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1 Introduction
In RAN#102 meeting, a new WID was approved for Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface [2]. The WID consists of two parts, the first part is to provide the normative support for the general framework for AI/ML for air interface, enable the recommended use cases in the preceding study; the second part is to tackle and hopefully resolve some outstanding issues for a number of study objectives, deepen the understanding of a potential future normative work.
In this contribution, we focus on the study for the CSI prediction use case. More specifically, based on the evaluation methodologies agreed in the RAN1 #116 meeting, we provide updated evaluation results on performance gain of the AI based CSI prediction scheme over two non-AI benchmarks (Rel-16 eType II nearest historical scheme and Rel-18 Type II non-AI based CSI prediction). We also provide complexity comparison between the considered AI based and the non-AI based CSI prediction schemes. 
2 Evaluation results
2.1 Overview of simulated schemes
According to the evaluation assumptions defined in Table 6.2.2.1 in [1], two baseline schemes are considered as reference: 
· Baseline #1: nearest historical CSI without prediction.
· Baseline #2: non-AI based CSI with prediction. 
A summary of the simulation parameters can be found in Table 11.
2.1.1 Nearest historical CSI without prediction
For Baseline #1 with nearest historical CSI, a CSI report based on Rel-16 enhanced Type II (a.k.a. Rel-16 eType II) codebook is reported by UE and used by gNB until a new CSI report is received. Throughout the simulations, paramCombination-r16 = 6 is assumed (i.e., ), unless otherwise stated.
[bookmark: _Ref158755638]2.1.2 Non-AI based CSI prediction
For Baseline #2 with non-AI based predicted CSI, a CSI report based on Rel-18 enhanced Type II (a.k.a. Rel-18 eType II) for predicted PMI is reported by the UE. A CSI report is generated in two steps: a channel prediction step followed by a PMI calculation step. 
In the first step, UE estimates channels over  slots by measuring  CSI-RS occasions (). The  measurements are separated uniformly by  slots. An example timeline for the channel prediction step is drawn in Figure 1. Based on the  measurements, UE predicts  channel prediction instances for future slots, which are separated uniformly by  slots. The first prediction and the last measurement are separated by  slots. In our current simulations, only periodic CSI-RS has been evaluated.
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[bookmark: _Ref158752436]Figure 1 An example timeline for channel prediction.
In the second step, UE derives a REL-18 eType II PMI based on the  predictions, that is up to UE implementation. In our simulations, UE first derives a R16 eType II PMI for each of the  slots, then a time domain compression is applied with  Doppler domain basis vectors, where  if , otherwise . Throughout the simulations, paramCombination-Doppler-r18 = 7 (i.e., ) is assumed, unless otherwise stated. With this setting, the same number of spatial domain basis vectors, frequency domain basis vectors, as well as ratio of non-zero coefficients are used for both R16 eType II and REL-18 eType II, which makes the comparison fair.
2.1.2.1 Non-AI channel prediction algorithm
An auto-regressive (AR) model is used for generating channel prediction, for non-AI based channel prediction. The coefficients for the AR model are obtained via the Burg’s method, which efficiently uses the data by considering both forward and backward predictions. The AR coefficients are obtained by jointly minimizing the forward and backward prediction errors in least square sense. In general, Burg’s method gives good performance even with relatively small number of measurements. Regarding the model order, we assume the maximum model order, i.e., number of measurements – 1. 
Channel prediction can be done either in antenna-frequency domain, or in a transformed domain. We observe that channel in beam-delay domain is much sparser. Consequently, prediction in beam-delay domain gives higher performance. Throughout our simulations, prediction in beam-delay domain is assumed, which is transformed back to antenna-frequency domain with post-processing.
Note that one can also use Kalman filter for prediction, which is recursively updated based on measurement noise and process noise, but that is not considered in our simulations.  
2.1.3 AI-based CSI prediction
For AI-based CSI prediction, a CSI report is also generated using the same two-step procedure as described for the non-AI based prediction case. Both AI and non-AI based prediction schemes use exactly the same reporting format according to the REL-18 eType II codebook as explained in Section 2.1.2. The only difference is that the channel prediction for AI-based scheme is generated using an AI/ML model instead of the AR algorithm. 
2.1.3.1 AI model for channel prediction
A transformer-based AI model is used for AI-based CSI prediction. To be in line with the non-AI baseline, prediction is done in the beam-delay domain. Firstly, the dimension along the delay domain is reduced by a linear layer with dimension less than the number of delay taps. Subsequently, channel is predicted per reduced delay tap dimension per receive antenna, i.e., along transmit beam and time dimension. Accordingly, input of the AI model is channel along transmit beam and time dimension per reduced delay tap per receive antenna, followed by expansion of the reduced delay dimension back to the initial delay dimension using a linear layer. Finally, the predicted beam-delay domain channel is post-processed back to the antenna-frequency domain. Note that the input to the transformer is embedded along the time dimension, which represents the time dimension per transmit beam along a higher dimension. Further, the dropout layer prevents overfitting the model to the training data. The transformer model processing is shown in Figure 2, with the transformer encoder block shown in Figure 3. The transformer model is similar to that described in [3], with necessary modifications to have the training and inference in the complex-domain, which is implemented with Google’s JAX framework. The parameters for the transformer encoder block that have been used in this paper are given in Table 1, where the parameters are described in [3]. However, with the dimension reduction for the delay domain, our updated AI model has now a much lower computational complexity comparing to our previous AI model described in [4]. The model is trained with NMSE loss function, where the loss value is the average NMSE between the predicted channel by the AI model and the ground truth (i.e., the estimated channel based on CSI-RS) at each prediction slot.
[bookmark: _Ref158985913]Table 1	Parameters for transformer encoder block and training 
	Parameters
	Values

	Dropout rate
	0.01

	Embedding dimension
	12

	Number of attention heads
	3

	Size of key, query and values
	4

	Number of encoder blocks
	3

	Reduced delay dimension
	8

	Optimizer
	Adam

	Learning rate
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[bookmark: _Ref158985849]Figure 2	Transformer based AI model processing for CSI prediction in beam-delay domain, where the prediction is done per delay tap per receive antenna.
[image: A diagram of a computer program

