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Performance comparison between AI/ML and non-AI model 
[bookmark: OLE_LINK40][bookmark: OLE_LINK41][bookmark: OLE_LINK66][bookmark: OLE_LINK62]This section provides the intermediate KPIs (NMSE and SGCS) and throughput results of AI/ML-based CSI prediction, nearest historical CSI without prediction (benchmark #1) and non-AI CSI prediction (benchmark #2), which is auto-regression (AR) in our simulations. In the simulation, a realistic channel is used for both the training model input and the training ground truth, thereby incorporating channel estimation (CE) errors into the analysis. Under these conditions, it is not assumed that the AI/ML model can effectively compensate for the CE errors, as the ground truth represents the realistic channel. 
[bookmark: OLE_LINK60][bookmark: OLE_LINK79][bookmark: OLE_LINK85]For AI/ML-based model training and inference, the dataset parameters are given in Table 51 in the Appendix, and the SLS simulation parameters are shown in Table 52. In this simulation, we assume an observation window of 5/5ms and a prediction window of 4/5ms/5ms. The simulation results are shown in Table 11 and Table 12, which depicts intermediate KPIs of the predicted instances using different prediction methods for speeds of 30 km/h and 60 km/h respectively. The corresponding SGCS results are shown in Figure 11. The eventual KPI results are displayed in Table 13 and Table 14. The corresponding UPT results are shown in Figure 12.
[bookmark: _Ref162869657][bookmark: OLE_LINK59][bookmark: OLE_LINK82]Table 11: SGCS results with different methods at 30km/h
	Predicted time
	1
	2
	3
	4

	[bookmark: _Hlk162875179]Nearest historical
[bookmark: OLE_LINK45](benchmark #1)
	0.534
	0.419
	0.397
	0.369

	[bookmark: _Hlk162875099]AR 
(benchmark #2)
	[bookmark: RANGE!J5]0.938
	[bookmark: RANGE!K5]0.665
	0.513
	0.444

	[bookmark: _Hlk162875544]AI/ML model (CNN)
	0.942
	0.668
	0.518
	0.446

	AI/ML gain
(compare w/ BM#1 and BM#2)
	(+76.4%)
(+0.43%)
	(+59.4%)
(+0.45%)
	(+30.5%)
(+0.97%)
	(+20.9%)
(+0.45%)



[bookmark: _Ref162875907]Table 12: SGCS results with different methods at 60km/h
	Predicted time
	1
	2
	3
	4

	Nearest historical
(benchmark #1)
	0.421
	0.369
	0.316
	0.304

	AR 
(benchmark #2)
	0.494
	0.389
	0.346
	0.328

	AI/ML model (CNN)
	0.489
	0.391
	0.359
	0.333

	AI/ML gain
(compare w/ BM#1 and BM#2)
	(+16.2%)
(-1.01%)
	(+5.96%)
(+0.51%)
	(+10.8%)
(+1.16%)
	(+9.54%)
(+1.52%)
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[bookmark: _Ref141880177][bookmark: OLE_LINK84][bookmark: OLE_LINK55][bookmark: OLE_LINK48]Figure 11: Intermediate KPI results at different speeds

[bookmark: _Ref162880919][bookmark: OLE_LINK83]Table 13: Throughput results with different methods at 30km/h
	
	UPT (Mbps)

	Resource utilization
	[bookmark: OLE_LINK80]RU20%
	RU50%
	RU70%

	[bookmark: OLE_LINK91]AR
	75.11
	44.49
	25.69

	AI/ML
	75.12
	44.38
	25.72

	AI/ML gain
(compare w/ BM#2)
	0.02%
	-0.25%
	0.11%



[bookmark: _Ref162880921]Table 14: Throughput results with different methods at 60km/h
	
	UPT (Mbps)

	Resource utilization
	RU20%
	RU50%
	RU70%

	AR
	71.33
	39.53
	21.78

	AI/ML
	71.43
	39.63
	21.98

	AI/ML gain
(compare w/ BM#2)
	0.14%
	0.25%
	0.92%



[image: ]
[bookmark: _Ref162881357]Figure 12: Eventual KPI results at different speeds and RU

