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1	Introduction
The approval of the Rel-19 work package marks the next wave of 5G Advanced evolution [1]. The package includes a work item on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface [2].
The work item consists of multiple objectives, including further study on other aspects of AI model and data:
· Necessity and details of model Identification concept and procedure in the context of LCM [RAN2/RAN1] 
· CN/OAM/OTT collection of UE-sided model training data [RAN2/RAN1]: 
· [bookmark: _Hlk152950182]For the FS_NR_AIML_Air study use cases, identify the corresponding contents of UE data collection
· Analyse the UE data collection mechanisms identified during the FS_NR_AIML_Air (TR 38.843 section 7.2.1.3.2) study along with the implications and limitations of each of the methods 
· Model transfer/delivery [RAN2/RAN1]: 
· [bookmark: _Hlk152950348]Determine whether there is a need to consider standardised solutions for transferring/delivering AI/ML model(s) considering at least the solutions identified during the FS_NR_AIML_Air study 

At previous RAN1 meetings, initial agreements on other aspects of AI model and data were agreed (see Appendix). 
In this contribution, we discuss the remaining issues of other aspects of AI model and data.
2	Physics-based propagation modeling for AI/ML data generation
Wireless networks are becoming increasingly heterogeneous, encompassing different inter-site distances, antenna array dimensions and makeup, radiated power per site, frequency bands, to name a few. Correspondingly, the wireless channel modeling needs to provide consistency and, above all, a correct representation of the frequency, spatial, and temporal correlation across base stations and devices. Achieving this without a propagation model grounded on the underlying physics of the scattering phenomena is simply unnatural, prone to modelling error and possibly a huge waste of effort for the industry. These considerations call for deterministic, physics-based modeling for wireless propagation, especially ray tracing.
Ray tracing is a rendering and simulation technique used in computer graphics, optics, and other fields to simulate the way rays of light or other radiation travel through a virtual or mathematical environment. In the context of wireless communication and radio wave propagation, ray tracing is often employed to model and simulate the paths that EM waves take as they propagate through various materials and interact with surfaces and obstacles. It provides a deterministic and physics-based modeling approach that simulates the paths of individual rays of EM waves, considering reflections, refractions, diffractions, and other interactions with objects and surfaces. It offers high-detail simulations, capturing the specific paths of rays and the effects of the surrounding environment, making it valuable for site-specific planning, antenna design, and network optimization in the field of wireless communication. 
One can utilize the physics-based modeling for wireless propagation to generate a diverse dataset that simulates a wide range of radio wave propagation scenarios within the targeted environment. This dataset can include variations in terrain, building structures, material properties, and other relevant factors, providing accurate reference data for training the AI/ML models, including the ground truth against which predictions are evaluated.
Next, we consider a concrete use case study, where the data is channel impulse response and used as input to an AI/ML model for object localization. An indoor office environment was selected for evaluation. 
· A first set of channel impulse response data was collected based on 3GPP stochastic channel model, and then a first AI/ML model was trained using the channel impulse response training data from stochastic channel model. 
· A second set of channel impulse response data was collected based on ray tracing, and then a second AI/ML model was trained using the channel impulse response training data from ray tracing.
After training, both AI/ML models were tested using channel impulse response test data from ray tracing, assuming the physics-based ray tracing data represents the ground truth of the specific indoor environment. 
The figure below shows the evaluation results. We can see that the test accuracy is poor for the AI/ML model trained on stochastic channel model data, compared to the test accuracy of the AI/ML model trained on ray tracing data. This implies that using data generated from stochastic channel models to train AI/ML models will lead to failure of the AI/ML models when deployed in real networks that are site specific.
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Figure 1: Comparison of stochastic channel model and ray tracing for AI/ML with sensing.
The key takeaway from this case study is that a propagation model, particularly ray tracing, grounded on the underlying physics of the scattering phenomena is indispensable for 5G-Advanced toward 6G.
Observation 1: Deterministic, physics-based modelling for wireless propagation, especially ray tracing, are essential for studying, evaluating, and developing AI/ML models in 5G-Advanced toward 6G.
3	Model identification and procedure
To enable and facilitate AI/ML for NR air interface, an AI/ML model needs to be created and then be managed during the entire lifecycle. For example, the AI/ML model needs to be validated, tested, deployed, etc. The AI/ML-enabled function also needs to be managed (e.g., deployment, configuration, and evaluation). 
For AI/ML functionality identification, the legacy 3GPP framework of UE features can be a starting point for discussion. For an AI/ML-enabled feature which refers to a feature where AI/ML may be used, there may be either one or more than one functionalities defined within an AI/ML-enabled feature. UE indicates supported functionalities/functionality for a given sub-use-case, and UE capability reporting can be taken as a starting point. 
For AI/ML model identification, models are identified by model ID at the Network, and UE indicates supported AI/ML models. For model identification of UE-side or UE-part of two-sided models, different types can be considered. In Type A, model is identified to network (if applicable) and UE (if applicable) without over-the-air signaling. In Type B, model is identified via over-the-air signaling. In this case, one can further consider two sub-categories: (1) In Type B1, model identification is initiated by the UE, and network assists the remaining steps (if any) of the model identification; (2) In Type B2, model identification is initiated by the network, and UE responds (if applicable) for the remaining steps (if any) of the model identification. Once models are identified, UE can indicate supported AI/ML model IDs for a given AI/ML-enabled Feature/FG in a UE capability report.
For UE-part/UE-side models, mechanisms for LCM procedures include functionality-based LCM procedure and model-ID-based LCM procedure. 