Description automatically generated]
[bookmark: _Ref158985878]Figure 3	Transformer encoder block in complex domain 
2.1.3.2 Data collection procedure
For training and inference of the AI model, the data was collected with the parameters given in Table 10 in Appendix. Specifically, 850 UE tracks are simulated each with 150 slots. Each channel sample is generated with realistic channel estimate, meaning that CSI-RS resources are actually configured, transmitted and decoded. Subsequently, channels from 800 UE tracks are used for creating the training data set and channels from 50 UE tracks are used for the testing data set.
2.2 Performance gain over baselines
In this section, performance gain over the two baselines is analyzed with both intermediate KPI and system level throughput. 
Performance metrics:
For intermediate KPI, both normalized mean squared error (NMSE), expressed in dB, and squared generalized cosine similarity (SGCS) for the dominant eigenvector (i.e., for layer 1) are evaluated for each sample of the testing dataset. The mean NMSE and mean SGCS are presented in the figures and tables below for the intermediate KPI performance evaluation. Note that our AI models are trained using a loss function to minimize NMSE rather than maximizing SGCS. 
For system performance evaluation, both DL mean UPT and 5%-UPT results are presented in figures and tables for RU = 20% and 50%. The system-level simulation parameters follow the agreed evaluation methodologies in the last RAN1 meeting and the evaluation assumption in Table 6.2.2.1 in [1] are summarized in Table 11 in Appendix. 
To have fair comparison between non-predicted scheme (nearest historical) and predicted scheme (both AI and non-AI), CSI reporting period is scaled with the value of  when , so that schemes both with and without prediction have the same reporting periodicity, which we assume is given by , where  is the separation between two consecutive predictions in slots. For example, if  and PMIs are predicted with separation of  slots, the CSI reporting periodicity for all schemes is 20 slots. 
[bookmark: _Toc159139758][bookmark: _Toc159140712][bookmark: _Toc159140787]For both the intermediate KPI and the system level results, the evaluation is done using realistic CSI-RS channel estimation at the UE. As shown in our previous contribution [4], the performance of AI-based CSI prediction is robust against channel estimation errors since the AI model is trained with practical channel estimates. The implemented non-AI based prediction is very sensitive to channel estimation errors, leading to significant performance drop of non-AI based solution. More advanced non-AI based prediction scheme may be considered in future studies, at potential cost of additional complexity for the non-AI based prediction scheme. 
In case channel estimation errors cannot be explicitly included in system level simulators, one way of improving the simulation accuracy to see its impact on CSI prediction performance is to model the CSI-RS channel estimation error as white complex Gaussian variables. This can e.g. follow a similar approach as for SRS estimation error modelling described in Table A. 1-2 in TR 36.897 [5], in the form , where  is the estimated channel,  a normalization factor,  the channel in frequency domain, and  zero-mean complex Gaussian with variance calculated by and presented by companies.
[bookmark: _Toc166077688]The CSI-RS channel estimation error modeling, if considered, can follow a similar approach as for SRS estimation error modelling described in Table A. 1-2 in TR 36.897.
[bookmark: _Toc166224457]To study impact of channel estimation errors on AI and non-AI CSI prediction, simulations should either include non-ideal/practical CSI-RS channel estimation, or use a model of channel estimation error with the error modeling assumptions presented together with the SLS results.
2.2.1 Basic results with 5 ms CSI-RS periodicity
Figure 4 and Figure 5, with corresponding Table 2, show system performance of the AI/ML based CSI prediction compared with both Rel-16 eType II with nearest historical CSI (baseline #1) and Rel-18 eType II non-AI prediction (baseline #2). 
Figure 4 is for  and Figure 5 is for . The observation window is 5/5ms, and the prediction window is /5ms/5ms. The same UE speed of 30km/h is assumed for both model training and inference. For both cases of  and , the AI model shows better results than the two baselines, and the Rel-18 eType II non-AI prediction (baseline #2) performs worse than Rel-16 eType II with nearest historical CSI (baseline #1) for the case of  as shown in Figure 5.
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[bookmark: _Ref162259777]Figure 4	Mean throughput and 5-th percentile throughput for observation window of 5/5ms and prediction window of 1/5ms/5ms with 30 km/h UE velocity. 
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[bookmark: _Ref162259764]Figure 5	Mean throughput and 5-th percentile throughput for observation window of 5/5ms and prediction window of 4/5ms/5ms with 30 km/h UE velocity. 
[bookmark: _Ref162259884]Table 2	Throughput gain of AI-based prediction over baseline#1 (nearest historical) and baseline#2 (non-AI prediction) with  and 4 at 20% and 50% resource utilization, at 30 km/h with observation window of 5/5ms and prediction window of /5ms/5ms.

	
	RU=20%
	RU=50%

	
	Mean UPT
	5th percentile UPT
	Mean UPT
	5th percentile UPT

	
	#1
	#2
	#1
	#2
	#1
	#2
	#1
	#2

	
	AI, Trained and inference with 30 km/h
	9%
	9%
	27%
	18%
	37%
	24%
	100%
	46%

	
	AI, Trained and inference with 30km/h
	7%
	13%
	14%
	23%
	29%
	35%
	77%
	73%

	
	AI, Trained and inference with 60 km/h
	5%
	11%
	9%
	17%
	21%
	31%
	45%
	66%

	
	AI, Trained and inference with 60 km/h
	5%
	13%
	4%
	19%
	21%
	32%
	26%
	56%

	
	AI, Trained 30&60km/h, inference with 30 km/h
	7%
	13%
	13%
	21%
	30%
	36%
	72%
	70%

	
	AI, Trained 30&60km/h, inference with 60 km/h
	5%
	12%
	0%
	16%
	18%
	30%
	22%
	51%



[bookmark: _Toc166077689]From the perspective of basic performance gain over non-AI/ML benchmark, under the assumption of the same UE speed of 30km/h for training and inference, observation window of 5/5ms, and prediction window of 1/5ms/5ms, and non-ideal CSI channel estimation:
a. [bookmark: _Toc166077690]AI/ML based CSI prediction outperforms the benchmark of the Rel-16 Type II with nearest historical CSI (baseline #1), where
i. [bookmark: _Toc166077691]9% and 37% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii. [bookmark: _Toc166077692]27% and 100% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.  
b. [bookmark: _Toc166077693]AI/ML based CSI prediction outperforms the benchmark of Rel-18 Type II non-AI/ML based CSI prediction (baseline #2), where
i. [bookmark: _Toc166077694]9% and 24% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii. [bookmark: _Toc166077695]18% and 46% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively. 
c. [bookmark: _Toc166077696]Rel-18 Type II non-AI/ML based CSI prediction (baseline #2) outperforms Rel-16 Type II with nearest historical CSI (baseline #1)

[bookmark: _Toc166077697]From the perspective of basic performance gain over non-AI/ML benchmark, under the assumption of the same UE speed of 30km/h for training and inference, observation window of 5/5ms, and prediction window of 4/5ms/5ms, and non-ideal CSI channel estimation:
d. [bookmark: _Toc166077698]AI/ML based CSI prediction outperforms the benchmark of the Rel-16 Type II with nearest historical CSI (baseline #1), where
i. [bookmark: _Toc166077699]7% and 29% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii. [bookmark: _Toc166077700]14% and 77% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.  
e. [bookmark: _Toc166077701]AI/ML based CSI prediction outperforms the benchmark of Rel-18 Type II non-AI/ML based CSI prediction (baseline #2), where
i. [bookmark: _Toc166077702]13% and 35% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii. [bookmark: _Toc166077703]23% and 73% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively. 
f. [bookmark: _Toc166077704]Rel-16 Type II with nearest historical CSI (baseline #1) outperforms Rel-18 Type II non-AI/ML based CSI prediction (baseline #2)

Figure 6 and Figure 7 with numbers in Table 3 show system performance of an AI model trained and inference at a higher UE speed of 60 km/h. At this UE speed, the non-AI prediction is not working properly (even worse than Rel-16 baseline), and AI prediction performs best. 
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[bookmark: _Ref162260516]Figure 6	Mean throughput and 5-th percentile throughput for observation window of 5/5ms and prediction window of 1/5ms/5ms with 60 km/h UE velocity. 
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[bookmark: _Ref162260521]Figure 7	Mean throughput and 5-th percentile throughput for observation window of 5/5ms and prediction window of 4/5ms/5ms with 60 km/h UE velocity. 
[bookmark: _Ref162366063]Table 3	Throughput gain of AI-based prediction over baseline#1 (nearest historical) and baseline#2 (non-AI prediction) with  at 20% and 50% resource utilization, at 60 km/h with observation window of 5/5ms prediction window of /5ms/5ms.
	