[bookmark: OLE_LINK69]According to simulation results, we have observed that the non-AI based AR method performs well. The AI/ML model does yield significant improvements. Additionally, we consider the complexity including the FLOPs and parameter size, as shown in Table 15. The FLOPs of the AR method include two processes. One is on-the-fly calculate the coefficients, and the other is linear prediction process. Most of the FLOPs come from the coefficient calculation since matrix operations (such as complex matrix multiplication and complex matrix inversion) are required. However, matrix inversion can be simplified through some mathematical methods, so the complexity of AR method is still lower than AI/ML-based CSI prediction.
[bookmark: OLE_LINK77]In summary, the performance gains of AI/ML-based CSI prediction are not substantial when considering the significant increase in complexity. To mitigate the complexity of AI/ML models, we should further explore the techniques such as model pruning, quantization, or knowledge distillation.
[bookmark: _Ref158898504][bookmark: _Ref162877154][bookmark: OLE_LINK7]Table 15: Complexity of AI/ML-based and non-AI based models
	
	AI/ML model
	Non-AI based model

	
	
	AR
	Sample-and-hold

	Params (k)
	17.3
	~0
	0

	FLOPs (M)
	21.8
	0.34
	0



[bookmark: OLE_LINK142]Based on the intermediate KPI and eventual KPI results, it is observed that non-AI based CSI prediction can achieve similar performance as AI/ML-based CSI prediction.
1. [bookmark: OLE_LINK143]Further study complexity reduction techniques to evaluate their potential in reducing the storage and computational complexities of AI/ML models for CSI prediction.
[bookmark: _Ref141883058]Generalization of CSI Prediction
Generalization over RB
[bookmark: OLE_LINK92]First, we aim to observe the generalization characteristics over different RBs. Figure 21 illustrates our experimental concept. The x-axis represents the time samples, and the y-axis represents the granularity in the frequency domain, which can be the subcarrier, RB, or subband. During the training phase, the first RB is applied for the training purposes. Subsequently, the AI/ML training model is tested on the middle and last RBs to investigate the effectiveness. 
Regarding the subsequent results, the observation window length is set to 10/5ms, and the prediction window length is 3/5ms/5ms. Table 21 shows the generalization performance results across a single RB. We employ NMSE as the metric for performance evaluation. Based on the outcomes, we can infer that the AI/ML models trained on a specific RB can be extrapolated to the entire band due to their comparable performance. In other words, within the whole frequency band, a single AI/ML model trained on a specific RB (or subcarrier) can be used for other RBs. This approach enables us to conserve memory and reduce computational complexity on the UE side.
[image: ]
[bookmark: _Ref127178867]Figure 21: Illustration of training and inference
[bookmark: _Ref166192231]Table 21: Generalization performance results over single RB (NMSE in dB)
	
	AI model training at first RB

	Inference at first RB
	-22.38, -10.39, -4.49

	Inference at middle RB
	-22.36, -10.36, -4.48

	Inference at last RB
	-22.35, -10.36, -4.47



[bookmark: OLE_LINK120][bookmark: OLE_LINK114]In another experiment, we employed a subband as the training granularity. The input of the AI/ML model consisted of one subband (comprising 4 RBs in our configuration), and the output yielded the predicted time samples for that particular subband, as depicted in Figure 22. 
Our expectation was that joint prediction would yield superior results compared to single RB prediction. However, we can see the results in Table 22; the subband predication results are worse than the single RB results. The possible reason is that training multi-RB scenarios needs a larger input-output space and requires more complex AI/ML models for a better performance. Therefore, the trade-off between single RB and joint RBs needs to be further studied by UE implementation. 
Furthermore, we can also conclude that the AI/ML models trained on a specific subband can be applied to the entire band. Therefore, the generalization over RBs and subbands is good for AI/ML-based CSI prediction.
[image: ]
[bookmark: _Ref127179051]Figure 22: Illustration of training and inference of multiple RBs
[bookmark: _Ref132902126]Table 22: Generalization performance results over multiple RBs (NMSE in dB)
	