For functionality-based LCM procedure, indication of activation, deactivation, switching, and fallback based on individual AI/ML functionality needs to be studied. In this case, network can indicate activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI). Furthermore, AI/ML models may not be identified at the network, and UE may perform model-level LCM. A topic that requires further investigation is whether and how much awareness/interaction network should have about model-level LCM. 
For model-ID-based LCM procedure, indication of model selection, activation, deactivation, switching, and fallback are based on individual model IDs. Specifically, models are identified at the network, and network or UE may activate/deactivate/select/switch individual AI/ML models via model ID.
Functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability. Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG.
Model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.
Proposal 1: Conclude that there is a need for model identification in the context of LCM.
For model identification type B, the following options can be considered: 
· MI-Option 1: Model identification with data collection related configuration(s) and/or indication(s)
· MI-Option 2: Model identification with dataset transfer
· MI-Option 3: Model identification in model transfer from NW to UE
· MI-Option 4. Model identification via standardization of reference models. (for CSI compression)
· MI-Option 5. Model identification via model monitoring
Regarding MI-Option 1, the aspects that need to be further studied include relationship between model ID and data collection related configuration(s) and/or indication(s), information transmitted from NW to UE (if any), information transmitted from UE to NW (if any), the associated procedure, and usage/applicable use case(s) of MI-Option 1.
Proposal 2: Study the following options as starting point for model identification type B with more details related to all use cases:
· MI-Option 1: Model identification with data collection related configuration(s) and/or indication(s)
· MI-Option 4: Model identification via standardization of reference models. (for CSI compression)
· MI-Option 5: Model identification via model monitoring
4	Collection of UE-sided model training data
AI/ML model training can occur at gNB or UE side or both sides. In either case, the training entity can benefit from assistance from the other entity for training data collection. Relevant areas for discussion include measurement configuration and reporting, contents, type and format of data (e.g., data related to model input, data related to ground truth, quality of the data), signaling of assistance information for categorizing the data, signaling for data collection procedure.
Besides model training, data collection may be performed for other purposes in LCM, e.g., model inference, model monitoring, model selection, model update, etc., each of which may be done with different requirements and potential specification impact.
Proposal 3: Conclude that there is a need for collection of UE-sided model training data.
5	Model transfer/delivery
During the Rel-18 study, the following were agreed as one aspect for defining collaboration levels:
· Level x: No collaboration
· Level y: Signaling-based collaboration without model transfer
· Level z: Signaling-based collaboration with model transfer
The following figure provides an illustration of UE-gNB collaboration levels x, y, and z. 
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Figure 2: UE-gNB collaboration levels x, y, and z.
At level x, there is no collaboration between gNB and UE. The use of AI techniques in this case is purely based on proprietary implementations and solutions. It was further clarified that “Level x is implementation-based AI/ML operation without any dedicated AI/ML-specific enhancement (e.g., LCM related signalling, RS) collaboration between network and UE. 
At level y, there is signaling based collaboration without model transfer. Compared to level x, the difference is that here we may modify air interface and introduce new signaling to facilitate efficient AI/ML based features, such as introducing new measurements and reporting. 
Level z is defined as signaling-based collaboration with model transfer, where model transfer is defined as delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters, and delivery may contain a full model or a partial model. 
It was clarified that level y-z boundary is defined based on whether model delivery is transparent to 3GPP signalling over the air interface or not. In other words, model delivery in level z is not transparent to 3GPP signalling, while level y includes cases without model delivery and with model delivery transparent to 3GPP signaling.
There are as two separate model format categories relevant for discussion: proprietary models and open-format models. Proprietary models refer to ML models of vendor-/device-specific proprietary format. One example is a device-specific binary executable format. Open-format models refer to ML models of specified format that are mutually recognizable across vendors and allow interoperability. In other words, proprietary-format models are not mutually recognizable across vendors, hide model design information from other vendors when shared, while open-format models are mutually recognizable between vendors, do not hide model design information from other vendors when shared.
Based on the collaboration framework with level x/y/z, RAN1 further agreed to consider the following cases where different combinations of model delivery/transfer to UE, training location, and model delivery/transfer format are considered for UE-side models and UE-part of two-sided models.
· Case y, where model delivery (if needed) is over-the-top, model storage location is outside 3GPP network, and training location is UE-side / network-side / neutral site.
· Case z1, where model transfer is in proprietary format, model storage location is within 3GPP network, and training location is UE-side / neutral site.
· Case z2, where model transfer is in proprietary format, model storage location is within 3GPP network, and training location is network-side.
· Case z3, where model transfer is in open format, model storage location is within 3GPP network, and training location is UE-side / neutral site.
· Case z4, where model transfer is in open format of a known model structure at UE, model storage location is within 3GPP network, and training location is network-side.
· Case z5, where model transfer is in open format of an unknown model structure at UE, model storage location is within 3GPP network, and training location is network-side.
For various reasons, RAN1 agreed to deprioritize Cases z2, z3, and z5. But Cases y, z1, and z4 require further study. 
Proposal 4: Continue to study Cases y, z1 and z4 for transferring/delivering AI/ML model(s).
Conclusion
In the previous sections, we discuss general aspects of AI/ML framework for NR air interface and make the following observations:
Observation 1: Deterministic, physics-based modelling for wireless propagation, especially ray tracing, are essential for studying, evaluating, and developing AI/ML models in 5G-Advanced toward 6G.
Based on the discussion in the previous sections we propose the following:

Proposal 1: Conclude that there is a need for model identification in the context of LCM.
Proposal 2: Study the following options as starting point for model identification type B with more details related to all use cases:
· MI-Option 1: Model identification with data collection related configuration(s) and/or indication(s)
· MI-Option 4: Model identification via standardization of reference models. (for CSI compression)
· MI-Option 5: Model identification via model monitoring
Proposal 3: Conclude that there is a need for collection of UE-sided model training data.
[bookmark: _Ref138771260]Proposal 4: Continue to study Cases y, z1 and z4 for transferring/delivering AI/ML model(s).
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Appendix
A.1	RAN1#116 agreements
Agreement
· To facilitate the discussion, RAN1 studies the model identification type A with more details related to use cases.
· To facilitate the discussion, RAN1 studies the following options as starting point for model identification type B with more details related to all use cases 
· MI-Option 1: Model identification with data collection related configuration(s) and/or indication(s)
· MI-Option 2: Model identification with dataset transfer
· MI-Option 3: Model identification in model transfer from NW to UE
· FFS: The boundary of the options
· Note: the names (MI-Opton1, MI-Option 2, MI-Option 3) are used only for discussion purpose
· Note: other options are not precluded
Observation
The other options are proposed for model identification type B by companies during the discussion:
· MI-Option 4. Model identification via standardization of reference models. (for CSI compression)
· MI-Option 5. Model identification via model monitoring
Agreement
· Regarding MI-Option 1 (Model identification with data collection related configuration(s) and/or indication(s)) of model identification type B, RAN1 further study the following aspects:
· Relationship between model ID and data collection related configuration(s) and/or indication(s) 
· Information transmitted from NW to UE (if any) 
· Information transmitted from UE to NW (if any)
· The associated procedure
· Usage/Applicable use case(s) of MI-Option 1 
Note: whether MI-Option 1 is needed or not is a separate discussion

Conclusion:
From RAN1 perspective, the model transfer/delivery Case z5 is deprioritized for Rel-19.  

Conclusion
RAN1 has no consensus to reply the SA5 LS (R1-2400035)  

A.2	RAN1#116bis agreements
Conclusion
From RAN1 perspective, the model transfer/delivery Case z2 is deprioritized at least for UE-sided model in Rel-19 due to the following reasons:
· Risk of proprietary design disclosure
· Burden of offline cross-vendor collaboration 
Conclusion
From RAN1 perspective, the model transfer/delivery Case z3 is deprioritized for Rel-19 due to the following reasons (compared to Case y):
· No much benefit compared to Case y
· Risk of proprietary design disclosure
· Large burden of offline cross-vendor collaboration
· Additional burden on model storage within in 3GPP network
Conclusion
· It is clarified that MI-Option 4 refers to the Option 1 of CSI compression
· Option 1: Fully standardized reference model (structure + parameters)

Agreement
From RAN1 perspective, for UE-sided model(s) developed (e.g., trained, updated) at UE side, following procedure is an example (noted as AI-Example1) of MI-Option1 for further study (including the feasibility/necessity)
· A: For data collection, NW signals the data collection related configuration(s) and it/their associated ID(s) 
· Associated IDs for each sub use case in relation with NW-sided additional conditions
· B: UE(s) collects the data corresponding to the associated ID(s)  
· C: AI/ML models are developed (e.g., trained, updated) at UE side based on the collected data corresponding to the associated ID(s). 
· D: UE reports information of its AI/ML models corresponding to associated IDs to the NW. Model ID is determined/assigned for each AI/ML model
· relationship between model ID(s) and the associated ID(s)
· How model ID(s) is determined/assigned, e.g., 
· Alt.1: NW assigns Model ID
· Alt.2: UE assigns/reports Model ID
· Alt.3: Associated ID(s) is assumed as model ID(s)
· “Model ID is determined/assigned for each AI/ML model” in D is not needed
· Alt.4: Model ID is determined by pre-defined rule(s) in the specification
· FFS: how to report
· Note: D is to facilitate AI/ML model inference
· Note: Step A/B/C and additional interaction of associated IDs between UE and NW can be considered as a different solution for resolving the consistency without model identification.
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