	20%
	50%

	
	Mean
	5th percentile
	Mean
	5th percentile

	
	#1
	#2
	#1
	#2
	#1
	#2
	#1
	#2

	
	AI, Trained with 60 km/h
	5%
	11%
	9%
	17%
	21%
	31%
	45%
	66%

	
	AI, Trained with 60 km/h
	5%
	13%
	4%
	19%
	21%
	32%
	26%
	56%



[bookmark: _Toc166077705]From the perspective of basic performance gain over non-AI/ML benchmark, under the assumption of the same UE speed of 60km/h for training and inference, observation window of 5/5ms, and prediction window of 1/5ms/5ms, and non-ideal CSI channel estimation:
g. [bookmark: _Toc166077706]AI/ML based CSI prediction outperforms the benchmark of the Rel-16 Type II with nearest historical CSI (baseline #1), where
i. [bookmark: _Toc166077707]5% and 21% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii. [bookmark: _Toc166077708]9% and 45% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.  
h. [bookmark: _Toc166077709]AI/ML based CSI prediction outperforms the benchmark of Rel-18 Type II non-AI/ML based CSI prediction (baseline #2), where
i. [bookmark: _Toc166077710]11% and 31% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii. [bookmark: _Toc166077711]17% and 66% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively. 
i. [bookmark: _Toc166077712]Rel-16 Type II with nearest historical CSI (baseline #1) outperforms Rel-18 Type II non-AI/ML based CSI prediction (baseline #2)
[bookmark: _Toc166077713]From the perspective of basic performance gain over non-AI/ML benchmark, under the assumption of the same UE speed of 60km/h for training and inference, observation window of 5/5ms, and prediction window of 4/5ms/5ms, and non-ideal CSI channel estimation:
j. [bookmark: _Toc166077714]AI/ML based CSI prediction outperforms the benchmark of the Rel-16 Type II with nearest historical CSI (baseline #1), where
i. [bookmark: _Toc166077715]5% and 21%gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii. [bookmark: _Toc166077716]4% and 26% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.  
k. [bookmark: _Toc166077717]AI/ML based CSI prediction outperforms the benchmark of Rel-18 Type II non-AI/ML based CSI prediction (baseline #2), where
i. [bookmark: _Toc166077718]13% and 32% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii. [bookmark: _Toc166077719]19% and 56% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively. 
l. [bookmark: _Toc166077720]Rel-16 Type II with nearest historical CSI (baseline #1) outperforms Rel-18 Type II non-AI/ML based CSI prediction (baseline #2)
With practical channel estimation, it can be observed that in most of the considered cases above, the Rel-18 Type II non-AI/ML based CSI prediction (baseline #2) perform even worse than the Rel-16 Type II with nearest historical CSI (baseline #1), hence, we propose the following:
[bookmark: _Toc166224458]For performance evaluation of the AI CSI prediction use case, the AI based solution shall be compared with both Rel-16 Type II with nearest historical CSI (baseline #1) and Rel-18 Type II non-AI/ML based CSI prediction (baseline #2).

2.2.2 Generalization across different UE speeds
Figure 8 shows intermediate KPIs (in terms of NMSE and SGCS) for model inference using 30 km/h channel data for Dense Urban scenario. Among the three AI prediction curves, the AI model trained with dataset that matches with the inference data characteristics (AI trained at 30km/h) performs the best. The AI model trained with mixed dataset (AI trained at 30&60 km/h) performs very close to the best AI model (AI trained at 30km/h), and it also provides good performance gain comparing with two baseline schemes. For the case when the AI model is trained using data with mismatched speed than the speed used for inference (i.e., AI trained at 60km/h), there is a performance drop visible in the SGCS. The NMSE and SGCS values for generating Figure 8 are summarized in Table 12. 
In terms of prediction length, generally, the prediction gets harder with increased prediction length. This trend is reflected in the KPIs showing increased NMSE and decreased SGCS. An exception is the “nearest historical” value, a plain sample-and-hold prediction, that shows lower NMSE values for certain prediction times, corresponding to the channel correlation time. Furthermore, the SGCS of non-AI based prediction drops to similar value as sample-and-hold prediction after 4 predicted slots/instances, that corresponds to 20ms after the last measurement.
[image: ] [image: ]
[bookmark: _Ref159096415]Figure 8 Intermediate KPIs (mean NMSE and mean SGCS) for observation window of 5/5ms and prediction window of 4/5ms/5ms. Inference with 30 km/h channel data.
Figure 9 shows intermediate KPIs (in terms of mean NMSE and mean SGCS) for model inference using 60 km/h channel data for Dense Urban scenario. The corresponding NMSE and SGCS values are summarized in Table 13.
Similarly to the observation made from Figure 8, among the three AI prediction curves, the AI model trained with dataset that matches with the inference data characteristics (AI trained at 60km/h) performs the best. The AI model trained with mixed dataset (AI trained at 30&60 km/h) performs very close to the best AI model (AI trained at 60km/h), and it also provide good performance gain comparing with two baseline schemes. The AI model trained on only 30 km/h fails to predict CSI and performs worse than the non-AI based prediction.
Compared with Figure 8 (CSI prediction at 30km/h), Figure 9 shows that the intermediate KPI performance of all the considered five schemes has dropped when CSI prediction is applied at 60km/h. This implies that in general it is more difficult to predict for higher speed scenario when using the same CSI-RS measurement configuration. We also observed that the loss is very high when applying the 30 km/h-trained AI model to a higher speed of 60 km/h, comparing with applying the 60km/h-trained AI model to a lower speed of 30km/h.
For non-AI based prediction, its SGCS performance becomes even worse than the sample-and-hold scheme (shown as “nearest historical” in Figure 9) from the 3rd and 4th predicted slots.
[image: ][image: ]
[bookmark: _Ref159098140]Figure 9 Intermediate KPIs (mean NMSE and mean SGCS) for observation window of 5/5ms and prediction window of 4/5ms/5ms. Inference with 60 km/h channel data.
Figure 10 and Figure 11 with accompanying Table 4 and Table 5 show the corresponding system performance in terms of the DL mean UPT and 5%-UPT when AI model training and inference are done at different UE speeds, with prediction window of 4/5ms/5ms. The AI model is at first trained on either a 30 km/h, 60 km/h, or a mix of 30 and 60 km/h UE speeds in the Dense Urban scenario, and then, for Figure 10, evaluated at a UE speed of 30 km/h, and, for Figure 11, a UE speed of 60 km/h in the Dense Urban scenario. 
Similarly to what has been shown for intermediate KPI, we can observe that the AI model trained with dataset that includes the inference data characteristics performs the best. We also observe that the AI model is more robust for the case of training using 60 km/h channel data and inference at 30km/h; from Figure 10 it can be seen that even if the model is trained on a higher speed, it performs quite well when inference with low speed – even if it has been trained on only 60 km/h, depending of the angle the UE moves w.r.t. the BS, it may experience a different Doppler shift value, where the max value depends on the max UE speed. However, from Figure 11, it can be seen that training on UE speed of 30 km/h does not work with inference at UE speed of 60 km/h. As already seen in Figure 5, the non-AI prediction does not work here for .
Hence, we can draw the following observations:
[bookmark: _Toc166077721]Comparing with non-AI based prediction, AI-based prediction can improve the CSI prediction performance when the AI model is trained with matched data statistics for inference scenario, or when the AI model is trained with a mixed dataset that contains the inference data statistics. 
[bookmark: _Toc162363300][bookmark: _Toc162363540][bookmark: _Toc162363860][bookmark: _Toc162365819][bookmark: _Toc162366089][bookmark: _Toc162423622][bookmark: _Toc162436141][bookmark: _Toc162436341][bookmark: _Toc162436477][bookmark: _Toc162437183][bookmark: _Toc162363301][bookmark: _Toc162363541][bookmark: _Toc162363861][bookmark: _Toc162365820][bookmark: _Toc162366090][bookmark: _Toc162423623][bookmark: _Toc162436142][bookmark: _Toc162436342][bookmark: _Toc162436478][bookmark: _Toc162437184][bookmark: _Toc162363302][bookmark: _Toc162363542][bookmark: _Toc162363862][bookmark: _Toc162365821][bookmark: _Toc162366091][bookmark: _Toc162423624][bookmark: _Toc162436143][bookmark: _Toc162436343][bookmark: _Toc162436479][bookmark: _Toc162437185][bookmark: _Toc166077722]It is more robust to train an AI model using a dataset for higher UE speed with inference at a scenario with lower UE speed, than to train an AI model using a dataset for lower UE speed and inference at a scenario with higher UE speed. 
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[bookmark: _Ref162261491]Figure 10	Mean throughput and 5-th percentile throughput for observation window of 5/5ms and prediction window of 4/5ms/5ms with 30 km/h UE velocity. 
[bookmark: _Ref162365940]Table 4	Throughput gain of AI-based prediction over baseline#1 (nearest historical) and baseline#2 (non-AI prediction) at 20% and 50% resource utilization, at 30km/h, with observation window of 5/5ms and prediction window of 4/5ms/5ms.
	