	AI model training at the first subband

	Inference at the first subband
	-21.61, -9.87, -4.09

	Inference at middle subband
	-21.60, -9.86, -4.08

	Inference at the last subband
	-21.61, -9.87, -4.08


[bookmark: OLE_LINK144]
Compared with training at single RB, more complex models need to be considered when training at multiple RBs, otherwise the performance cannot be improved.
The AI/ML model trained on single/joint RB(s) can be generalized and inferenced on other single/joint RB(s).
[bookmark: _Ref127179833]Generalization Over Speed
[bookmark: OLE_LINK124]In this section, we evaluate the generalization performance for UE speeds. Both uni-speed and mixed-speed datasets are used. UE speed is leveraged for evaluation with 10, 30, 60, 120km/h, and the length of the observation window is 10/5ms, the length of prediction window is 1/5ms/5ms. 
We consider the following three cases:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
[bookmark: OLE_LINK125]In this scenario, the upper bound of the performance reference can be determined. Table 23 shows the CSI prediction performance across different speeds. We can observe that when the UE speed is larger than (or equal to) 60km/h, the performance degrades rapidly. The reason is the Doppler effect and the corresponding channel coherence time. In our simulation, the CSI-RS periodicity is set at 5ms, and the coherence time (~) of UE moving at 60km/h is approximately 4.5ms. Therefore, if the coherence time of the channel is less than CSI-RS periodicity, the channel variation will be more significant between two observed CSIs. This makes it difficult for AI/ML model to learn the correlation between the CSI sets. Hence, if we want to get better prediction accuracy at high speeds, the periodicity of CSI-RS should also be considered.
[bookmark: _Ref127179448]Table 23: Case 1 performance results for CSI prediction over speed
	
	Speed (km/h)
	10
	30
	60
	120

	AI/ML
	NMSE (dB)
	-34.27
	-23.22
	-1.98
	-1.27

	
	SGCS
	0.99972
	0.99574
	0.43261
	0.33036

	AR
	NMSE (dB)
	-90
	-22.71
	-1.31
	0.07

	
	SGCS
	1
	0.99510
	0.47504
	0.37488

	Sample-and-hold
	NMSE(dB) 
	-7.98
	0.61
	4.3
	5.39

	
	SGCS
	0.91944
	0.56371
	0.42530
	0.36813



· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
[bookmark: OLE_LINK126]For this case, the lower bound of the performance reference can be obtained. We conducted two experiments: one is training at a speed of 30km/h, while the other is training at a speed of 120km/h. In both experiments, we conducted inference tests for all possible 
The performance results in terms of NMSE and SGCS are presented in Table 24, with the values in parentheses indicating the loss compared to generalization Case 1. We can observe that although training at moderate speed can achieve robust performance at lower speeds, the training model fails to perform well at higher speeds. Conversely, training in a high-speed scenario leads to a significant performance drop at lower speeds. However, minimal performance variations are observed at higher speeds due to the similarity in features that align with the training model.
In summary, training at a specific speed and conducting inference at different speeds results in notably inferior performance compared to the upper limit (generalization Case 1).
[bookmark: _Ref127179640]Table 24: Case 2 performance results for CSI prediction over speed
	
	Training at speed 30 (medium speed)

	Inference 
speed (km/h)
	10
	30
	60
	120

	NMSE (dB)
	-31.23
(loss 3.04)
	-23.22
(loss 0)
	24.18
(loss 26.16)
	20.08
(loss 21.35)

	SGCS
	0.99941 
(loss 0%)
	0.99574 
(loss 0%)
	0.18921 
(loss 56.3%)
	0.14410 
(loss 56.3%)

	

	
	Training at speed 120 (high speed)

	Inference
speed (km/h)
	10
	30
	60
	120

	NMSE (dB)
	-11.47
(loss 22.8)
	-2.24
(loss 20.98)
	-0.99
(loss 0.99)
	-1.27
(loss 0)

	SGCS
	0.94440 
(loss 5.5%)
	0.48264 
(loss 51.5%)
	0.29156 
(loss 32.6%)
	0.33036 
(loss 0%)



· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a dataset different than Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations
In this case, we utilize a mixed speed dataset for training. Each speed will contribute equally to the mixed dataset. Specifically, the sub-dataset of each speed forms 1/4 of the mixed dataset which will be shuffled before the training process. 
Table 25 shows the Case 3 performance results. When compared to the upper bound performance, there is an NMSE loss ranging from 0.4dB to 12dB (SGCS loss ranges from 0.2% to 44%), depending on the UE speed. Further evaluation is needed to determine how this degradation ultimately affects the eventual KPIs. However, in terms of the NMSE/SGCS results, there is a gap compared to generalization Case 1.
[bookmark: OLE_LINK89]Based on the performance results, it is evident that an AI/ML model trained on a specific speed may not be generalized to other speeds. Even when training with a mixed dataset, there can be a significant performance loss. Therefore, it is crucial to discuss the model switching process for AI/ML-based CSI prediction in order to address the generalization issue.
[bookmark: _Ref127179751]Table 25: Case 3 performance results for CSI prediction over speed
	
