish a secure connection with a reader, within the RAN procedure to resolve contention. This minimizes the signaling between the AIoT device and reader and thereby also the signaling overhead related to security establishment.
[bookmark: _Toc513475454][bookmark: _Toc48930871][bookmark: _Toc49376120][bookmark: _Toc56501634][bookmark: _Toc95076619][bookmark: _Toc106618438][bookmark: _Toc167405425][bookmark: _Toc167405578]6.Y.2	Solution details
The solution details how a shared session key can be derived while providing the means for mutual authentication (if required), confidentiality, integrity, reply and privacy protection. The explicit procedure is shown in figure 1. The solution is based on the 3-step contention based random access.
[image: A screenshot of a computer screen

Description automatically generated]
Figure 1: Security context establishment based on 3-step contention based random access
1. The AIoT device and AIoTF is provisioned with a share secret K and a configuration of which primitives to enable like replay protection, integrity protection, privacy protection etc. Furthermore, the AIoT device contains a non-volatile counter and the AIoTF keeps track of the counter.
2. An AF requests the inventory from a AIoT device.
3. The AIoTF draws a random nonce1 and uses the nonce to derive a new key k_AIoT from the shared secret. K_AIoT is used to encrypt the device ID and optionally the counter value if reply protection is required. Please note that the same device ID produces different ciphertexts due to the nonce, hereby addressing the privacy concerns.
4-5. The Protected Id and nonce1 is send to the AIoT device.
6. The AIoT device derives k_AIoT and decrypts the protected ID. If the device ID doesn’t match the AIoT device ID rest of the steps can me omitted. If replay protection is enabled, the AIoT device compares the internal counter with count. If the counter values don’t match, the AIoT device can decide to omit rest of the steps or return the correct counter value to get the AIoTF back to sync (Please note that the counter is protected with the session key k_AIoT_ses). The decision is taken based on configuration and if the counter is s returned, the procedure restarts at step 3. The AIoT device draws a random number Nonce2 and uses Nonce2 and k_AIoT to derive the session key k_AIoT_ses. Using the session key, the device creates a MAC of nonce1 called ARES. If authentication of the network isn’t required, the AIoT device ID can be encrypted/integrity protected using the session key. The step finalises by incrementing the non-volatile counter.
7-8. ARES and Nonce2 and optional protected counter and protected ID are sent to the AIoTF.
9. The AIoTF derives the session k_AIoT_ses and calculates the MAC ARES*. If ARES equals ARES* the device is authenticated. This step can be omitted if device authentication isn’t required. The AIoTF creates the MAC NRES using Nonce2 and the session key as input. If network authentication isn’t required, calculation of NRES can be omitted. If counter is returned form the AIoT device, the AIoTF re-adjust the internal counter and restarts at step 3.
10-11. NRES is send to the AIoT device.
12. The AIoT device calculates NRES* and compares it to NRES. If the values are equal, the AIoT device have authenticated the network. The device encrypts/integrity protects the AIoT device ID
13-14.	The protected ID is sent to the AIoTF.
15.	The reader might acknowledge the AIoT device – This is part of the contention based random access procedure.
16-17.	The AIoTF decrypts and verifies the integrity of the Protected ID and send it to the AF,
The key k_AIoT_ses can further be used to confidentiality and integrity protect command messages. If confidentiality and integrity protection isn’t required, NULL ciphering and integrity protection algorithms can be used.
Editor’s note: How the solution addresses a group of devices including key identification in step 9 is FFS.
Editor’s note: How the constrains of the device influence the capability to preform cryptographic operations and maintain the counter is FFS.
Editor's Note: It is FFS how to prevent power and resource exhaustion in the AIoT devices when all of devices in the paging area always have to decrypt the Device ID.
Editor’s note: How the counter is resynced when the AIoTF and device gets out for sync is FFS.
Editor’s note: The solution needs to be aligned with RAN2 conclusions.
NOTE: According to TR 38.769 [X] legacy is paging is not support and the baseline for the random access procedure is slotted-ALOHA.
NOTE: The device will maintain state as long backscatter is applied, which implies if backscatter is removed, only the configuration, key K and count maintain state. Procedure starts at step 3, when backscatter is reapplied.

.6.Y.3	Evaluation 	
The solution fulfils the requirements of KI#3 by protecting the device identifier such same device ID produces different ciphertexts in each paging message, hereby avoiding ciphertext attack. Furthermore, when the real device ID is transferred from the device to the AIoTF, the ID is protected by a session key, implying the same ID is producing different ciphertexts for each session, hereby also avoiding ciphertext and likability attacks.
The solution fulfills the requirements of KI#4 by providing the means for confidentiality, integrity and replay protecting. The enablement of the protection profile is based on configuration both in the AIoT device and AIoTF. The solution doesn’t mandate a given profile, but leaves it for deployment and implementation,
The solution fulfills the requirement of KI#5 by providing the means for authentication both one-way and mutual. The selection of authentication scheme is part of configuration of the AIoT and AIoTF.
Editor’s note: Further evaluation is FFS.

********** END OF CHANGES

image1.png
/AloT

Reader

/AloTF AF

1: The AloT device and AloTF is pre-provisioned with a shared key K

5:"AloT paging” (Protect D, Nonce1),

6 K_AloT = KDF_K('ID key"[[Nonce1)
(Device [[[count)) = DEC_k_AloT(Protected ID)
Compare Device ID with AloT device ID
Compare count with expected count
Nonce? = rand()

K_AloT_ses = KDF_K_AloT("session key'l|Nonce2)
ARES = MAC_k_AloT_ses(Nonce1)

Protected([AloT device ID] || [count]) = ENCIMAC_k_AloT_ses([AloT device ID]j{[count])

count = count + 1

7. "Random indefifer ([Protect AloT Device ID],[protected count], ARES, Nonce2),

2: Req (Device ID)

K_AloT = KDF_K('ID key'l|Nonce1)
Protected ID = ENC_k_AloT(Device ID|[[count])

3: Nonce1 = Rand()

4: (Protect ID, Nonce1)

8 (Protect AloT Device ID],[protected count], ARES, Nonce2),

9 k_AloT_ses =

ARES* = MAC_k_AloT_ses(Nonce1)
RES

[AloT device ID]ll[count] =

DEC/MAC_k_AloT_ses([AloT device ID]f[[count])
NRES =

KDF_k_AloT("session key"|[Nonce2)
ARES

MAC_k_AloT_ses(Nonce2)

10: NRES

“«
le 11: "Contention resolution” (NRES)
12:NRES" = MAC,k AloT.ses(Nonce?)
NRES == NRE:
[Protect AloT Device D] = ENC/MAc,k,Al oT_ses{[AloT device ID])
13: [Protect AloT Device ID] N

14 [Protect AloT Device |D]

15. ACK/NACK

16: [AloT device ID] =

DEC/MAC_k_AloT_ses([AloT device ID])

17: Resp
_ 1Resp