	20%
	50%

	
	Mean
	5th percentile
	Mean
	5th percentile

	
	#1
	#2
	#1
	#2
	#1
	#2
	#1
	#2

	AI, Trained with 30 & 60 km/h
	7%
	13%
	13%
	21%
	30%
	36%
	72%
	70%

	AI, Trained with 30 km/h
	7%
	13%
	14%
	23%
	29%
	35%
	77%
	73%

	AI, Trained with 60 km/h
	7%
	12%
	16%
	27%
	26%
	32%
	61%
	59%
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[bookmark: _Ref158978169]Figure 11	Mean throughput and 5-th percentile throughput for observation window of 5/5ms and prediction window of 4/5ms/5ms with 60km/h UE velocity. 
[bookmark: _Ref158978151]Table 5	Throughput gain of AI-based prediction over baseline#1 (nearest historical) and baseline#2 (non-AI prediction) at 20% and 50% resource utilization, at 60 km/h with observation window of 5/5ms and prediction window of 4/5ms/5ms.
	
	20%
	50%

	
	Mean
	5th percentile
	Mean
	5th percentile

	
	#1
	#2
	#1
	#2
	#1
	#2
	#1
	#2

	AI, Trained with 30 & 60 km/h
	5%
	12%
	0%
	16%
	18%
	30%
	22%
	51%

	AI, Trained with 30 km/h
	-14%
	-7%
	-31%
	-19%
	-45%
	-31%
	-57%
	-37%

	AI, Trained with 60 km/h
	5%
	13%
	4%
	15%
	21%
	32%
	26%
	56%



2.2.3 Generalization across different deployment scenarios
In this section, we show the intermediate KPI and system-level evaluation results to verify the generalization performance of the AI based CSI prediction model over different deployment scenarios. 
Figure 12 and Figure 13 show the intermediate KPI performance and system performance, respectively, when operating an AI model trained for the Dense Urban scenario in the UMi scenario. The performance of the AI model trained using the Dense Urban dataset is compared with another AI model that is trained using the UMi dataset (which matches with the inference data statistics). We see from both Figure 12 and Figure 13 that when operating in the UMi scenario, the AI model trained using the Dense Urban dataset has similar intermediate KPI and system performance when comparing to the AI model trained using the matched dataset, and both AI models achieve large performance gain when comparing to the two non-AI based baseline schemes.
The corresponding intermediate KPI results and system performance results are summarized in Table 14 and Table 6, respectively.
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[bookmark: _Ref162546822]Figure 12 Intermediate KPIs (mean NMSE and mean SGCS) for observation window of 5/5ms and prediction window of 4/5ms/5ms. Inference with 30 km/h channel data for UMi scenario.
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[bookmark: _Ref162262455]Figure 13	Mean throughput and 5-th percentile throughput for observation window of 5/5ms and prediction window of 4/5ms/5ms with 30 km/h UE velocity in UMi scenario. 
[bookmark: _Ref162365898]Table 6	Throughput gain of AI-based prediction over baseline#1 (nearest historical) and baseline#2 (non-AI prediction) at 20% and 50% resource utilization, at 60 km/h with observation window of 5/5ms and prediction window of 4/5ms/5ms in UMi scenario.
	
	20%
	50%

	
	Mean
	5th percentile
	Mean
	5th percentile

	
	#1
	#2
	#1
	#2
	#1
	#2
	#1
	#2

	AI, Trained with 30 km/h and Dense urban
	19%
	16%
	43%
	35%
	56%
	45%
	133%
	98%

	AI, Trained with 30 km/h and UMi
	19%
	15%
	37%
	29%
	52%
	41%
	120%
	84%



Figure 14 and Figure 15 show the intermediate KPI performance and system performance, respectively, when operating an AI model trained for the Dense Urban scenario in the UMa scenario. The performance of the AI model trained using the Dense Urban dataset is compared with another AI model that is trained using the UMa dataset (which matches with the inference data statistics). Similarly, we see from both Figure 14 and Figure 15 that when operating in the UMa scenario, the AI model trained using the Dense Urban dataset has similar intermediate KPI and system performance when comparing to the AI model trained using the matched dataset, and both AI models achieve large performance gain when comparing to the two non-AI based baseline schemes.
The corresponding intermediate KPI results are summarized in Table 15 and Table 7, respectively.
[bookmark: _Toc166077723]An AI-based CSI prediction model trained using dataset for Dense Urban scenario generalize well when used for inference in UMi or UMa scenarios. 
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[bookmark: _Ref162546824]Figure 14 Intermediate KPIs (mean NMSE and mean SGCS) for observation window of 5/5ms and prediction window of 4/5ms/5ms. Inference with 30 km/h channel data UMa scenario.
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[bookmark: _Ref162262457]Figure 15	Mean throughput and 5-th percentile throughput for observation window of 5/5ms and prediction window of 4/5ms/5ms with 30 km/h UE velocity in UMa scenario. 
[bookmark: _Ref162365900]Table 7	Throughput gain of AI-based prediction over baseline#1 (nearest historical) and baseline#2 (non-AI prediction) at 20% and 50% resource utilization, at 30 km/h with observation window of 5/5ms and prediction window of 4/5ms/5ms in UMa scenario.
	
	20%
	50%

	
	Mean
	5th percentile
	Mean
	5th percentile

	
	#1
	#2
	#1
	#2
	#1
	#2
	#1
	#2

	AI, Trained with 30 km/h and Dense urban
	11%
	14%
	31%
	27%
	33%
	36%
	74%
	80%

	AI, Trained with 30 km/h and UMa
	10%
	13%
	28%
	24%
	27%
	30%
	76%
	81%


2.2.4 Results with 20 ms CSI-RS periodicity
Figure 16 shows intermediate KPI when using a longer CSI-RS periodicity of 20 ms, as well as a longer reporting periodicity of *20 ms for all the three considered schemes. Intermediate KPI values are summarized in Table 16. Figure 17 and Figure 18 show the SLS simulation results for the case of  and , respectively. The corresponding SLS results are summarized in Table 8. The UE speed is 3km/h for all cases.
We see here that for the considered UE speed of 3km/h, the Rel-16 Type II with nearest historical CSI scheme works decently well if the number of prediction time instance is configured to (the corresponding SGCS is around 0.81 as shown in Figure 16 and it achieves the best UPT performance as shown in Figure 17). Hence, there is no need of using CSI prediction schemes for such scenario. 
When , we see from Figure 16 that the SGCS value drops significantly over prediction time instances for the Rel-16 Type II with nearest historical CSI scheme, while the AI based solution has a more stable SGCS performance across different future time instances. From system performance perspective, as shown in Figure 18, the AI based scheme achieves similar performance as for the Rel-16 Type II with nearest historical CSI scheme, with Rel-18 type II non-AI based CSI prediction scheme perform the worst. 
[bookmark: _Toc166077724]Having CSI-RS periodicity of 20 ms makes CSI prediction hard, with both AI and non-AI models underperforming compared to Rel-16 baseline in terms of system KPI for the considered configuration: observation window of 5/20ms, prediction window of 1/20ms/20ms, UE speed of 3km/h. When the number of prediction time instances increases (prediction window increases), the AI and Rel-16 baseline achieve the similar level of system performance.
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[bookmark: _Ref162257695]Figure 16 Intermediate KPIs (mean NMSE and mean SGCS) for observation window of 5/20ms and prediction window of 4/20ms/20ms. Inference with 3 km/h channel data.
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[bookmark: _Ref162261032]Figure 17	Mean throughput and 5-th percentile throughput for observation window of 5/20ms and prediction window of 1/20ms/20ms with 3 km/h UE velocity. 
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[bookmark: _Ref162261034]Figure 18	Mean throughput and 5-th percentile throughput for observation window of 5/20ms and prediction window of 4/20ms/20ms with 3 km/h UE velocity. 
[bookmark: _Ref162366022]Table 8	Throughput gain of AI-based prediction over baseline#1 (nearest historical) and baseline#2 (non-AI prediction) with  at 20% and 50% resource utilization, at 3 km/h with observation window of 5/20ms and prediction window of 1/20ms/20ms or 4/20ms/20ms.
	