	Training at mixed [10, 30, 60, 120] km/h 

	Inference speed (km/h)
	10
	30
	60
	120

	NMSE (dB)
	-22.36
(loss 11.91)
	-17.89
(loss 5.33)
	-1.56
(loss 0.42)
	0.5
(loss 1.77)

	SGCS
	0.99768 
(loss 0.2%)
	0.98844 
(loss 0.7%)
	0.37421 
(loss 13.5%)
	0.18623 (loss 43.6%)



At the same time, it is important to emphasize that the AR model does not suffer from generalization issues as it calculates coefficients on-the-fly. This enables it to determine the optimal prediction coefficients based on the current scenario and environment, thereby enhancing the advantages of using non-AI models.
[bookmark: OLE_LINK145]Training at a mixed speed can improve the performance, but it still experiences a loss of up to 10dB in NMSE (and 44% in SGCS at high speed) when compared to optimal results.
[bookmark: OLE_LINK90]AR method do not suffer from generalization issue.
Generalization Over Carrier Frequency
In this section, we evaluate the generalization performance over different carrier frequencies. The analysis is similar to Section 2.2  as the carrier frequency is also a key factor causing the Doppler effect. In this section, we set the UE speed at 30km/h and observe how performance changes with varying carrier frequency values, including 2GHz and 3GHz. 
Table 26 shows the performance results for Case 1 over different carrier frequencies. In this case, we train on a certain carrier frequency and then perform inference on the same carrier frequency. Consequently, we can obtain an upper bound for performance reference.
Table 27 shows the performance results of Case 2, that is, we train based on the training dataset of the certain carrier frequency and inference on the other carrier frequency. We can observe that the performance of the carrier frequency in Case 2 is not good, similar to the UE speed.
Table 28 shows the performance results of Case 3, we use the mixed carrier frequency dataset for training, and the ratio of each carrier frequency is equal. Although the loss from this experiment is not significant, it is expected that increasing the carrier frequency to a higher value (e.g., above 3GHz) will likely result in a greater degradation.
[bookmark: _Ref127179971]Table 26: Case 1 performance results for CSI prediction over carrier frequency
	
	Carrier freq.
	2GHz
	3GHz

	
	Doppler freq.
	55.6Hz
	83.4Hz

	
	Coherence Time 
	7.6ms
	5ms

	AI/ML
	NMSE (dB) 
	-23.22
	-4.48

	
	SGCS
	0.99574
	0.69110

	AR
	NMSE (dB) 
	-22.71
	-4.49

	
	SGCS
	0.99510
	0.71791

	Sample-and-hold
	NMSE (dB) 
	0.61
	3.29

	
	SGCS
	0.56371
	0.39783



[bookmark: _Ref127179976]Table 27: Case 2 performance results for CSI prediction over carrier frequency
	
	Training at 3GHz 
Inference at 2GHz
	Training at 2GHz 
Inference at 3GHz

	NMSE (dB) 
	-8.17 
(loss 15.05)
	17.70 
(loss 22.18)

	SGCS
	0.88213 
(loss 11.4%)
	0.29929 
(loss 56.7%)



[bookmark: _Ref127179982]Table 28: Case 3 performance results for CSI prediction over carrier frequency
	
	Training at mixed carrier frequency 

	Inference 
carrier frequency
	2GHz
	3GHz

	NMSE (dB) 
	-18.45 
(loss 4.77)
	-3.91 
(loss 0.57)

	SGCS
	0.99040 
(loss 0.5%)
	0.65619 
(loss 5.1%)



In order to achieve better performance results, it is recommended to use a mixed training approach for Doppler frequency, which includes the carrier frequency and UE speed. Additionally, implementing model switching can be highly beneficial. However, further study is needed to determine the details of this approach.
[bookmark: OLE_LINK146]For AI/ML-based CSI prediction, the AI/ML model trained on a certain carrier frequency may not be generalized on other carrier frequencies.
Training at a mixed carrier frequencies can improve the performance, but it still experiences a loss of up to 5dB in NMSE (and 5% in SGCS) when compared to optimal results.
[bookmark: _Ref141794909]Generalization Over Deployment
[bookmark: OLE_LINK136]In this section, we evaluate the generalization performance for the deployment. Based on the channel model in 3GPP 38.901, we consider two deployment scenarios for training: Urban macro (UMa) and Urban micro (UMi). 
Table 29 shows the performance results for each deployment in Case 1. We observe that the performance under UMi is better than that under UMa, possibly due to the presence of multipath effects. In the UMa deployment, where the NLOS ratio is higher compared to the UMi, more multipath effects are introduced into the UMa channel, resulting in greater channel variation. This makes it more challenging to accurately predict the complex multipath channels.
[bookmark: _Ref127180154]Table 29: Case 1 performance results for CSI prediction over deployment
	
	Deployment
	UMi
	UMa

	AI/ML
	NMSE (dB) 
	-26.14
	-23.67

	
	SGCS
	0.99784
	0.99625

	AR
	NMSE (dB) 
	-25.76
	-22.71

	
	SGCS
	0.99745
	0.99510

	Sample-and-hold
	NMSE (dB) 
	0.46
	0.61

	
	SGCS
	0.80919
	0.56371



Table 210 and Table 211 show the performance of each deployment in Case 2 and Case 3, respectively. We can observe that whether we choose to train on either the UMa or UMi channel, the performance of the model primarily depends on its input. Additionally, the performance is similar to the upper bound results. Consequently, the training of AI/ML model may not need to consider the different deployment modes, but simply using a mixed dataset that includes different deployments can slightly improve the performance compared to the Case 2 performance. In conclusion, the generalization over deployment is good.
[bookmark: _Ref127180161]Table 210: Case 2 performance results for CSI prediction over deployment
	
	Training at Uma
Inference at UMi
	Training at UMi
Inference at UMa

	NMSE (dB) 
	-24.45 
(loss 1.69)
	-23.22
(loss 0.45)

	SGCS
	0.99724 
(loss 0%)
	0.99574 
(loss 0%)



[bookmark: _Ref127180166]Table 211: Case 3 performance results for CSI prediction over deployment
	
	Training at mixed UMi and UMa 

	Inference
deployment
	UMi
	UMa

	NMSE (dB) 
	-25.87 
(loss 0.27)
	-23.40 
(loss 0.27)

	SGCS
	0.99781 
(loss 0%)
	0.99600 
(loss 0%)



[bookmark: OLE_LINK147]For AI/ML-based CSI prediction, the AI/ML model trained on a certain deployment (e.g., UMa/UMi) can be generalized and performed inference on other deployment (e.g., UMi/UMa).
1. [bookmark: OLE_LINK148]Use mixed datasets over deployment for AI/ML-based CSI prediction model to improve the generalization.
Generalization Over LOS/NLOS
[bookmark: OLE_LINK141]In this section, we evaluate the generalization performance for the LOS and NLOS scenario. 
Table 212 displays the performance results in Case 1. It can be observed that the performance result under the fully LOS scenario is better than the fully NLOS scenario. Table 213 and Table 214 show the performance in Case 2 and Case 3, respectively. The conclusion remains consistent with Section 2.4, which states that regardless of whether we choose to train on either the LOS or NLOS scenario, the model's performance primarily depends on its input. 
[bookmark: _Ref141794516]Table 212: Case 1 performance results for CSI prediction over LOS/NLOS scenario
	
	Deployment
	LOS
	NLOS

	AI/ML
	NMSE (dB) 
	-27.67
	-22.67

	
	SGCS
	0.99863
	0.99533

	AR
	NMSE (dB) 
	-31.24
	-20.45

	
	SGCS
	0.99928
	0.99187

	Sample-and-hold
	NMSE (dB) 
	1.55
	0.52

	
	SGCS
	0.77693
	0.46227



[bookmark: _Ref141794530]Table 213: Case 2 performance results for CSI prediction over LOS/NLOS scenario
	
	Training at NLOS 
Inference at LOS
	Training at LOS 
Inference at NLOS

	NMSE (dB) 
	-26.27 
(loss 1.4)
	-21.70 
(loss 0.97)