	RU=20%
	RU=50%

	
	Mean UPT
	5th percentile UPT
	Mean UPT
	5th percentile UPT

	
	#1
	#2
	#1
	#2
	#1
	#2
	#1
	#2

	
	AI, Trained with 3 km/h
	-7%
	10%
	-8%
	23%
	-18%
	19%
	-26%
	31%

	
	AI, Trained with 3 km/h
	1%
	14%
	6%
	19%
	6%
	30%
	17%
	56%



In general, we observe that it is challenging for both the AI and non-AI based prediction algorithms to perform well with the long CSI-RS periodicity of 20ms. Hence, some enhancements may need to be considered to improve CSI prediction performance at longer CSI-RS periodicities such as (e.g., 20ms) to make this feature useful to the network operators. One such possibility is to consider the combined use of periodic CSI-RS (i.e., with longer periodicities such as 20 ms) and aperiodic CSI-RS as channel measurement resources to improve CSI prediction performance at longer CSI-RS periodicities.  
[bookmark: _Toc166224459]For the CSI prediction use case with practical CSI-RS periodicities (e.g., 20 ms), study channel measurements on combined periodic and aperiodic CSI-RS resources to improve CSI prediction performance.
2.2.5 Results for localized models
In RAN1#116bis, it was agreed to evaluate CSI prediction comparing a localized, site-specific, model, to a generalized model:
Agreement
· For the results template used to collect evaluation results for UE-sided model based CSI prediction using localized models, adopt Table 6 used in Rel-18 as starting point, capturing the generalized model result and the localized model result as separate columns, with the following additions for the localized model:
· Dataset description
· Local region modelling: e.g., Option 1 or Option 2, and further details
· Temporal modelling: e.g., how temporal variation is modelled in train and test sets
· Dataset description for generalized model

For training and inference of the AI model trained with site-specific dataset, the data was collected with the parameters given in Table 10 in Appendix, unless otherwise stated. For data collection, 350 UEs are dropped uniformly in a site with each UE simulated for 1000 slots. Each channel sample is generated with realistic channel estimate, meaning that CSI-RS resources are actually configured, transmitted and decoded. Subsequently, channels from 300 UE tracks are used for creating the training data set and channels from 50 UE tracks are used for the testing data set. When generating the data, the seed for generating location-related channel parameters is fixed for each site, which effectively makes the collected data site-specific. Note that during SLS, the UE are dropped randomly in the site from where the training data was collected. 
Figure 19 shows intermediate KPI for AI trained with localized, as well as general data, in addition to the two baselines, with  and 30 km/h speed. Evaluated with SGCS, the localized model shows some gain compared to the general model, while there is almost no difference in NMSE.
Figure 20 with accompanying Table 9 show the system level performance for the same models. For most of the compared numbers in Table 9, there is only a minor gain for the localized model, compared to having a model trained on general data. The exception is 5th percentile throughput for 50% resource utilization, where the localized model show gains with 11 percentage points, while the mean throughput is improved by 5 percentage points or less. Shown in the simulations are results for a specific localized model realization. Simulations have been performed with other model realizations, with similar results.
Observation 2 [bookmark: _Toc166077725]A localized model gives in most cases only minor gain compared to a model trained on general data.

[bookmark: _Toc165982991]
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[bookmark: _Ref165905471]Figure 19 Intermediate KPIs (mean NMSE and mean SGCS) for observation window of 5/5ms and prediction window of 4/5ms/5ms comparing AI model trained with general dataset and localized, site-specific, dataset. Inference with 30 km/h channel data.
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[bookmark: _Ref165905770]Figure 20	Mean throughput and 5-th percentile throughput for observation window of 5/5ms and prediction window of 4/5ms/5ms with 30 km/h UE velocity, comparing AI model trained with general dataset and localized, site-specific, dataset. 
[bookmark: _Ref165906211][bookmark: _Ref165905804]Table 9	Throughput gain of AI-based prediction over baseline#1 (nearest historical) and baseline#2 (non-AI prediction) at 20% and 50% resource utilization, at 30km/h, with observation window of 5/5ms and prediction window of 4/5ms/5ms, comparing AI model trained with general dataset and localized, site-specific, dataset.
	
	20%
	50%

	
	Mean
	5th percentile
	Mean
	5th percentile

	
	#1
	#2
	#1
	#2
	#1
	#2
	#1
	#2

	AI, Trained with localized dataset 
	8%
	6%
	21%
	18%
	15%
	12%
	26%
	15%

	AI, Trained with general dataset
	7%
	5%
	17%
	15%
	11%
	7%
	15%
	4%



2.3 Complexity analysis
For each CSI report generation, for the non-AI AR-based CSI prediction approach, the computations are counted including two parts:
· Part 1: calculating the AR coefficients (AR model parameter derivation).
· Part 2: applying the AR coefficients to generate configured number of predictions (AR model inference).
While for the AI based CSI prediction, there is no need to update AI model parameters every time when generating a CSI report, and the computational complexity only includes the part 2. 
[bookmark: _Toc166077726]For generating a CSI report, the computational complexity of the considered non-AI AR-based CSI prediction scheme consist of two parts, the complexity for calculating the AR model coefficients (AR-model parameter derivation) and the complexity of applying the AR model with the calculated coefficients to generate predicted CSIs (AR-model inference).
For non-AI AR-based CSI prediction approach, assuming  measurements are used for calculating the AR model of order , and further assuming that  predictions are generated, then an estimation of the number of FLOPs (floating point operations) is given by . In our simulations, since  is always , the number of FLOPs can be simplified to , which is a quadratic function with respect to the number of measurements, 
For 4 Rx antennas, 32 Tx antennas, and 52 PRBs, the number of FLOPs required for the considered non-AI AR-based CSI prediction approach is about: 
· 5.6 million for , 
· 22.2 million for 

For AI-based CSI prediction, our AI model architecture is agnostic to the value of K, hence, for both cases of {, , and {, , the number of FLOPs is around 17.59 million, where the number of FLOPs is mainly dominated by the operation of transformer encoder block of the AI model. Further, the number of parameters is equal to 0.0041 million. The complexity of AI model is obtained with inbuilt functions in Google’s JAX framework. Note that compared to the previous AI models used for generating simulation results presented in our last paper [4], the model size and the computational complexity is further reduced. This is achieved by introducing a liner layer for the dimension reduction in the delay domain and a new set of model structure parameter values as shown in Figure 2 and Table 1.
[bookmark: _Toc166077727]Our AI model has a similar level of computational complexity in units of FLOPs per CSI report generation as compared to the considered non-AI AR-based CSI prediction benchmark. 
3 Specification aspects
For UE-sided CSI prediction use case, the following potential specification aspects were discussed in the Rel-18 SI and captured in the TR:
	In CSI prediction using UE-sided model use case:
Data collection:
In CSI prediction using UE sided model use case, at least the following aspects have been proposed by companies on data collection, including:
-	Signalling and procedures for the data collection 
-	Data collection indicated by NW 
-	Requested from UE for data collection 
-	CSI-RS configuration 
-	Assistance information for categorizing the data, if needed
-	The provision of assistance information needs to consider feasibility of disclosing proprietary information to the other side.
Performance monitoring: 
For CSI prediction using UE side model use case, at least the following aspects have been proposed by companies on performance monitoring for functionality-based LCM:
-	Type 1:
-	UE calculates the performance metric(s)
-	UE reports performance monitoring output that facilitates functionality fallback decision at the network
-	Performance monitoring output details can be further defined 
-	NW may configure threshold criterion to facilitate UE side performance monitoring (if needed). 
-	NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
-	Type 2: 
-	UE reports predicted CSI and/or the corresponding ground-truth  
-	NW calculates the performance metrics. 
-	NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
-	Type 3: 
-	UE calculates the performance metric(s) 
-	UE reports performance metric(s) to the NW
-	NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 
-	Functionality selection/activation/deactivation/switching as defined for other UE side use cases can be reused, if applicable. 
-	Configuration and procedure for performance monitoring 
-	CSI-RS configuration for performance monitoring
-	Performance metric including at least intermediate KPI (e.g., NMSE or SGCS)
-	UE report, including periodic/semi-persistent/aperiodic reporting, and event driven report
-	Note: down selection is not precluded.
-	Note: UE may make decision within the same functionality on model selection, activation, deactivation, switching operation transparent to the NW.




Below we discuss the details including possible down selection of the proposed solutions. However, we think that the continued study of this use case shall focus on addressing the performance gain vs. complexity issue first, before going into discussing these specification impact details.
3.1 Data Collection
In Rel-18 MIMO agenda item, extension of Type II CSI to support CSI prediction has been specified. To enable CSI prediction, channel measurements for sufficient number of time instances are required for extracting the time domain channel property, based on which a future CSI can be predicted. To obtain such measurements, gNB can either configure a legacy periodic (P) or semi-persistent (SP) CSI-RS resource, or an aperiodic (AP) CSI-RS burst according to Rel-18. 
It is worth mentioning that the CSI-RS burst specified in Rel-18 MIMO agenda item is a single CSI-RS resource set that contains  AP CSI-RS resources, separated by  slots in time. It is further specified that the  CSI-RS resources are triggered by the same triggering DCI, and that antenna ports with the same port index of the  AP CSI-RS resources are the same. 
For AI/ML-based CSI prediction, similar configuration for measurement is also needed. However, AI/ML-based CSI prediction may require measurements with different time domain behaviors for data collection for different LCM stages, hence completely reusing the Rel-18 CSI-RS resource configuration may not be efficient. 
Signaling procedures shall be designed to support collecting channel measurements for both observation window and prediction window for the UE-side to train an AI/ML. 
Legacy configurations may not be sufficient since there is no indication of the association between CSI-RS resources used for measurements in an observation window and CSI-RS resource(s) used for ground-truth labels in a prediction window, and this association is needed for the UE to create one training data sample. 
In addition, legacy CSI prediction only uses “inference”- like operation, but for AI/ML, there is also data collection and monitoring, which is a bit different as it may require more data to be collected by the UE. Hence reusing the legacy CSI-RS resource configuration may result in either high triggering overhead (e.g., AP triggering of multiple CSI-RS resource bursts) or waste of resources (e.g., some CSI-RS are transmitted but will not be measured or used for creating training data samples). Thus, for the CSI prediction use case, signaling procedure and enhancement of CSI-RS resource configuration are needed for model training data collection. In the following, this will be further explained in detail. 
3.1.1 CSI-RS resource for model training
For model training of an AL/ML model for CSI prediction, the training data should consist of not only the channel measurements within the observation window, but also the ground truth measurements in the prediction window, which are needed for designing the loss function and for calculating the loss during model training. 
The channel measurements within the observation window could be obtained by configuring the UE to measure a number of CSI-RS resources spread in time. One example is to configure the CSI-RS burst specified in Rel-18. However, the supported CSI-RS burst in Rel-18 can only be aperiodically triggered, which is not efficient from signaling point of view where a large number of measurements are potentially needed. Also, the corresponding parameters, such as number of instances in a burst and separation between adjacent measurements, may need further optimization for data collection purpose. In existing simulation results, this has not been properly studied yet. The legacy P or SP CSI-RS resource may also not be optimal for training data collection, as they may introduce unnecessary resource and/or signaling overhead.
The ground truth measurements within the prediction window depend on the occasion(s) where the predicted CSI is valid for, which is yet to be discussed in 3GPP. For example, the predicted CSI might be valid for a single time instance, a number of uniformly spaced time instances (as seen in Figure 21), or a number of non-uniformly spaced time instances. The CSI-RS resources need to be configured accordingly, so that there are measurement resources configured for those time instances. 
Moreover, CSI-RS resources used for measurements in an observation window and for ground-truth labels in a prediction window shall be associated. For example, in Figure 21, each CSI-RS resources within an observation window is associated with a CSI-RS resource(s) in an prediction window via the same training data sample #n, for n = 1, …, N.
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[bookmark: _Ref146714801]Figure 21. An illustration of training data to be collected for CSI prediction use case, where N training data samples can be collected over a certain training data collection time period, with each training data sample consists of measurements within the observation window and ground truth measurements in the prediction window.
[bookmark: _Toc166077728]For UE-sided CSI prediction use case, at least for data collection for model training, CSI-RS configuration needs to be enhanced to indicate the association between CSI-RS resources used for measurements in an observation window and CSI-RS resource(s) used for ground-truth labels in a prediction window, and to maintain a reasonable signalling and resource overhead. 
[bookmark: _Toc166224460]For the CSI prediction use case, at least for training data collection, study potential specification impacts on CSI-RS configuration, including at least following aspects:
· [bookmark: _Toc166224461]Indication of the association between CSI-RS resources used for measurements in an observation window and CSI-RS resource(s) used for ground-truth labels in a prediction window.
3.1.2 CSI-RS resource for model monitoring
For model monitoring of an AI/ML model for CSI prediction, the collected data should also consist of both the channel measurements within the observation window that are used for generating the prediction, and the ground truth measurements within the prediction window for deriving the inference accuracy related metrics like prediction accuracy for model performance monitoring. Depending on how frequently model monitoring has to be performed and which performance metric is used for performance monitoring, either legacy CSI-RS resource configuration or the enhanced CSI-RS resource configuration for model training can be reused for model monitoring. 
For the case of intermediate KPI based performance monitoring using multiple monitoring data samples, each monitoring data sample can consist of {channel measurements in an observation window, channel measurements in the associated prediction window (ground-truth labels)}, and the data collection mechanisms including CSI-RS configuration designed for training data collection can be reused for monitoring data collection.
[bookmark: _Toc166077729]The data collection mechanisms designed for training data collection can be reused for intermediate KPI based performance monitoring. 
Proposal 1 [bookmark: _Toc166224462]For the CSI prediction use case, at least for monitoring data collection, study potential specification impacts on CSI-RS configuration, including at least following aspects:
· [bookmark: _Toc166224463]Indication of the association between CSI-RS resources used for measurements in an observation window and CSI-RS resource(s) used for ground-truth labels in a prediction window.

3.1.3 CSI-RS resource for model inference
In RAN1#116bis, the following agreement was made
	Agreement
· For AI/ML based CSI prediction, at least for inference, legacy CSI-RS configuration can be a starting point. Further study on whether there is a need for specification enhancement. 
Agreement
· At least for inference, for UE-sided model based CSI prediction, legacy feedback mechanism using codebook type set to “typeII-Doppler-r18” is a starting point of discussion. Study the necessity and potential specification impacts including at least following aspects:
· CSI processing criteria and timeline