	SGCS
	0.99832 
(loss 0%)
	0.99396 
(loss 0.14%)



[bookmark: _Ref141794531]Table 214: Case 3 performance results for CSI prediction over LOS/NLOS scenario
	
	Training at mixed LOS and NLOS 

	Inference
deployment
	LOS
	NLOS

	NMSE (dB) 
	-27.09 
(loss 0.58)
	-22.51 
(loss 0.16)

	SGCS
	0.99837 
(loss 0%)
	0.99501 
(loss 0%)



[bookmark: OLE_LINK150]For AI/ML-based CSI prediction, the AI/ML model trained on a LOS or NLOS scenario can be generalized and performed inference on the other scenario.
1. [bookmark: OLE_LINK149]Use mixed datasets over LOS/NLOS for AI/ML-based CSI prediction model to improve the generalization.
Conclusion
In summary, based on the above discussion, we have the following observations:
1. Based on the intermediate KPI and eventual KPI results, it is observed that non-AI based CSI prediction can achieve similar performance as AI/ML-based CSI prediction.
1. Compared with training at single RB, more complex models need to be considered when training at multiple RBs, otherwise the performance cannot be improved.
1. The AI/ML model trained on single/joint RB(s) can be generalized and inferenced on other single/joint RB(s).
1. Training at a mixed speed can improve the performance, but it still experiences a loss of up to 10dB in NMSE (and 44% in SGCS at high speed) when compared to optimal results.
1. AR method do not suffer from generalization issue.
1. For AI/ML-based CSI prediction, the AI/ML model trained on a certain carrier frequency may not be generalized on other carrier frequencies.
1. Training at a mixed carrier frequencies can improve the performance, but it still experiences a loss of up to 5dB in NMSE (and 5% in SGCS) when compared to optimal results.
1. For AI/ML-based CSI prediction, the AI/ML model trained on a certain deployment (e.g., UMa/UMi) can be generalized and performed inference on other deployment (e.g., UMi/UMa).
1. For AI/ML-based CSI prediction, the AI/ML model trained on a LOS or NLOS scenario can be generalized and performed inference on the other scenario.
Based on the observations and further analysis, we have the following proposals:
Proposal 1: Further study complexity reduction techniques to evaluate their potential in reducing the storage and computational complexities of AI/ML models for CSI prediction.
Proposal 2: Use mixed datasets over deployment for AI/ML-based CSI prediction model to improve the generalization.
Proposal 3: Use mixed datasets over LOS/NLOS for AI/ML-based CSI prediction model to improve the generalization.
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[bookmark: _Ref101361592]Appendix
[bookmark: _Ref162869479]Table 51: Dataset parameter configuration
	[bookmark: _Hlk162862670]
	Dataset

	Channel model
	[bookmark: OLE_LINK12]TR 38.901 Dense Urban

	Carrier frequency
	2GHz

	Sub-carrier spacing
	15kHz

	Antenna setup and port layouts at gNB
	[bookmark: OLE_LINK13]32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ, Cross-polarization

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ, Cross-polarization

	Operating BW
	10MHz

	Data type
	Raw channel

	UE distribution
	100% outdoor with UE speed 30, 60km/h

	CSI-RS periodicity
	5ms

	[bookmark: _Hlk162863383]Spatial consistency model
	Spatial consistency with procedure A

	Channel estimation
	Realistic CSI-RS channel estimation at UE


[bookmark: _Ref162869512][bookmark: OLE_LINK9]Table 52: System Level Simulation assumptions
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban Macro

	Carrier frequency
	2GHz 

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz 

	Simulation bandwidth
	10 MHz 

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	SU/MU-MIMO with rank adaptation

	MIMO layers
	Maximum rank = 2

	CSI feedback delay
	4ms

	CSI-RS periodicity
	5ms

	Traffic model
	FTP model 1 with packet size 0.5 Mbytes 

	[bookmark: OLE_LINK81]Traffic load (Resource utilization)
	20/50/70%

	UE distribution
	100% outdoor (30, 60km/h) 

	UE receiver
	MMSE-IRC as the baseline receiver

	Channel estimation         
	Realistic 

	Feedback type
	Rel-18 eType II codebook
With parameters: 

	CSI report periodicity
	

	Spatial consistency model
	Spatial consistency with procedure A
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