For model inference of an AI/ML model for CSI prediction, only the channel measurements within an observation window are needed whenever a predicted CSI is requested. Hence, it is possible to fully reuse the legacy CSI-RS configurations to a large extend.
From our simulation results shown in Section 2.2.4, it is observed that for practically deployed CSI-RS periodicities (e.g., 20 ms), CSI prediction does not work well. As described before, one possible solution to improve CSI prediction performance at longer CSI-RS periodicities is to consider the combined use of periodic CSI-RS (i.e., with longer periodicities such as 20 ms) and aperiodic CSI-RS as channel measurement resources. Hence, some specification enhancements may need to be considered to support this.
[bookmark: _Toc166077730]For model inference, CSI-RS configuration may need to be enhanced to support channel measurements on combined periodic and aperiodic CSI-RS resources to improve CSI prediction performance with long CSI-RS periodicity. 
[bookmark: _Toc166224464]At least for inference, for UE-sided model based CSI prediction, legacy CSI-RS configuration is a starting point of discussion. Study the necessity and potential specification impacts including at least following aspects:
· [bookmark: _Toc166224465]CSI-RS configuration to improve prediction performance with long CSI-RS periodicity (e.g., 20 ms)
3.2 Performance monitoring
In our view, the UE-side shall take the main responsibility for UE-sided performance monitoring. The reason is that the UE has full control of its deployed UE-sided model(s), and it has access to the model output (predicted CSI) and the associated ground truth labels (measurements for CSI-RS resources in the prediction window) if CSI-RS measurement resources are configured by the gNB, etc., which can be directly used by the UE to calculate the CSI prediction performance monitoring metric(s) and derive a monitoring output. 
For Type 1 based performance monitoring solution, the UE calculates performance metric, and then reports performance monitoring output to NW based on the calculated performance metric. While for Type 3 based performance monitoring solution, the UE calculates performance metric and directly reports the calculated performance metric to the NW. 
In order to facilitate discussions and align views, definition of performance metric and performance monitoring output shall be clarified. 
In our view, performance metric is related to intermediate KPI, which is calculated based on either one or multiple monitoring data sample(s), where each data sample is used to calculate the performance metric for  prediction instances within a CSI report. 
As for monitoring output, it could be information reported by the UE to the NW, indicating, for example, whether a model is functioning well or not. It could be an event- or flag-based report. The performance monitoring output is derived based on the calculated performance metric.
Hence, the difference between type 1 and type 3 is that whether UE reports performance metric (e.g., SGCS related statistics) or performance monitoring output (e.g., a flag indicating whether a model is functioning) to the NW.
For both Type 1 and Type 3 based solutions, the performance of UE reported performance monitoring related information shall be testable in RAN4, and the feasibility of testing the performance monitoring metric(s)/output shall be confirmed by RAN4.
[bookmark: _Toc166077731]The difference between type 1 and type 3 is that whether UE reports performance metric (e.g., SGCS related statistics) or performance monitoring output (e.g., a flag indicating whether a model is functioning) to the NW.
For Type 2, the input for calculating the prediction performance metrics is reported to the NW. This may introduce large reporting overhead, as most likely the NW needs to accumulate a sufficient number of monitoring data samples from UE in order to make a reliable monitoring decision. In addition, NW has to monitor the performance for all served UEs, which adds significant complexity to the NW side. 
[bookmark: _Toc149938934][bookmark: _Toc166224466]For performance monitoring for CSI prediction use case with UE side model, deprioritize Type 2.
Conclusion
In the previous sections we made the following observations: 
Observation 1	The CSI-RS channel estimation error modeling, if considered, can follow a similar approach as for SRS estimation error modelling described in Table A. 1-2 in TR 36.897.
Observation 2	From the perspective of basic performance gain over non-AI/ML benchmark, under the assumption of the same UE speed of 30km/h for training and inference, observation window of 5/5ms, and prediction window of 1/5ms/5ms, and non-ideal CSI channel estimation:
a.	AI/ML based CSI prediction outperforms the benchmark of the Rel-16 Type II with nearest historical CSI (baseline #1), where
i.	9% and 37% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii.	27% and 100% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.
b.	AI/ML based CSI prediction outperforms the benchmark of Rel-18 Type II non-AI/ML based CSI prediction (baseline #2), where
i.	9% and 24% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii.	18% and 46% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.
c.	Rel-18 Type II non-AI/ML based CSI prediction (baseline #2) outperforms Rel-16 Type II with nearest historical CSI (baseline #1)
Observation 3	From the perspective of basic performance gain over non-AI/ML benchmark, under the assumption of the same UE speed of 30km/h for training and inference, observation window of 5/5ms, and prediction window of 4/5ms/5ms, and non-ideal CSI channel estimation:
a.	AI/ML based CSI prediction outperforms the benchmark of the Rel-16 Type II with nearest historical CSI (baseline #1), where
i.	7% and 29% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii.	14% and 77% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.
b.	AI/ML based CSI prediction outperforms the benchmark of Rel-18 Type II non-AI/ML based CSI prediction (baseline #2), where
i.	13% and 35% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii.	23% and 73% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.
c.	Rel-16 Type II with nearest historical CSI (baseline #1) outperforms Rel-18 Type II non-AI/ML based CSI prediction (baseline #2)
Observation 4	From the perspective of basic performance gain over non-AI/ML benchmark, under the assumption of the same UE speed of 60km/h for training and inference, observation window of 5/5ms, and prediction window of 1/5ms/5ms, and non-ideal CSI channel estimation:
a.	AI/ML based CSI prediction outperforms the benchmark of the Rel-16 Type II with nearest historical CSI (baseline #1), where
i.	5% and 21% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii.	9% and 45% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.
b.	AI/ML based CSI prediction outperforms the benchmark of Rel-18 Type II non-AI/ML based CSI prediction (baseline #2), where
i.	11% and 31% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii.	17% and 66% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.
c.	Rel-16 Type II with nearest historical CSI (baseline #1) outperforms Rel-18 Type II non-AI/ML based CSI prediction (baseline #2)
Observation 5	From the perspective of basic performance gain over non-AI/ML benchmark, under the assumption of the same UE speed of 60km/h for training and inference, observation window of 5/5ms, and prediction window of 4/5ms/5ms, and non-ideal CSI channel estimation:
a.	AI/ML based CSI prediction outperforms the benchmark of the Rel-16 Type II with nearest historical CSI (baseline #1), where
i.	5% and 21%gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii.	4% and 26% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.
b.	AI/ML based CSI prediction outperforms the benchmark of Rel-18 Type II non-AI/ML based CSI prediction (baseline #2), where
i.	13% and 32% gains in terms of mean-UPT are observed at RU of 20% and 50%, respectively.
ii.	19% and 56% gains in terms of 5%-UPT are observed at RU of 20% and 50%, respectively.
c.	Rel-16 Type II with nearest historical CSI (baseline #1) outperforms Rel-18 Type II non-AI/ML based CSI prediction (baseline #2)
Observation 6	Comparing with non-AI based prediction, AI-based prediction can improve the CSI prediction performance when the AI model is trained with matched data statistics for inference scenario, or when the AI model is trained with a mixed dataset that contains the inference data statistics.
Observation 7	It is more robust to train an AI model using a dataset for higher UE speed with inference at a scenario with lower UE speed, than to train an AI model using a dataset for lower UE speed and inference at a scenario with higher UE speed.
Observation 8	An AI-based CSI prediction model trained using dataset for Dense Urban scenario generalize well when used for inference in UMi or UMa scenarios.
Observation 9	Having CSI-RS periodicity of 20 ms makes CSI prediction hard, with both AI and non-AI models underperforming compared to Rel-16 baseline in terms of system KPI for the considered configuration: observation window of 5/20ms, prediction window of 1/20ms/20s, UE speed of 3km/h. When the number of prediction time instances increases (prediction window increases), the AI and Rel-16 baseline achieve the similar level of system performance.
Observation 10	A localized model gives in most cases only minor gain compared to a model trained on general data.
Observation 11	For generating a CSI report, the computational complexity of the considered non-AI AR-based CSI prediction scheme consist of two parts, the complexity for calculating the AR model coefficients (AR-model parameter derivation) and the complexity of applying the AR model with the calculated coefficients to generate predicted CSIs (AR-model inference).
Observation 12	Our AI model has a similar level of computational complexity in units of FLOPs per CSI report generation as compared to the considered non-AI AR-based CSI prediction benchmark.
Observation 13	For UE-sided CSI prediction use case, at least for data collection for model training, CSI-RS configuration needs to be enhanced to indicate the association between CSI-RS resources used for measurements in an observation window and CSI-RS resource(s) used for ground-truth labels in a prediction window, and to maintain a reasonable signalling and resource overhead.
Observation 14	The data collection mechanisms designed for training data collection can be reused for intermediate KPI based performance monitoring.
Observation 15	For model inference, CSI-RS configuration may need to be enhanced to support channel measurements on combined periodic and aperiodic CSI-RS resources to improve CSI prediction performance with long CSI-RS periodicity.
Observation 16	The difference between type 1 and type 3 is that whether UE directly reports performance metric (e.g., SGCS related statistics) or performance monitoring output (e.g., a flag indicating whether a model is functioning) to the NW.

Based on the discussion in the previous sections we propose the following:
Proposal 1	To study impact of channel estimation errors on AI and non-AI CSI prediction, simulations should either include non-ideal/practical CSI-RS channel estimation, or use a model of channel estimation error with the error modeling assumptions presented together with the SLS results.
Proposal 2	For performance evaluation of the AI CSI prediction use case, the AI based solution shall be compared with both Rel-16 Type II with nearest historical CSI (baseline #1) and Rel-18 Type II non-AI/ML based CSI prediction (baseline #2).
Proposal 3	For the CSI prediction use case with practical CSI-RS periodicities (e.g., 20 ms), study channel measurements on combined periodic and aperiodic CSI-RS resources to improve CSI prediction performance.
Proposal 4	For the CSI prediction use case, at least for training data collection, study potential specification impacts on CSI-RS configuration, including at least following aspects:
	Indication of the association between CSI-RS resources used for measurements in an observation window and CSI-RS resource(s) used for ground-truth labels in a prediction window.
Proposal 5	For the CSI prediction use case, at least for monitoring data collection, study potential specification impacts on CSI-RS configuration, including at least following aspects:
	Indication of the association between CSI-RS resources used for measurements in an observation window and CSI-RS resource(s) used for ground-truth labels in a prediction window.
Proposal 6	At least for inference, for UE-sided model based CSI prediction, legacy CSI-RS configuration is a starting point of discussion. Study the necessity and potential specification impacts including at least following aspects:
	CSI-RS configuration to improve prediction performance with long CSI-RS periodicity (e.g., 20 ms)
Proposal 7	For performance monitoring for CSI prediction use case with UE side model, deprioritize Type 2.

Appendix
[bookmark: _Ref158985546]Table 10	Parameters used for data collection
	Parameter
	Value

	Waveform
	OFDM

	Scenario
	Urban dense macro

	Carrier frequency
	2 GHz

	Inter-BS distance
	200 m

	UE tracks and slots per track
	850 UEs with 150 slots each

	UE mobility
	30 km/h and 60 km/h

	Channel sampling frequency
	1 ms

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9 dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15 KHz

	Simulation bandwidth
	10 MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	UE distribution
	100% outdoor. 

	UE receiver
	MMSE-IRC as the baseline receiver

	Channel estimation         
	Realistic CSI-RS channel estimation at UE.

	Spatial consistency 
	Yes



[bookmark: _Ref158757950]Table 11	Parameters used for SLS for CSI prediction
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier frequency
	2 GHz

	Inter-BS distance
	200 m

	Layout and number of UEs
	7 sites and 200 UEs

	UE mobility
	30 km/h and 60 km/h

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25 m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9 dB

	Modulation
	Up to 256 QAM

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15 kHz

	Simulation bandwidth
	10 MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	SU-MIMO 

	MIMO rank
	1 - 2

	CSI feedback delay
	4 ms

	CSI-RS periodicity
	5 ms

	CSI report periodicity
	 (depending on Rel-18 eType II configuration)

	Traffic model
	FTP model 1 with packet size 0.5 Mbytes.

	Rel-18 eType II Parameters
	Parameter combination: 7; ; ; ; ; UL slot for reporting: 3 slots after last measurement for prediction.
5 measurements are used for channel prediction

	Rel-16 eType II Parameters (Baseline)
	Parameter combination: 6

	Traffic load (Resource utilization)
	20/50%.  

	UE distribution
	100% outdoor. 

	UE receiver
	MMSE-IRC as the baseline receiver

	Channel estimation         
	Realistic CSI-RS channel estimation at UE.

	Spatial consistency 
	Yes



[bookmark: _In-sequence_SDU_delivery][bookmark: _Ref159145597]Table 12	Intermediate KPIs for observation window of 5/5ms and prediction window of 
4/5ms/5ms. Inference with 30 km/h channel data
	Predicted slot
	1
	2
	3
	4

	KPIs
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS

	Nearest historical
	0.768
	0.528
	3.760
	0.442
	3.338
	0.372
	1.084
	0.337

	Non-AI prediction
	-4.629
	0.619
	-3.205
	0.475
	-1.983
	0.388
	-1.340
	0.336

	AI trained at 30 km/h
	-5.575
	0.650
	-4.771
	0.563
	-4.194
	0.498
	-3.725
	0.434

	AI trained at 30&60 km/h
	-5.438
	0.632
	-4.700
	0.556
	-4.161
	0.483
	-3.734
	0.423

	AI trained at 60 km/h
	-4.919
	0.576
	-4.297
	0.488
	-3.717
	0.413
	-3.439
	0.386



[bookmark: _Ref159098823]Table 13	Intermediate KPIs for observation window of 5/5ms and prediction window of 
4/5ms/5ms. Inference with 60 km/h channel data
	Predicted slot
	1
	2
	3
	4

	KPIs
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS

	Nearest historical
	3.510
	0.430
	0.831
	0.373
	3.256
	0.335
	2.225
	0.321

	Non-AI prediction
	-3.409
	0.508
	-2.256
	0.386
	-1.352
	0.324
	-0.978
	0.296

	AI trained at 30 km/h
	-1.982
	0.359
	-0.825
	0.261
	-0.727
	0.272
	-0.275
	0.238

	AI trained at 30&60 km/h
	-4.476
	0.504
	-3.862
	0.427
	-3.427
	0.347
	-3.241
	0.327

	AI trained at 60 km/h
	-4.580
	0.523
	-3.919
	0.427
	-3.571
	0.359
	-3.428
	0.344




[bookmark: _Ref162436543]Table 14 Intermediate KPIs for observation window of 5/5ms and prediction window of 
4/5ms/5ms. Inference with 30 km/h channel data in UMi scenario
	Predicted slot
	1
	2
	3
	4

	KPIs
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS

	Nearest historical
	0.937
	0.520
	4.077
	0.427
	3.475
	0.336
	0.819
	0.326

	Non-AI prediction
	-5.537
	0.608
	-3.309
	0.424
	-1.898
	0.330
	-1.282
	0.294

	AI trained at 30 km/h and Dense Urban
	-7.109
	0.678
	-5.366
	0.500
	-4.475
	0.416
	-3.958
	0.375

	AI trained at 30 km/h and UMi
	-7.347
	0.691
	-5.485
	0.505
	-4.650
	0.424
	-4.141
	0.364



[bookmark: _Ref162436545]Table 15 Intermediate KPIs for observation window of 5/5ms and prediction window of 
4/5ms/5ms. Inference with 30 km/h channel data in UMa scenario
	Predicted slot
	1
	2
	3
	4

	KPIs
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS

	Nearest historical
	1.748
	0.373
	4.448
	0.351
	3.638
	0.265
	1.464
	0.298

	Non-AI prediction
	-2.682
	0.533
	-1.407
	0.393
	-0.095
	0.292
	0.499
	0.260

	AI trained at 30 km/h and Dense Urban
	-3.334
	0.545
	-2.471
	0.407
	-1.950
	0.334
	-1.559
	0.284

	AI trained at 30 km/h and UMa
	-3.433
	0.562
	-2.506
	0.424
	-1.991
	0.345
	-1.631
	0.286



[bookmark: _Ref162436646]Table 16 Intermediate KPIs for observation window of 5/20ms and prediction window of 
4/20ms/20ms. Inference with 3 km/h channel data
	Predicted slot
	1
	2
	3
	4

	KPIs
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS

	Nearest historical
	-8.538
	0.814
	-3.084
	0.543
	-0.203
	0.349
	1.446
	0.302

	Non-AI prediction
	-12.492
	0.877
	-6.720
	0.733
	-3.427
	0.547
	-1.766
	0.425

	AI trained at 3 km/h 
	-5.225
	0.712
	-4.994
	0.689
	-4.684
	0.650
	-4.244
	0.594




Intermediate KPIs for observation window of 5/20ms and prediction window of 
4/20ms/20ms comparing AI model trained with general dataset and site-specific dataset. Inference with 30 km/h channel data
	Predicted slot
	1
	2
	3
	4

	KPIs
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS
	NMSE
	SGCS

	Nearest historical
	0.461
	0.534
	4.879
	0.430
	4.067
	0.393
	1.895
	0.396

	Non-AI prediction
	-7.543
	0.718
	-4.828
	0.544
	-2.985
	0.421
	-2.102
	0.366

	AI trained with site-specific dataset
	-8.41
	0.713
	-6.285
	0.591
	-5.042
	0.473
	-4.323
	0.399

	AI trained with general dataset
	-7.76
	0.671
	-5.825
	0.541
	-4.874
	0.440
	-4.324
	0.380
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